Как найти площадь измененного прямоугольника

Как вычислить площадь фигуры неправильной формы?

МатематикаГеометрияПлощадь

Анонимный вопрос

22 января 2019  · 103,5 K

Люблю математику, люблю решать задачи и учиться.  · 22 янв 2021

Помещаем исходную фигуру F внутри фигуры K1, площадь которой легко посчитать ( например состоящей из квадратов). Далее размещаем внутри F фигуру L1, площадь которой аналогично легко посчитать. Положим

S1=( K1+L1)/2. Если точность оценки – например K1-L1< a – нас устраивает, то S1-искомая площадь. Если не устраивает, на втором шаге помещаем F внутри K2, так чтобы K2 лежала внутри K1, и площадь K2 легко считалась, ( например, заполняем пустоты квадратами меньшего размера.) те сужаем внешний объём и теперь аналогично увеличиваем внутренний: внутри F размещаем L2, содержащую L1. Положим S2=(K2+L2)/2.

Очевидно, что S2>S1 и K2-L2<K1-L1., те точность увеличилась. И тд, пока нас не устроит точность оценки.

18,9 K

Комментировать ответ…Комментировать…

Можно ее начертить в программе Компас 3 D и воспользоваться функцией расчет площади плоской фигуры. Либо разбить на фигуры правильной формы вашу деталь и посчитать методом суммирования и вычитания площадей. Читать далее

13,6 K

Комментировать ответ…Комментировать…

Ученик 4 класса, отличник. Если смогу, обязательно отвечу!   · 15 авг 2020

Площадь фигуры неправильной формы можно вычислить так: сначала делим фигуру на квадраты одинаковой формы, потом считаем количество полных квадратов(d) , потом не полных(f) , делим неполные пополам и складывает полные и неполные (разделённые пополам) . Формула: S = d + f : 2

18,4 K

Комментировать ответ…Комментировать…

Проложить по краяю измеряемой фигуры верёвочку, затем измерить длину этой верёвки и сделать из неё правильную геометрическую фигуру (квадрат) и тогда измерять площадь квадрата. Зная высоту неправильной фигуры можно вычислить объём этой фигуры

2,7 K

Если следовать предложенному алгоритму, то конечно будет допущена ошибка. В качестве примера возьмите круг и… Читать дальше

Комментировать ответ…Комментировать…

Инженер
Финансист
Бухгалтер
Начинающий предприниматель
IT
  · 1 апр 2022

Надо загуглить макросы для Corel Draw. Среди них есть готовые решения. Одна из таких Curve info, там же есть описание как устанавливать. Заодно посмотреть какие версии поддерживаются

1,9 K

Комментировать ответ…Комментировать…

Могу лишь намекнуть принцип. Из физики 8-го класса известно,что ЭДС
фотоэлемента зависит от светового потока ,падающего на него Тогда идея измерения пощади будет заключаться в измерении напряжения ,вырабатываемого фотоэлементом при помощи откалиброванного в еденицах площади измерительного прибора,на который падает поток света. Если подложка из фотоэлемента ,например…
Читать далее

13,3 K

Комментировать ответ…Комментировать…

Площадь неправильной фигуры высчитывается таким образом: фигура делится на квадраты, треугольники и прямоугольники так, чтобы они все максимально помещались в эту неправильную фигуру. Вычисляется площадь каждой составляющей фигуры и суммируется. Так, приблизительно подсчитывается площадь неправильной геометрической фигуры.

51,8 K

если не сложно, можно формулой?

(не я вопрос писал)

Комментировать ответ…Комментировать…

Выбирайте формулу, ориентируясь на известные величины.

1. Если известны две соседние стороны

Просто перемножьте две стороны прямоугольника.

  • S — искомая площадь прямоугольника;
  • a и b — соседние стороны.

2. Если известны любая сторона и диагональ

Найдите квадраты диагонали и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте длину известной стороны на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).

3. Если известны любая сторона и диаметр описанной окружности

Найдите квадраты диаметра и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте известную сторону на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • D — диаметр описанной окружности.

4. Если известны любая сторона и радиус описанной окружности

Найдите квадрат радиуса и умножьте результат на 4.

Отнимите от полученного числа квадрат известной стороны.

Найдите корень из результата и умножьте на него длину известной стороны.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • R — радиус описанной окружности.

5. Если известны любая сторона и периметр

Умножьте периметр на длину известной стороны.

