Как найти площадь кольца образованного двумя кругами

Площадь кольца

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²

Найти площадь кольца образованного двумя окружностями

Площадь кольца

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² — 2²) = 3.14 ⋅ (9 — 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² — 2²) = 0.785 ⋅ (16 — 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² — (5 — 2 ⋅ 2)²) = 0.785 ⋅ (25 — 1) = 18.84 см²

Задача: определить площадь кольца, если известны радиусы

Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O — общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула площади внешнего круга.

Формула площади внутреннего круга.

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Ответ:

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами R1 и R2, R12

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,900
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Задача: определить площадь кольца, если известны радиусы

Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O – общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула площади внешнего круга.

Формула площади внутреннего круга.

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Ответ:

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/nayti-ploschad-koltsa-obrazovannogo-dvumya-okruzhnostyami

http://www-formula.ru/zadacha/solve-area-annulus-know-radius

[/spoiler]

Площадь кольца

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Площадь кольца

Чтобы найти площадь кольца, ограниченного двумя концентрическими окружностями, воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Прощать кольца
Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности

=

у внутренней окружности

=

Ответ: S =

0

Округление числа π: Округление ответа:

Просто введите радиусы или диаметры окружностей, и получите ответ.

Площадь кольца по толщине и любому другому параметру

Прощать кольца по толщине
Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

=

Ответ: S =

0

Округление числа π: Округление ответа:

Просто введите толщину кольца и любой другой известный вам параметр, и получите ответ.

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

S = π ⋅ (R² – r²)

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

S = π/4 ⋅ (D² – d²)

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

S = π/4 ⋅ (D² – (D – 2t)²)

S = π/4 ⋅ ((d + 2t)² – d²)

S = π ⋅ (R² – (R – t)²)

S = π ⋅ ((r + t)² – r²)

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²

См. также

назад к списку всех задач


Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.


Рисунок кольца для задачи

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O – общий центр окружностей


Найти площадь кольца: S


Решение

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула разницы площадей

Формула площади внешнего круга.

площадь внешнего круга

Формула площади внутреннего круга.

площадь внутреннего круга

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Формула площади кольца

Вставляем значения.

Полученный результат


Ответ:

ответ



Число пи приблизительноеРезультат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли  π ≈ 3.14



Калькулятор для расчета площади кольца



назад к списку всех задач

Подробности

Опубликовано: 06 сентября 2017

Обновлено: 13 августа 2021

Площадь кольца через радиусы

{S = pi (R^2 – r^2)}

С помощью приведенных калькулятора и формул можно рассчитать площадь кольца через радиусы или диаметры онлайн.

Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.

Содержание:
  1. калькулятор площади кольца
  2. формула площади кольца через радиусы
  3. формула площади кольца через диаметры
  4. примеры задач

Формула площади кольца через радиусы

Площадь кольца через радиусы

{S = pi (R^2 – r^2)}

R – внешний радиус кольца

r – внутренний радиус кольца

Формула площади кольца через диаметры

Площадь кольца через диаметры

{S= dfrac{pi}{4}(D^2 – d^2)}

D – внешний диаметр кольца

d – внутренний диаметр кольца

Примеры задач на нахождение площади кольца

Задача 1

Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 3 см и 7 см.

Решение

В условии задачи даны радиусы ограничивающих кольцо окружностей, поэтому воспользуемся первой формулой.

S = pi (R^2 – r^2) = pi (7^2 – 3^2) = pi (49 – 9) = 40pi approx 125.66371 : см^2

Ответ: 108 cdot 0.866 approx 93.53074 : см^2

Полученный ответ можно проверить с помощью калькулятора .

Задача 2

Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны dfrac{4}{sqrt{pi}} и dfrac{2}{sqrt{pi}}.

Решение

Задача похожа на предыдущую, поэтому алгоритм ее решения будет тот же.

S = pi (R^2 – r^2) = pi ({Big(dfrac{4}{sqrt{pi}} Big) }^2 – {Big(dfrac{2}{sqrt{pi}} Big) }^2) = pi (dfrac{16}{pi} – dfrac{4}{pi}) = pi dfrac{12}{pi} = 12 : см^2

Ответ: 12 : см^2

Наш калькулятор может производить вычисления с выражениями. Для того, чтобы ввести радиусы из условия их нужно записать в понятном для калькулятора формате:

dfrac{4}{sqrt{pi}} : rarr : 4/sqrt(pi)

dfrac{2}{sqrt{pi}} : rarr : 2/sqrt(pi)

Если ввести данные в таком формате, можно проверить ответ .

Задача 3

Найдите площадь кольца образованного двумя окружностями с общим центром если радиусы равны 15 и 13.

Решение

Задача аналогична предыдущим.

S = pi (R^2 – r^2) = pi (15^2 – 13^2) = pi (225 – 169) = 56pi approx 175.92919 : см^2

Ответ: 56pi approx 175.92919 : см^2

Проверка .

Задача 4

Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 13 и 12 см.

Решение

Задача аналогична предыдущим.

S = pi (R^2 – r^2) = pi (13^2 – 12^2) = pi (169 – 144) = 25pi approx 78.53982 : см^2

Ответ: 25pi approx 78.53982 : см^2

Проверка .

  • Все калькуляторы
  • /

  • Учеба и наука
  • /

  • Математика
  • /   Площадь кольца

    Площадь кольца

    Площадь кольца вычисляется как разность площадей кругов с радиусами R и r. Также площадь кольца через диаметры находится как произведение одной четвертой числа π на разность квадратов внешнего и внутреннего диаметров кольца.

    Установить Площадь кольца на мобильный

    Площадь кольца через радиусы

    площадь кольца через радиусы формула Площадь кольца через радиусы
    Внешний радиус кольца R
    Внутренний радиус кольца r
    Результат

    Площадь кольца через диаметры

    Площадь кольца через диаметры формула Площадь кольца через диаметры
    Внешний диаметр кольца D
    Внутренний диаметр кольца d
    Результат

    Скачать калькулятор

    Рейтинг: 2.9 (Голосов 18)

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone – просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android – просто добавьте страницу
    «На главный экран»

    Сообщить об ошибке

    Смотрите также

    Площадь фигур Объем фигур Периметр фигур Радиус фигур Единицы измерения площади
    Конвертеры Время для пробуждения Теоремы Угол Калькулятор Моей жизни

    Добавить комментарий