Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.
Определение.
Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).
Определенный интеграл ʃаb f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.
То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃаb f(x)dx.
Таким образом, S(G) = ʃаb f(x)dx.
В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃаb f(x)dx.
Пример 1.
Вычислить площадь фигуры, ограниченной линиями у = х3; у = 1; х = 2.
Решение.
Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.
Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.
Используя формулу S = ʃаb f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:
{у = х3,
{у = 1.
Таким образом, имеем х1 = 1 – нижний предел и х = 2 – верхний предел.
Итак, S = SDACE – SDABE = ʃ12 x3 dx – 1 = x4/4|12 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).
Ответ: 11/4 кв. ед.
Пример 2.
Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.
Решение.
Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции
у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.
Искомая площадь равна S = ʃаb(√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:
{у = √х,
{у = 2.
Таким образом, имеем, что х = 4 = а – это нижний предел.
Итак, S = ∫49 (√x – 2)dx = ∫49 √x dx –∫49 2dx = 2/3 x√х|49 – 2х|49 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).
Ответ: S = 2 2/3 кв. ед.
Пример 3.
Вычислить площадь фигуры, ограниченной линиями у = х3 – 4х; у = 0; х ≥ 0.
Решение.
Построим график функции у = х3 – 4х при х ≥ 0. Для этого найдем производную у’:
y’ = 3x2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.
Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции уmin = -16/(3√3) ≈ -3.
Определим точки пересечения графика с осями координат:
если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;
если у = 0, то х3 – 4х = 0 или х(х2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х1 = 0, х2 = 2, х3 = -2 (не подходит, т.к. х ≥ 0).
Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.
Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.
Так как функция у = х3 – 4х принимает на (0; 2) отрицательное значение, то
S = |ʃ02 (x3 – 4x)dx|.
Имеем: ʃ02 (x3 – 4х)dx =(x4/4 – 4х2/2)|02= -4, откуда S = 4 кв. ед.
Ответ: S = 4 кв. ед.
Пример 4.
Найти площадь фигуры, ограниченной параболой у = 2х2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х0 = 2.
Решение.
Сначала составим уравнение касательной к параболе у = 2х2 – 2х + 1 в точке с абсциссой х₀ = 2.
Так как производная y’ = 4x – 2, то при х0 = 2 получим k = y’(2) = 6.
Найдем ординату точки касания: у0 = 2 · 22 – 2 · 2 + 1 = 5.
Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.
Построим фигуру, ограниченную линиями:
у = 2х2 – 2х + 1, у = 0, х = 0, у = 6х – 7.
Гу = 2х2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:
xb = -b/2a;
xb = 2/4 = 1/2;
yb = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).
Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.
Имеем: SОAВD = SOABC – SADBC.
Найдем координаты точки D из условия:
6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.
Площадь треугольника DBC найдем по формуле SADBC = 1/2 · DC · BC. Таким образом,
SADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.
Далее:
SOABC = ʃ02(2x2 – 2х + 1)dx = (2x3/3 – 2х2/2 + х)|02 = 10/3 (кв. ед.).
Окончательно получим: SОAВD = SOABC – SADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).
Ответ: S = 1 1/4 кв. ед.
Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями. Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
14.1. Вычисление площадей плоских фигур в декартовых координатах
Пусть
функция
задана на отрезке
.
Рассмотрим
множество точек
,
которое
можно истолковать как криволинейную
трапецию
.
Необходимо найти
площадь этой криволинейной трапеции.
Исходя
из определения определенного интеграла
и его геометрического смысла, в том
случае, когда
площадь криволинейной трапеции равна
П
р и м е р. Найдите
площадь фигуры, ограниченной линиями
Р
е ш е н и е.
Построим фигуру, ограниченную указанными
линиями.
Площадь заданной
фигуры вычислим по формуле (1)
Пусть
функции
и
заданы на отрезке
.
Рассмотрим множество точек
,
которое
можно истолковать как фигуру
.
Площадь
фигуры
можно рассматривать как разность
площадей
криволинейной
трапеции
и криволинейной трапеции
.
14.2. Вычисление площадей плоских фигур в полярных координатах
Пусть
положение любой точки на плоскости
однозначно определяется двумя числами
,
где
.
Пусть
неотрицательная, непрерывная на отрезке
функция,
.
Рассмотрим множество
точек
,
которое
можно истолковать как криволинейный
треугольник
Для вычисления
площади криволинейного треугольника
разобьём этот треугольник на элементарные
криволинейные треугольники.
Элементарные
криволинейные треугольники заменим
прямоугольными треугольниками.
Высоты
этих треугольников положим равными
,
а
основания соответственно –
.