Найдите квадрат известной стороны и умножьте полученное число на 2.

От первого произведения отнимите второе и разделите результат на 2.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • P — периметр прямоугольника (равен сумме всех сторон).

6. Если известны диагональ и угол между диагоналями

Найдите квадрат диагонали.

Разделите полученное число на 2.

Умножьте результат на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • d — любая диагональ прямоугольника;
  • α — любой угол между диагоналями прямоугольника.

7. Если известны радиус описанной окружности и угол между диагоналями

Найдите квадрат радиуса окружности, описанной вокруг прямоугольника.

Умножьте полученное число на 2, а потом на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • R — радиус описанной окружности;
  • α — любой угол между диагоналями прямоугольника.

Читайте также 🎓❓📐

  • ТЕСТ:​ ​​Умеете ли вы считать в уме?
  • Как легко и быстро считать проценты в уме
  • Как найти площадь любого треугольника
  • ТЕСТ: Сколько центнеров в тонне? А сантиметров в дециметре? Проверьте, умеете ли вы переводить единицы измерения
  • Как освоить устный счёт школьникам и взрослым
Как найти площадь прямоугольника

Сегодня клоун Бим и дрессировщик Бом вместе с ребятами применяют на практике знания, как найти площадь для прямоугольника с разными сторонами.

Площадь фигуры — это размер куска плоскости внутри границ фигуры, измеренный в единицах измерения площади.

Единицы измерения площади — это площади квадратов, у которых стороны равны либо единице измерения длины, либо 10 м, либо 100 м: 1 кв.мм (квадрат со стороной 1 мм), 1 кв.см (квадрат со стороной 1 см), 1 кв.дм (квадрат со стороной 1 дм), 1 кв.м (квадрат со стороной 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м).

Определение. Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника.

Правило. Для вычисления площади прямоугольника (с разными сторонами), если известны длины его сторон, достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади. При необходимости результат укрупняют или раздробляют (см. Статью о переводе из одной единицы измерения площади в другую).

Содержание статьи:

Площадь — это?

Площадь любого куска плоскости (фигуры)— это размер этого куска плоскости (куска плоскости внутри границ фигуры), измеренный в единицах измерения площади.

Бим и Бом пришли на работу в цирк пораньше. Бим зашел к Бому в гримерку.

— Привет, Бим!

— Привет, Бом!

— У нашей Буфетчицы сегодня день рождения. Я купил очень вкусных конфет, только вот упаковка видишь какая длинная. У тебя есть какая-нибудь красивая коробка, куда мы можем сложить конфеты и подарить Буфетчице?

— У меня много разных красивых коробочек. Но как мы узнаем, какая из них подходит, чтобы вместились все конфеты и было красиво?

Бом и Бим задумались.

— Ура!!! Придумал, — нашелся Бим. — У каждой коробки есть плоское донышко. Давай вычислим площади донышек у каждой коробки, то есть измерим площадь донышек в единицах измерения площади — квадратных сантиметрах.

— Тогда найдем, какая коробка подходит больше всего, — подхватил Бом. — Начнем с упаковки, где лежат конфеты. У упаковки донышко в виде прямоугольника. Значит, достаточно измерить длины короткой и длинной стороны.

— А чем будем измерять? — задумался Бим.

— Сейчас поищу, — ответил Бом. — Вот у меня есть сантиметр, линейка и листочек в клеточку.

— Дай, пожалуйста, мне листочек в клеточку, — попросил Бом. — Я проверю, что донышко упаковки — прямоугольник.

Как найти площадь прямоугольника с разными сторонами. Площадь прямоугольника — это?

Определение. Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника.

Правило. Для вычисления площади прямоугольника, если известны длины его сторон, достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади. При необходимости результат можно укрупнить или раздробить (см. Статью о переводе из одной единицы измерения площади в другую).

Как найти площадь прямоугольника

Бим приложил листочек к углам донышка упаковки.

— Проверил: у упаковки четыре угла, и все они — прямые. Тогда донышко упаковки — прямоугольник.

Бом начал читать свои записи:

Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника. Как найти площадь прямоугольника (с разными сторонами), если известны длины его сторон? Достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади”.

— Теперь надо измерить длины двух сторон. Упаковка — длинная, тогда лучше взять сантиметр.

Бим измерил упаковку.

