Как найти площадь грани на плоскости


Загрузить PDF


Загрузить PDF

Площадь поверхности – это суммарная площадь всех поверхностей, которые составляют объемную фигуру. Площадь поверхности является числовой характеристикой поверхности.[1]
Вычислить площадь поверхности объемной (трехмерной) фигуры довольно просто, если знать соответствующую формулу. Существует определенная формула для каждой фигуры, поэтому сначала нужно определить, какая фигура дана. Чтобы быстро вычислять площадь поверхности, запомните соответствующие формулы для разных фигур. В данной статье рассматриваются наиболее распространенные фигуры.

  1. Изображение с названием Find Surface Area Step 1

    1

    Запишите формулу для вычисления площади поверхности куба. У куба шесть равных квадратных граней. Так как стороны квадрата равны, площадь квадрата равна a2, где а – сторона. Так как у куба шесть равных квадратных граней, чтобы найти площадь поверхности, умножьте площадь одной грани (квадрата) на 6. Формула для вычисления площади поверхности (SA) куба: SA = 6а2, где а – ребро куба (сторона квадрата).[2]

    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 2

    2

    Измерьте ребро куба. Ребра куба равны, поэтому можно измерить только одно (любое) ребро. Ребро измерьте с помощью линейки (или рулетки). Обратите внимание на используемые единицы измерения.

    • Запишите значение, обозначив его через а.
    • Например: а = 2 см
  3. Изображение с названием Find Surface Area Step 3

    3

    Значение а возведите в квадрат. То есть возведите в квадрат длину ребра куба. Для этого умножьте значение на себя. Если вы только приступили к изучению формул с квадратами, запишите формулу так: SA = 6*а*а.

    • Сейчас вы вычислили значение площади одной из граней куба.
    • Например: а = 2 см
    • a2 = 2 х 2 = 4 см2
  4. Изображение с названием Find Surface Area Step 4

    4

    Вычисленное значение умножьте на шесть. Помните, что у куба шесть равных граней. Вычислив площадь одной из граней, умножьте полученное значение на 6, чтобы включить все грани куба.

    • Это последний шаг в процессе вычисления площади поверхности куба.
    • Например: а 2 = 4 см2
    • SA = 6 х а2 = 6 х 4 = 24 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 5

    1

    Запишите формулу для вычисления площади поверхности прямоугольной призмы. У прямоугольной призмы шесть граней, причем равными являются только противоположные грани.[3]
    Поэтому формула для вычисления площади поверхности прямоугольной призмы включает значения трех разных ребер: SA = 2ab + 2bc + 2ac.

    • Здесь а – ширина, b – высота, с – длина призмы.
    • Если проанализировать формулу, можно понять, что она суммирует площади всех граней.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 6

    2

    Найдите значения высоты, ширины и длины призмы. Три ребра не являются равными, поэтому нужно выполнить три измерения. Измерьте соответствующие ребра с помощью линейки (или рулетки). Ребра измеряйте в одной единице измерения.

    • Измерьте длину грани, которая лежит в основании призмы; длину обозначьте через с.
    • Например: с = 5 см
    • Измерьте ширину грани, которая лежит в основании призмы; ширину обозначьте через а.
    • Например: а = 2 см
    • Измерьте высоту призмы; высоту обозначьте через b.
    • Например: b = 3 см
  3. Изображение с названием Find Surface Area Step 7

    3

    Вычислите площадь одной грани призмы, а затем полученное значение умножьте на два. Помните, что у прямоугольной призмы шесть граней, причем равными являются только противоположные грани. Умножьте длину на высоту (с на а), чтобы найти площадь одной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[4]

    • Например: 2 x (a x c) = 2 x (2 x 5) = 2 x 10 = 20 см2
  4. Изображение с названием Find Surface Area Step 8

    4

    Вычислите площадь другой грани призмы, а затем полученное значение умножьте на два. Умножьте ширину на высоту (а на b), чтобы найти площадь другой грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[5]

    • Например: 2 x (a x b) = 2 x (2 x 3) = 2 x 6 = 12 см2
  5. Изображение с названием Find Surface Area Step 9

    5

    Вычислите площадь фронтальной грани, а затем полученное значение умножьте на два. Умножьте длину на ширину (с на b), чтобы найти площадь фронтальной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[6]

