Площадь кольца
- Главная
- /
- Математика
- /
- Геометрия
- /
- Площадь кольца
Чтобы найти площадь кольца, ограниченного двумя концентрическими окружностями, воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Площадь кольца по радиусам или диаметрам
Чему равна площадь кольца ограниченного двумя окружностями, если:
у внешней окружности
=
у внутренней окружности
=
Ответ: S =
0
Округление числа π: Округление ответа:
Просто введите радиусы или диаметры окружностей, и получите ответ.
Площадь кольца по толщине и любому другому параметру
Чему равна площадь кольца ограниченного двумя окружностями, если:
толщина кольца t =
=
Ответ: S =
0
Округление числа π: Округление ответа:
Просто введите толщину кольца и любой другой известный вам параметр, и получите ответ.
Теория
Площадь кольца через радиусы
Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?
Формула
S = π ⋅ (R² – r²)
Пример
К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:
S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²
Ответ: S = 15.7 см²
Площадь кольца через диаметры
Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?
Формула
S = π/4 ⋅ (D² – d²)
Пример
К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:
S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²
Ответ: S = 9.42 см²
Площадь кольца через толщину
Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:
- внешний диаметр D
- внутренний диаметр d
- радиус внешней окружности R
- радиус внутренней окружности r
Формулы
S = π/4 ⋅ (D² – (D – 2t)²)
S = π/4 ⋅ ((d + 2t)² – d²)
S = π ⋅ (R² – (R – t)²)
S = π ⋅ ((r + t)² – r²)
Пример
Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:
S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²
См. также
При помощи нашего калькулятора вы легко сможете узнать площадь кольца.
Для того что бы вычислить площадь кольца необходимо знать его внутренний и внешний радиус или внутренний и внешний диаметр. Если нам известны указанные величины, для нас не составит труда вычислить площадь кольца.
Площадь кольца рассчитывается по следующим формулам:
- Если нам известен радиус:
Формула для расчета площади кольца через радиус:
S=π(R2-r2) - Если нам известен диаметр:
Формула для расчета площади кольца через диаметр:
S=π/4(D2-d2)
Где S – площадь кольца, R – внешний радиус кольца, r – внутренний радиус кольца, D – внешний диаметр кольца, d – внутренний диаметр кольца, π – число Пи которое всегда примерно равно 3,14.
{S = pi (R^2 – r^2)}
С помощью приведенных калькулятора и формул можно рассчитать площадь кольца через радиусы или диаметры онлайн.
Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.
Содержание:
- калькулятор площади кольца
- формула площади кольца через радиусы
- формула площади кольца через диаметры
- примеры задач
Формула площади кольца через радиусы
{S = pi (R^2 – r^2)}
R – внешний радиус кольца
r – внутренний радиус кольца
Формула площади кольца через диаметры
{S= dfrac{pi}{4}(D^2 – d^2)}
D – внешний диаметр кольца
d – внутренний диаметр кольца
Примеры задач на нахождение площади кольца
Задача 1
Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 3 см и 7 см.
Решение
В условии задачи даны радиусы ограничивающих кольцо окружностей, поэтому воспользуемся первой формулой.
S = pi (R^2 – r^2) = pi (7^2 – 3^2) = pi (49 – 9) = 40pi approx 125.66371 : см^2
Ответ: 108 cdot 0.866 approx 93.53074 : см^2
Полученный ответ можно проверить с помощью калькулятора .
Задача 2
Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны dfrac{4}{sqrt{pi}} и dfrac{2}{sqrt{pi}}.
Решение
Задача похожа на предыдущую, поэтому алгоритм ее решения будет тот же.
S = pi (R^2 – r^2) = pi ({Big(dfrac{4}{sqrt{pi}} Big) }^2 – {Big(dfrac{2}{sqrt{pi}} Big) }^2) = pi (dfrac{16}{pi} – dfrac{4}{pi}) = pi dfrac{12}{pi} = 12 : см^2
Ответ: 12 : см^2
Наш калькулятор может производить вычисления с выражениями. Для того, чтобы ввести радиусы из условия их нужно записать в понятном для калькулятора формате:
dfrac{4}{sqrt{pi}} : rarr : 4/sqrt(pi)
dfrac{2}{sqrt{pi}} : rarr : 2/sqrt(pi)
Если ввести данные в таком формате, можно проверить ответ .