— Короткая сторона 8 см, длинная — 72 см. Вспоминаем, что для вычисления площади прямоугольника надо длину одной стороны умножить на длину прилежащей стороны. Умножаем:

72 х 8 =576 кв.см (см2).

Как найти площадь прямоугольника

— Сейчас принесу из подсобки коробки, которые у меня есть, — побежал Бом.

И — надо же! — по дороге Бом встретил Олю, Колю и Васю, которые пришли пораньше на представление.

— Ребята, как хорошо, что вы здесь! Идемте, поможете нам с Бимом подобрать Буфетчице на день рождения коробку.

Бом достал из подсобки коробки, и они все вместе вернулись к Биму.

— Ребята, мы с Бимом измерили площадь упаковки конфет, которые мы хотим переложить в более красивую коробку. Красиво сложим и подарим Буфетчице на день рождения, — объяснил Бим.

— Давайте вычислим площадь донышка каждой коробки, — предложил Вася. — В коробку, у которой площадь донышка равна площади донышка упаковки, мы переложим конфеты.

— Как здорово, что Бом принес все коробки, донышки у которых имеют вид прямоугольника! — обрадовался Коля. — Как найти площадь прямоугольника с разными сторонами? Надо измерить длины двух прилежащих сторон в одинаковых единицах измерения длины и их перемножить, — получим площадь прямоугольника в единицах измерения площади. Для коробок удобнее всего измерять длины сторон в сантиметрах, а площадь самих прямоугольников уже будет в квадратных сантиметрах. Оля, давай проверим, что донышки коробок — прямоугольники.

Коля и Оля взяли листочек в клеточку и с помощью него проверили, что у донышек все углы прямые.

Затем Коля, Вася и Оля вооружились листочком в клеточку, линейкой и сантиметровой лентой и измерили в сантиметрах длины прилежащих сторон донышек коробок.

Первым управился Коля:

— У меня большая сторона 36 сантиметров и короткая 16 сантиметров. Получаем площадь моей коробки

36 х 16 = 576 (кв.см).

Следующим был Вася:

— У меня длина коробки 30 см, а ширина — 20 см. Для вычисления площади коробки надо длину умножить на ширину прямоугольника. Получаем:

30 х 20 = 600 (кв.см)

Оля измеряла тщательнее всех, ведь у нее коробка была похожа на квадрат. Но надо было убедиться, точно ли у этой коробки равны обе стороны. Так и оказалось:

— У меня прилежащие стороны одинаковые по длине, обе равны 24 см. Перемножаем длины двух прилежащих сторон, получаем: 24 х 24 = 576 (кв.см).

— Тогда у нас выходят 3 коробки с одинаковыми площадями донышек — у упаковки, — подытожил Бом:

8 х 72 = 576 (кв.см), —

и еще у двух коробок

16 х 36 = 576 (кв.см),

24 х 24 = 576 (кв.см),

а также одна коробка  площадью больше, чем у упаковки

30 х 20 = 600 (кв.см).

— Какую же коробку выбрать? — озадаченно спросил Бим.

— Давай возьмем в виде квадрата, посмотрите какая здесь красивая крышка! — решил Бом.

Ребята выложили конфеты из упаковки в коробку.

— Ага, — посмотрел Бом. — получились три ряда. Какая же площадь донышка одного ряда? Длина ряда 24 см, ширина — 8 см. Значит площадь донышка одного ряда равна:

24 х 8 = 192 (кв.см).

Всего три одинаковых ряда

192 х 3 = 576 (кв.см).

Ура! Все совпадает!

Бим, все же, спросил:

— Сейчас мы измеряли площадь в квадратных сантиметрах. А какие еще есть единицы измерения площади?

Как найти площадь прямоугольника

Единицы измерения площади

Единицы измерения площади — это площадь квадратов, у которых стороны равны либо единице измерения длины, либо 10 м, либо 100 м: 1 кв.мм (квадрат со стороной 1 мм), 1 кв.см (квадрат со стороной 1 см), 1 кв.дм (квадрат со стороной 1 дм), 1 кв.м (квадрат со стороной 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м). (См. статью “Единицы измерения площади”)

В каких единицах измерения площади мы можем записать площадь донышка одного ряда? — продолжил вопрос Бим.

Оля ответила сразу:

— Если мы будем укрупнять, то в дециметрах и сантиметрах.