    • Например: 2 x (b x c) = 2 x (3 x 5) = 2 x 15 = 30 см2
  6. Изображение с названием Find Surface Area Step 10

    6

    Сложите три значения. Так как площадь поверхности – это суммарная площадь всех граней фигуры, сложите найденные значения площадей отдельных граней. Вы получите площадь поверхности прямоугольной призмы.[7]

    • Например: SA = 2ab + 2bc + 2ac = 12 + 30 + 20 = 62 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 11

    1

    Запишите формулу для вычисления площади поверхности треугольной призмы. Треугольная призма имеет две равные треугольные грани и три прямоугольные грани. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти площади всех граней и сложить их. Формула для вычисления площади поверхности треугольной призмы: SA = 2S + РH, где S – площадь треугольной грани, Р – периметр треугольной грани, H – высота призмы.[8]

    • Здесь S – это площадь треугольника (треугольной грани), которая вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание).
    • Р – периметр треугольника (треугольной грани), который равен сумме всех сторон треугольника.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 12

    2

    Вычислите площадь треугольной грани и умножьте ее на два. Площадь треугольника вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание). Так как треугольная призма имеет две равные треугольные грани, эту формулу можно умножить на два. Поэтому, чтобы вычислить площади двух треугольных граней, просто перемножьте основание и высоту треугольника (b*h).[9]

    • Основание треугольника b – это его нижняя сторона.
    • Например: b = 4 см
    • Высота треугольника h – это перпендикуляр, опущенный на основание из противоположной вершины.
    • Например: h = 3 см
    • Площадь двух треугольных граней равна: 2(1/2)b*h = b*h = 4*3 =12 см.
  3. Изображение с названием Find Surface Area Step 13

    3

    Измерьте каждую сторону треугольника и высоту призмы. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти значение каждой стороны треугольника и высоты призмы. Высота призмы – это расстояние между треугольными гранями.

    • Например: Н = 5 см
    • Стороны треугольника – это три ребра одной (любой) из треугольных граней.
    • Например: а = 2 см, b = 4 см, с = 6 см
  4. Изображение с названием Find Surface Area Step 14

    4

    Вычислите периметр треугольника. Для этого сложите все стороны треугольника: Р = а + b + с.

    • Например: P = а + b + с = 2 + 4 + 6 = 12 см
  5. Изображение с названием Find Surface Area Step 15

    5

    Перемножьте периметр треугольной грани и высоту призмы. Помните, что высота призмы – это расстояние между треугольными гранями. Таким образом, Р умножьте на Н.

    • Например: Р х Н = 12 х 5 = 60 см2
  6. Изображение с названием Find Surface Area Step 16

    6

    Сложите полученные значения. Чтобы найти площадь поверхности треугольной призмы, сложите два значения, вычисленные ранее.[10]

    • Например: 2S + PH = 12 + 60 = 72 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 17

    1

    Запишите формулу для вычисления площади поверхности шара. Шар имеет изогнутую поверхность, поэтому формула включает математическую константу π (число Пи). Чтобы вычислить площадь поверхности шара, воспользуйтесь формулой SA = 4π*r2.[11]

    • Здесь r – радиус шара, π ≈ 3,14.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 18

    2

    Измерьте радиус шара. Радиус шара равен половине его диаметра, то есть половине отрезка, который проходит через центр шара и соединяет две точки, лежащие на его поверхности.[12]

    • Например: r = 3 см
  3. Изображение с названием Find Surface Area Step 19

    3

    Радиус шара возведите в квадрат. Для этого умножьте значение радиуса (r) на себя. Помните, что формулу можно записать так: SA = 4π*r*r.[13]

    • Например: r2 = r x r = 3 x 3 = 9 см2
  4. Изображение с названием Find Surface Area Step 20

    4

    Перемножьте квадрат радиуса и приблизительное значение числа Пи. Число Пи является математической константой, которая равна отношению длины окружности к ее диаметру.[14]
    Это иррациональное число со множеством цифр после десятичной запятой. Зачастую число Пи округляется до 3,14. Квадрат радиуса умножьте на π (на 3,14), чтобы вычислить площадь круглого сечения шара. [15]