Задача 3
Найдите площадь кольца образованного двумя окружностями с общим центром если радиусы равны 15 и 13.
Решение
Задача аналогична предыдущим.
S = pi (R^2 – r^2) = pi (15^2 – 13^2) = pi (225 – 169) = 56pi approx 175.92919 : см^2
Ответ: 56pi approx 175.92919 : см^2
Проверка .
Задача 4
Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 13 и 12 см.
Решение
Задача аналогична предыдущим.
S = pi (R^2 – r^2) = pi (13^2 – 12^2) = pi (169 – 144) = 25pi approx 78.53982 : см^2
Ответ: 25pi approx 78.53982 : см^2
Проверка .
Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус.
Площадь кольца, выраженная через внешний и внутренний радиусы
Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Фигура, заключенная между этими окружностями и будет кольцо, у которого R является внешним радиусом, r -внутренним радиусом.
Тогда площадь этой фигуры будет равна разницы между площадью круга с большим радиусом и площадью круга с меньшим радиусом.
Площадь круга с радиусом r выражается формулой:
Площадь круга с радиусом R выражается формулой:
Тогда площадь кольца будет равна:
Таким образом, площадь кольца равна произведению числа на разницу квадратов внешнего и внутреннего радиусов:
Пример расчета площади кольца, если известны его радиусы.
Найдите площадь кольца, если его внешний радиус равен 3, а внутренний – 2
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площадь кольца, выраженная через внешний и внутренний диаметры
Иногда при решении задач удобней использовать формулу площади кольца, выраженную через внутренний и внешний диаметры.
Пусть D – внешний диаметр кольца, d -внутренний диаметр кольца, тогда:
Выразим радиус через диаметр. Имеем:
Площадь кольца вычисляется по формуле:
Подставив выраженные через диаметр радиусы, получим:
Таким образом, площадь кольца равна четверти произведения числа на разницу квадратов внешнего и внутреннего диаметров:
Пример расчета площади кольца, если известны его диаметры.
Найдите площадь кольца, если его внешний диаметр равен 10, а внутренний – 6
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площади кольца, выраженная через средний радиус и ширину кольца
Пусть k– ширина кольца, являющийся разницей между большим и меньшим радиусом, то есть k=R-r-средний радиус кольца, равный
Площадь кольца вычисляется по формуле:
Применив формулу разности квадратов, имеем:
Но R-r=k, а
Подставим правые части равенства в формулу площади кольца.
Получим:
Площадь кольца равна удвоенному произведению числа среднего радиуса на ширину кольца.
Пример расчета площади кольца, если известны его средний радиус и ширина.
Найдите площадь кольца, если его средний радиус равен 5, а ширина – 2
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площади кольца через длину самого большого отрезка, проведенного внутри кольца
Пусть AB –самый большой отрезок, лежащий внутри кольца. Точка С – половина этого отрезка. Этот отрезок будет являться касательной к кругу меньшего радиуса. Касательная перпендикулярна радиусу меньшей окружности, проведенного в точку каcания C. Тогда
Следовательно, треугольник ACO –прямоугольный, где
По теореме Пифагора имеем:
Площадь кольца равна:
Подставив, получим:
Следовательно, площадь кольца равна произведению числа на квадрат половины самого большого отрезка кольца.
Как рассчитать площадь кольца
На данной странице калькулятор поможет рассчитать площадь кольца онлайн. Для расчета задайте внутренние и внешние радиусы или диаметры.
Через радиусы
Формула для нахождения площади кольца через внешний и внутренний радиус:
π – константа равная (3.14); r1 – внешний радиус; r2 – внутренний радиус.
Через диаметры
Формула для нахождения площади кольца через внешний и внутренний диаметр:
π – константа равная (3.14); d1 – внешний диаметр; d2 – внутренний диаметр.