576 кв.см = 5 кв.дм 76 кв.см

— А если мы будем раздроблять — в миллиметрах, — добавил Коля. —

576 кв.см =576 х 100 (кв.мм).

А еще единицы измерения площади 1 кв.м (квадрат со стороною 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м).

— Теперь я подпишу открытку. У меня красивый артистический почерк, — вызвался Бом.

— Хорошо, Бом. А мы с ребятами составим вопросы и ответы на них, — согласился Бим.

Первый вопрос: Что называется площадью? — начал Вася.

Второй вопрос: Дайте определение прямоугольника. — продолжил Коля. —

И третий вопрос: Что такое площадь прямоугольника?

Четвертый вопрос: Как найти площадь прямоугольника (с разными сторонами)? — закончила Оля.

И еще один, пятый, вопрос: Какие вы знаете единицы измерения площади? — добавил Бим.

Теперь я запишу ответы для проверки, — продолжил клоун:

1.      Площадь — это размер куска плоскости внутри фигуры.

2.      Прямоугольник — это фигура с 4-мя прямыми углами и с замкнутой границей из четырех отрезков.

3.      Площадь прямоугольника — это площадь куска плоскости внутри границ прямоугольника.

4.      Как найти площадь прямоугольника? Для нахождения площади прямоугольника перемножаются длины двух прилежащих сторон. Результат записывается в единицах измерения площади.

5.      Единицы измерения площади — это площади квадратов, у которых стороны равны либо единице измерения длины, либо 10 м, либо 100 м: 1 кв.мм (квадрат со стороной 1 мм), 1 кв.см (квадрат со стороной 1 см), 1 кв.дм (квадрат со стороной 1 дм), 1 кв.м (квадрат со стороной 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м).

Итог подвел Бом:

— Мы сегодня узнали :

  • что такое площадь
  • что такое площадь прямоугольника
  • как найти площадь прямоугольника
  • единицы измерения площади.

Всем спасибо за помощь.

Заключение

Итак, теперь мы знаем ответ на вопрос: Как найти площадь прямоугольника с разными сторонами. А вам приходилось дарить конфеты в коробочках? Как видим, можно, в случае чего, упаковать подарок более изящно, а заодно — и математику повторить.

Идея необычной подачи материала принадлежит замечательному преподавателю математики Стуловой Лилии Валериевне.

Ждём Ваши оценки и комментарии!)))

  • Главная
  • Справочник
  • Как найти площадь прямоугольника

Поможем решить контрольную, написать реферат, курсовую и диплом от 800р
Узнать стоимость

Как найти площадь прямоугольника

Содержание:

  • Формула
  • Примеры вычисления площади прямоугольника

Формула

Чтобы найти площадь прямоугольника (рис. 1), надо его длину умножить на ширину, то есть

Прямоугольником называется четырехугольник, у которого все углы равны. Все углы в прямоугольнике прямые, то есть равны $90^{circ}$.

Примеры вычисления площади прямоугольника

Пример

Задание. Найти площадь прямоугольника, если одна его сторона равна 3 см, а вторая, смежная с ней – 5 см.

Решение. Искомая площадь прямоугольника равна произведению двух заданных сторон:

$S=3 cdot 5=15$ (см2)

Ответ. $S=15$ (см2)

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти площадь прямоугольника, если одна его сторона равна 3 м, а диагональ – 5 м.

Решение. Сделаем чертеж (рис. 2).

Рассмотрим прямоугольный треугольник $ABC$, из которого по
теореме Пифагора найдем длину катета $BC$ :

$B C=sqrt{A C^{2}-A B^{2}}=sqrt{5^{2}-3^{2}}=sqrt{25-9}=sqrt{16}=4$ (м)

Тогда искомая площадь равна

$S=3 cdot 4=12$ (м2)

Ответ. $S=12$ (м2)

Читать дальше: как найти площадь параллелограмма.

Статьи по теме

  • Как найти площадь
  • Как найти площадь треугольника
  • Как найти площадь ромба
  • Как найти площадь эллипса
  • Как найти площадь прямоугольного треугольника
  • Все темы раздела “Как найти площадь”

Разделы

  • Формулы сокращенного умножения
  • Формулы по физике
  • Логарифмы
  • Векторы
  • Матрицы
  • Комплексные числа
  • Пределы
  • Производные
  • Интегралы
  • СЛАУ
  • Числа
  • Дроби

Все еще сложно?