    • Например: π*r2 = 3,14 x 9 = 28,26 см2
  5. Изображение с названием Find Surface Area Step 21

    5

    Полученное значение умножьте на четыре. Чтобы найти значение площади поверхности сферы, площадь круглого сечения умножьте на 4.[16]

    • Например: 4π*r2 = 4 x 28,26 = 113,04 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 22

    1

    Запишите формулу для вычисления площади поверхности цилиндра. Цилиндрическая поверхность этой фигуры ограничена двумя круглыми параллельными плоскостями, которые называются основаниями. Формула для вычисления площади поверхности цилиндра: SA = 2π*r2 + 2π*rh, где r – радиус основания, h – высота цилиндра, π ≈ 3,14.[17]

    • 2π*г2 – это площадь двух оснований, а 2πrh – это площадь цилиндрической поверхности.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 23

    2

    Измерьте радиус основания и высоту цилиндра. Радиус окружности равен половине ее диаметра, то есть половине отрезка, который проходит через центр окружности и соединяет две точки, лежащие на ней.[18]
    Высота цилиндра – это расстояние между его основаниями. Измерьте и запишите радиус основания и высоту цилиндра.

    • Например: r = 3 см
    • Например: h = 5 см
  3. Изображение с названием Find Surface Area Step 24

    3

    Вычислите площадь основания и умножьте ее на два. Чтобы найти площадь основания, воспользуйтесь формулой для вычисления площади круга: S = π*г2. Сначала радиус возведите в квадрат, а затем полученное значение умножьте на число Пи. Результат умножьте на два, чтобы учесть второе равное основание.[19]

    • Например: площадь основания = π*r2 = 3,14 х 3 х 3 = 28,26 см2
    • Например: 2π*r2 = 2 x 28,26 = 56,52 см2
  4. Изображение с названием Find Surface Area Step 25

    4

    Вычислите площадь цилиндрической поверхности. Для этого воспользуйтесь формулой S = 2π*rh, по которой можно найти площадь поверхности трубы. Здесь труба – это поверхность между двумя основаниями цилиндра. Перемножьте двойку, число Пи, радиус и высоту.[20]

    • Например: 2π*rh = 2 x 3,14 x 3 x 5 = 94,2 см2
  5. Изображение с названием Find Surface Area Step 26

    5

    Сложите полученные значения. Сложите площади двух оснований и площадь цилиндрической поверхности (между двумя основаниями), чтобы вычислить общую площадь поверхности цилиндра. Обратите внимание, что при сложении этих величин получится исходная формула: SA = 2π*r2 + 2π*rh.[21]

    • Например: 2π*r2 + 2π*rh = 56,52 + 94,2 = 150,72 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 27

    1

    Запишите формулу для вычисления площади поверхности квадратной пирамиды. Квадратная пирамида имеет одно квадратное основание и четыре треугольные грани. Помните, что площадь квадрата равна квадрату его стороны. Площадь треугольника равна 1/2sl (половина основания треугольника, умноженная на его высоту). Так как пирамида имеет четыре треугольные грани, нужно площадь треугольника умножить на 4. Таким образом, площадь поверхности квадратной пирамиды вычисляется по формуле: SA = s2 + 2sl.[22]

    • В этой формуле s – ребро квадратной грани (сторона квадрата), l – апофема пирамиды.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 28

    2

    Найдите значения апофемы и ребра квадратной грани. Апофема (l) – это высота треугольной грани, то есть расстояние между основанием треугольника и его вершиной. Ребро квадратной грани (s) – это сторона квадрата. Помните, что у квадрата все стороны равны, поэтому измерьте любое ребро квадратной грани, а также измерьте апофему пирамиды.[23]

    • Например: l = 3 см
    • Например: s = 1 см
  3. Изображение с названием Find Surface Area Step 29

    3

    Найдите площадь квадратной грани. Для этого возведите в квадрат ребро этой грани (сторону квадрата), то есть умножьте значение s на себя.[24]

    • Например: s2 = s х s = 1 х 1 = 1 см2
  4. Изображение с названием Find Surface Area Step 30

    4

    Вычислите общую площадь четырех треугольных граней. Вторая часть формулы включает суммарную площадь четырех треугольных граней. Согласно формуле 2ls, перемножьте 2, s и l. Так вы найдете суммарную площадь 4-х треугольных граней.[25]

    • Например: 2 х s х l = 2 х 1 х 3 = 6 см2
  5. Изображение с названием Find Surface Area Step 31

    5

    Сложите полученные значения. Сложите площадь квадратной грани и общую площадь четырех треугольных граней, чтобы вычислить площадь поверхности пирамиды.[26]

    • Например: s2 + 2sl = 1 + 6 = 7 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 32

    1

    Запишите формулу для вычисления площади поверхности конуса. Конус имеет круглое основание и закругленную боковую поверхность, которая сужается в вершине этой фигуры. Чтобы найти площадь поверхности конуса, нужно вычислить значения площади круглого основания и площади боковой поверхности, а затем сложить эти значения. Формула для вычисления площади поверхности конуса: SA = π*r2 + π*rl, где r – радиус круглого основания, l – образующая (расстояние между вершиной конуса и точкой, которая лежит на окружности круга), π ≈ 3,14.[27]

    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 33

    2

    Измерьте радиус основания и высоту конуса. Радиус – это отрезок, соединяющий центр круга и точку, которая лежит на его окружности. Высота – это расстояние между центром круга и высотой конуса.[28]

    • Например: r = 2 см
    • Например: h = 4 см
  3. Изображение с названием Find Surface Area Step 34

    3

    Найдите значение образующей конуса (l). Образующая конуса является гипотенузой треугольника, поэтому воспользуйтесь теоремой Пифагора, чтобы вычислить образующую: l = √(r2 + h2), где r – радиус круглого основания, h – высота конуса.[29]

    • Например: l = √(r2 + h2) = √(2 х 2 + 4 х 4) = √(4 + 16) = √(20) = 4,47 см
  4. Изображение с названием Find Surface Area Step 35

    4

    Вычислите площадь круглого основания. Площадь круга вычисляется по формуле S = π*r2. Измерив радиус, возведите его в квадрат (умножьте r на себя), а затем квадрат радиуса умножьте на число Пи.[30]

    • Например: π*r2 = 3,14 x 2 x 2 = 12,56 см2
  5. Изображение с названием Find Surface Area Step 36

    5

    Вычислите площадь боковой поверхности конуса. Сделайте это по формуле S = π*rl, где r – радиус круга, l – образующая, которая найдена ранее.[31]

    • Например: π*rl = 3,14 x 2 x 4,47 = 28,07 см
  6. Изображение с названием Find Surface Area Step 37

    6

    Сложите полученные значения, чтобы найти площадь поверхности конуса. Площадь поверхности конуса равна сумме площади круглого основания и площади боковой поверхности конуса.[32]

    • Например: π*r2 + π*rl = 12,56 + 28,07 = 40,63 см2

    Реклама

Что вам понадобится

  • Линейка
  • Ручка или карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 69 399 раз.

Была ли эта статья полезной?

Аналитическая геометрия – задача на расчет пирамиды (тетраэдра)

Краткая теория


Вузовская аналитическая геометрия отличается от курса школьной геометрии. Главное отличие состоит в том, что она основным своим инструментом имеет набор алгебраических формул и методов вычислений. В основе аналитической геометрии лежит метод координат.
Аналитическая геометрия имеет набор формул, готовых уравнений и алгоритмов действия. Для успешного и правильного решения главное – разобраться и уделить задаче достаточно времени.

Данная задача является типовой в курсе аналитической геометрии и требует использования различных методов и знаний, таких как декартовые прямоугольные координаты и вектора в пространстве.

Пример решения задачи

Задача

Даны координаты
вершин пирамиды 
. Найти:

Сделать чертеж.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Решение

Длина ребра

Длину ребра

 найдем по
формуле расстояния между 2-мя точками:

Угол между ребрами

Угол между ребрами

 и

 найдем как угол
между направляющими векторами

  и

:

Косинус угла между
векторами:

Угол между ребром и гранью. Векторное произведение

Вычислим угол между
ребром

 и гранью

.

Для этого вычислим
координаты нормального вектора плоскости

 –им будет
векторное произведение векторов 

 и

.