Не получается написать работу самому?

Доверь это кандидату наук!

Ищещь ответ на вопрос с которым нужна помощь?

80% ответов приходят в течение 10 минут

250 ответов по вашей теме сегодня

2 специалиста свободны онлайн

Ответы приходят уже через 10 минут

90% ответов положительные

Самый простой способ – перемножить две стороны. Но иногда эти две стороны неизвестны.

11 383

Как найти площадь прямоугольника – 9 формул с примерами

Умножьте его ширину на высоту. Это самый простой способ найти площадь прямоугольника. Например, если ширина прямоугольника равна 4 см, а высота – 2 см, то площадь будет равна 4*2 = 8 см.

По диагонали и стороне

Должна быть известна диагональ и любая из сторон. Действия:

  1. Найти квадрат диагонали, то есть умножить ее на саму себя.
  2. Найти квадрат известной стороны.
  3. Из квадрата диагонали вычесть квадрат стороны.
  4. Найти квадратный корень получившейся разности.
  5. Умножить его на известную сторону.

Ищем площадь по диагонали и стороне

Пример. Сторона прямоугольника равна 3 см, а диагональ – 5 см. Найдите площадь.

  1. Квадрат стороны = 3*3 = 9 см.
  2. Квадрат диагонали = 5*5 = 25 см.
  3. Вычитаю из квадрата диагонали квадрат стороны: 25-9 = 16 см.
  4. Нахожу квадратный корень получившейся разности. Корень из 16 = 4 см.
  5. Умножаю корень разности на известную сторону: 16*9 = 144 см.

Ответ: 144 см.

Обратите внимание

Диагональ в прямоугольнике – это гипотенуза, потому что она всегда находится напротив угла в 90 градусов. Найти диагональ можно по формуле нахождения гипотенузы, например, поделив катет угла A на синус угла A.

По стороне и диаметру описанной окружности

Вокруг любого прямоугольника можно описать окружность. Вам надо знать диаметр этой окружности и любую из сторон прямоугольника.

Действия:

  1. Найдите квадрат диаметра – умножьте диаметр на диаметр.
  2. Найдите квадрат известной стороны.
  3. Отнимите от квадрата диаметра квадрат стороны.
  4. Найдите квадратный корень разности.
  5. Умножьте квадратный корень на известную сторону.

По одной стороне и диаметру окружности

Пример. Найдите площадь прямоугольника, если диаметр описанной окружности равен 10 см, а одна из сторон равна 8 см.

  1. Квадрат диаметра: 10*10 = 100 см.
  2. Квадрат стороны: 8*8 = 64 см.
  3. Отнимаю от квадрата диаметра квадрат стороны: 100-64 = 36 см.
  4. Квадратный корень из 36 равен 6 см (потому что 6*6 = 36).
  5. Умножаю сторону на корень из разности: 8*6 = 48 см.

Ответ: 48 см.

Лайфхак

Диаметр описанной окружности всегда равен диагонали прямоугольника. Смотрите:

Диагональ равна диаметру

А найти диагональ можно по формуле гипотенузы прямоугольного треугольника.

Диаметр равен двум радиусам, потому что радиус – это половина диаметра.

Как найти площадь треугольника – все способы

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

По радиусу описанной окружности и стороне

Можно просто найти диаметр (умножить радиус на два) и использовать формулу выше.

Другой способ:

  1. Найти квадрат радиуса (умножьте радиус на радиус).
  2. Умножить квадрат радиуса на 4.
  3. Найти квадрат известной стороны.
  4. Отнять от четырех радиусов в квадрате квадрат известной стороны (из второго отнять третье).
  5. Найти квадратный корень разности.
  6. Умножить корень на известную сторону.

Площадь по стороне и радиусу

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 5 см, а одна из сторон равна 6 см.

  1. Квадрат радиуса: 5*5=25 см.
  2. Четыре квадрата радиуса: 4*25 = 100 см.
  3. Квадрат стороны: 6*6 = 36 см.
  4. Отнимаю от четырех радиусов в квадрате квадрат стороны: 100-36 = 64 см.
  5. Нахожу квадратный корень разности. Корень из 64 равен 8 см.
  6. Умножаю корень на сторону: 8*6 = 48 см.

Ответ: 48 см.

Помните

Радиус = половине диаметра.

Радиус = половине гипотенузы прямоугольного треугольника, вокруг которого описана окружность. Потому что эта гипотенуза = диагонали прямоугольника = диаметру.

По стороне и периметру – 1 способ

Периметр – это сумма всех сторон прямоугольника. P=a+b+a+b. Другая формула периметра: P=2(a+b).

Если известен периметр и одна сторона, надо найти вторую сторону и перемножить их.

Пример. Периметр прямоугольника равен 14 см, а одна из  сторон равна 3 см. Найдите площадь.

  1. Нахожу вторую сторону прямоугольника:
    1. P=2(a+b).
    2. P=2a+2b.
    3. 14= 2*3+2b.
    4. 14 = 6+2b.
    5. 2b = 14-6 = 8.
    6. b = 8/2.
    7. b = 4.
  2. Нахожу площадь по основной формуле. S = 3*4 = 12 см.

Ответ: 12 см.

По стороне и периметру – 2 способ

Действия такие:

  1. Умножьте периметр на сторону.
  2. Найдите квадрат стороны.
  3. Умножьте квадрат стороны на 2.
  4. Отнимите от произведения периметра и стороны два квадрата стороны (от первого отнимите третье).
  5. Поделите на 2.

Как найти площадь, если известны периметр и сторона

Пример. Сторона прямоугольника равна 8, а периметр равен 28. Найдите площадь.

  1. Умножаю периметр на сторону: 8*28 = 224 см.
  2. Нахожу квадрат стороны: 8*8 = 64 см.
  3. Умножаю квадрат стороны на два: 64*2 = 84 см.
  4. Отнимаю из первого третье: 224-84 = 140 см.
  5. Делю разность на два: 140/2 = 70 см.

Ответ: 70 см.

По диагонали и углу между диагоналями

Диагонали прямоугольника всегда равны.

Действия:

  1. Найти квадрат диагонали (умножить диагональ на саму себя).
  2. Найти половину этого квадрата – умножить его на 0,5.
  3. Найти синус угла между диагоналями.
  4. Умножить половину квадрата диагонали на синус угла между диагоналями.

Ищем площадь по диагонали и углу

Пример. Найдите площадь прямоугольника, диагональ которого равна 10 см, а угол между диагоналями – 30 градусов.

  1. Квадрат диагонали: 10*10 = 100 см.
  2. Половина этого квадрата: 0,5*100 = 50 см.
  3. Синус угла между диагоналями: sin 30 градусов = 0,5.
  4. Перемножаю половину квадрата и синус угла, чтобы найти площадь: 50*0,5 = 25 см.

Ответ: 25 см.

Вот еще вам таблица основных значений из тригонометрии. Там как раз отмечено, что синус 30 градусов всегда равен 0,5 (1/2).

Основные значения из тригонометрии

По радиусу описанной окружности и углу между диагоналями – первый способ

Радиус описанной окружности равен половине ее диаметра, а диаметр равен диагонали прямоугольника. Надо найти диаметр и посчитать площадь по формуле выше.

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6 см, а угол между диагоналями – 30 градусов.

  1. Находим длину диагонали: 6*2 =12 см.
  2. Квадрат диагонали равен 144 см.
  3. Половина квадрата: 72 см.
  4. Синус 30 градусов равен 0,5.
  5. Умножаем половину квадрата на синус: 72*0,5 = 36 см.

Ответ: 36 см.

По радиусу описанной окружности и углу между диагоналями – второй способ

Действия:

  1. Найти квадрат радиуса (умножить радиус на радиус).
  2. Умножить квадрат радиуса на два.
  3. Найти синус угла между диагоналями.
  4. Умножить синус угла на два радиуса в квадрате.

Ищем площадь по радиусу и углу между диагоналями

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6, а угол между диагоналями – 30 градусов.

  1. Квадрат радиуса: 6*6 = 36.
  2. Два радиуса в квадрате: 36*2 = 72.
  3. Синус 30 градусов равен 0,5.
  4. Произведение синуса и двух радиусов в квадрате: 72*0,5 = 36 см.

Ответ: 36 см.

Покритикуйте статью и стиль подачи материала в комментариях, я внесу правки. Это моя вторая статья по математике, я хочу, чтобы они все были образцовыми.

( 1 оценка, среднее 5 из 5 )

Оцените статью

ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА

Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети

ПОДПИСАТЬСЯ

Добавить комментарий