 

Найдем векторное произведение. Для этого

вычислим определитель:

Нормальный вектор
плоскости:

  

Синус угла:

Площадь грани

Вычислим площадь
грани

. Она будет численно равна половине модуля векторного
произведения векторов

    и 

:

Искомая площадь:

Объем пирамиды. Смешанное произведение векторов

Вычислим объем
пирамиды. Он будет равен шестой части модуля смешанного произведения векторов

  и

:

Для того чтобы вычислить смешанное произведение, необходимо
найти определитель квадратной матрицы, составленной из координат векторов:

Искомый объем
пирамиды:

Уравнение прямой в пространстве

Вычислим уравнение
прямой

.  Направляющим
вектором искомой прямой является вектор

. Кроме того, прямая проходит через точку

 

Уравнение искомой
прямой:

Уравнение плоскости

Вычислим уравнение
плоскости

. Нормальный вектор плоскости

. кроме того, плоскость проходит через точку

 -уравнение
грани

 

Уравнение высоты, опущенной на грань

Составим уравнение
высоты, опущенной на грань

 из вершины

:

Нормальный вектор

 является
направляющим вектором высоты, кроме того, высота проходит через точку

 

Искомое уравнение
высоты:

Сделаем схематический чертеж:

Как вычислить площадь грани

Плоский многоугольник, сторонами которого являются ребра объемной геометрической фигуры, принято называть гранью этого объекта. Сумма площадей всех граней составляет площадь поверхности объемной фигуры. А величину этого параметра для каждой грани можно рассчитать, если знать ее геометрические размеры или иметь достаточно данных об объемной фигуре в целом.

Как вычислить площадь грани

Инструкция

Если объемная фигура не имеет геометрически правильной формы, то составляющие ее грани могут иметь одинаковое количество сторон, но несовпадающие размеры. Поэтому площадь каждой из них придется вычислять раздельно, исходя из данных о длинах составляющих ее ребер. Если эта информация есть, используйте формулы для соответствующего многоугольника. Например, если есть возможность измерить длины всех ребер, образующих треугольную грань, то площадь ее вычисляйте по формуле Герона. Для этого сначала найдите половину от суммы длин всех сторон (полупериметр), затем последовательно отнимите от полупериметра длину каждой стороны. У вас получится четыре значения – полупериметр и его три уменьшенных на длины сторон варианта. Перемножьте все эти числа, а из результата извлеките квадратный корень. Для вычисления площади грани с другим количеством сторон может понадобиться еще более сложная формула или даже разбиение ее на несколько более простых многоугольников.

Вычисление площади граней объемной фигуры правильной формы значительно проще, так как ее все боковые поверхности имеют одинаковые размеры. Так, чтобы вычислить этот параметр для каждой из шести граней куба достаточно знать длины двух смежных ребер многогранника. Их произведение и даст величину площади любой из граней. Зная количество плоскостей, которыми образована объемная фигура правильной формы, площадь каждой из них можно рассчитать из общей площади поверхности – разделите эту величину на количество граней.

Некоторые многогранники хоть и не состоят из одинаковых граней, тем не менее называются правильными и позволяют использовать достаточно простые формулы расчета плоскостей, составляющих их поверхность. Это фигуры с центральной осью симметрии, в основании которых лежит правильный многоугольник – например, пирамида. Ее боковые грани имеют форму треугольников одинаковых размеров. Площадь каждой можно рассчитать, если известна длина стороны многоугольника, лежащего в основании объемной фигуры, и ее высота. Умножьте длину стороны на количество граней основания и высоту пирамиды, а полученную величину разделите пополам. Рассчитанное значение и будет площадью каждой боковой грани пирамиды.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Пример 1:

Даны координаты вершин пирамиды А1А2А3А4.

Найти:

1) координаты и модули векторов А1 А2и А1 А4;  

2) угол между ребрами А1 А2и А1 А4;          

3) площадь грани А1 А2 А3;         

4) объем пирамиды;

5) уравнение прямой А1 А2;

6) уравнение плоскости А1 А2 А3;

7) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3.

Сделать чертеж.

А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).

Решение от преподавателя:

Пример 2:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).

Решение от преподавателя:

Пример 3:

Решение от преподавателя:

 Уравнение плоскости. 
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-3)(1*2-0*3) – (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y – 3z-38 = 0 

Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 
https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20%20=%20frac%7b|Al%20%2B%20Bm%20%2B%20Cn|%7d%7bsqrt%7bA%5e%7b2%7d%20%2B%20B%5e%7b2%7d%20%2B%20C%5e%7b2%7d%7dsqrt%7bl%5e%7b2%7d%20%2B%20m%5e%7b2%7d%20%2B%20n%5e%7b2%7d%7d%7d
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
Уравнение прямой A1A4
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%203%7d%7b-3%7d%20=%20frac%7by%20-%202%7d%7b0%7d%20=%20frac%7bz%20%2B%202%7d%7b4%7d
γ = arcsin(0.267) = 15.486o 

Уравнение высоты пирамиды через вершину A4(0,2,2) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d%20=%20frac%7bz%20-%20z_%7b0%7d%7d%7bC%7d
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%200%7d%7b2%7d%20=%20frac%7by%20-%202%7d%7b13%7d%20=%20frac%7bz%20-%202%7d%7b-3%7d

Уравнение плоскости через вершину A4(0,2,2) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
2(x-0)+13(y-2)-3(z-2) = 0 
или 
2x+13y-3z-20 = 0

Пример 4:

Решение от преподавателя:

Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 

  1. Уравнение плоскости
    Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-0)(3*2-8*3) – (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x – 15y + 33z-18 = 0 
Упростим выражение: -6x – 5y + 11z-6 = 0 

2) Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 

Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 
Уравнение прямой A1A4

γ = arcsin(0.193) = 11.128o 

3) Уравнение высоты пирамиды через вершину A4(0,5,4) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 

4) Уравнение плоскости через вершину A4(0,5,4) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости

Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 
-6(x-0)-5(y-5)+11(z-4) = 0 
или 
-6x-5y+11z-19 = 0 

5)  Координаты вектора  A1A4(0;4;3) 

Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:

Пример 5:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Пример 6:

Решение от преподавателя:

1) Даны координаты  вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 
Координаты векторов
Координаты векторов:       A1A2(3;3;3)        A1A4(0;4;3) 

Модули векторов (длина ребер пирамиды) 
Длина вектора a(X;Y;Z) выражается через его координаты формулой: 


Угол между ребрами.

 Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
   ,    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3): 

А1 = arccos(0,808)

Найдем площадь грани с учётом геометрического смысла векторного произведения: 
S =
Найдем векторное произведение

=i(3*2-8*3) – j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i – 15j + 33k 

3) Объем пирамиды
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

 

Координатывекторов:A1A2(3;3;3)    A1A3(-3;8;2) A1A4(0;4;3) :      

где определитель матрицы равен: 
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39 

Пример 7:

Решение от преподавателя:

  1. Угол между ребрами. 
    Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7ba_%7b1%7da_%7b2%7d%7d%7b|a_%7b1%7d|cdot%20|a_%7b2%7d|%7d
    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    γ = arccos(0) = 90.0030 
  2. Площадь грани 
    Площадь грани можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=S%20=%20frac%7b1%7d%7b2%7d%20|a|cdot%20|b|%20sin%20gamma
    где 
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%20cos%20gamma%5e%7b2%7d%7d
    Найдем площадь грани A1A2A3 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%200%5e%7b2%7d%7d%20=%201
    Площадь грани A1A2A3 
  3. Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

https://chart.googleapis.com/chart?cht=tx&chl=%20=%20frac%7b18%7d%7b6%7d%20=%203

где определитель матрицы равен: 
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18 

Пример 8:

Даны координаты вершин пирамиды А1А2А3А4 . Найти:

1) длину ребра А1А2;

2) угол между рёбрами А1Аи А1А4 ;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объём пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3;

Сделать чертёж.

А1(3; 5; 4),        А2(8; 7; 4),            А3(5; 10; 4),          А4(4; 7; 8).

Решение от преподавателя:

1) Длина ребра A1A2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребрами А1А4 и гранью А1А2А3;

Найдем уравнение стороны А1А4:

Вектор нормали:  к плоскости А1А2А3.

4) площадь грани А1А2А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

Итак: z=4 – уравнение плоскости А1А2А3.

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

A4O – высота:

Уравнение A4O:

Т.к. , то

В результате получаем уравнение высоты:

Пример 9:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Добавить комментарий