Площадь
-го
элементарного треугольник очевидно
будет равна
.
Площадь
криволинейного треугольника
будет приближённо равна
.
(1)
Выражение
(1) можно рассматривать как интегральную
сумму для функции
на отрезке
.
Введём
обозначение
.
– это мелкость
разбиения
.
Тогда площадь
криволинейного треугольника
получим
при переходе в выражении (1) к пределу
при
=
.
(2)
Итак, площадь
плоской фигуры в полярной системе
координат равна
.
П
р и м е р. Вычислите
площадь
фигуры, ограниченной кривой (кардиоидой)
.
Р
е ш е н и е. Изобразим
график кардиоиды
Как
видим, кардиоида представляет собой
линию, симметричную относительно оси
.
Поэтому
П 15. Вычисление длины кривой
Пусть
кривая
задана параметрически
,
.
Разобьем
отрезок
на
частей точками
.
Обозначим
через
соответствующие точки на кривой
.
Соединим эти точки прямыми.
Полученную
при этом ломанную
называют ломанной, вписанной в кривую
.
Длину
элементарного звена
равна
Длина
ломанной
в таком случае будет равна
.
(1)
Обозначим
через
.
Тогда длину кривой
получим, перейдя в выражении (1) к пределу
при
.
(2)
Итак,
длина кривой
согласно выражению (2) определяется
формулой
.
(3)
Длина
пространственной кривой
,
заданной параметрически
,
,
будет равна
.
Если плоская
кривая задана в явном виде
,
,
то параметрические
уравнения кривой
можно в этом случае
представить в виде
,
,
.
В результате
выражении (3) получается в виде
.
П
р и м е р.
Найти длину
кривой, заданной
параметрически
.
Р
е ш е н и е. Построим
график заданной кривой
Так
как кривая симметрична относительно
координатных осей, то достаточно найти
.
Поэтому длина
кривой будет равна
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
01.06.2015869.38 Кб130Guided Grammar III-IV.doc
Вычисление площадей фигур в различных системах координат
Площадь плоской фигуры в декартовых координатах
Напомним, что мы назвали криволинейной трапецией фигуру, ограниченную осью абсцисс, прямыми и и графиком функции . В этом пункте выведем формулу для вычисления площади криволинейной трапеции.
Теорема 3. Если функция неотрицательна на отрезке и непрерывна на нем, то соответствующая ей криволинейная трапеция квадрируема, причем ее площадь выражается формулой
(4)
Доказательство. Криволинейная трапеция ограничена тремя отрезками и графиком непрерывной функции . Как было показано в пункте 2 такая фигура квадрируема. Чтобы вычислить площадь этой трапеции, построим для нее внешние и внутренние ступенчатые фигуры (см. рис. 26).
Тогда, с одной стороны, имеем:
где — площадь внутренней ступенчатой фигуры, —площадь внешней ступенчатой фигуры, и . С другой стороны, по определению интеграла можно записать:
Таким образом, числа и разделяют одни и те же числовые множества: . Но, как было показано при изучении определенного интеграла, эти множества разделяются лишь одним числом, и потому . Теорема доказана.
Аналогично доказывается, что если фигура ограничена снизу графиком функции , сверху графиком функции , а слева и справа прямыми (рис. 30), то ее площадь выражается формулой
Наглядный смысл формулы (4) состоит в том, что криволинейную трапецию можно рассматривать как объединение «бесконечно тонких полосок» с основаниями и высотами .
Пусть теперь функция непрерывна на отрезке и принимает на нем только неположительные значения. Выразим с помощью определенного интеграла площадь соответствующей криволинейной трапеции .
Рассмотрим фигуру , симметричную фигуре относительно оси . Эта фигура (рис. 31) представляет собой криволинейную трапецию, ограниченную сверху графиком непрерывной на отрезке функции , которая на принимает только неотрицательные значения. По доказанному выше
. Но
Значит,
Как мы видим, в рассматриваемом случае интеграл дает значение площади криволинейной трапеции с точностью до знака. Если же функция меняет знак на отрезке в конечном числе точек, то значение интеграла дает алгебраическую сумму площадей соответствующих криволинейных трапеций, ограниченных частями графика функции , отрезками оси и, быть может, отрезками, параллельными оси (рис. 32).
Пример 1. Найти площадь фигуры, ограниченной кривой , осью абсцисс и прямыми (рис. 33).
Решение. Имеем: (кв. ед.).
Пример 2. Вычислить площадь фигуры, ограниченной дугой параболы и отрезком прямой (рис. 34).
Решение. Из рисунка видно, что трапеция, площадь которой нужно найти, расположена симметрично относительно оси абсцисс и, следовательно, искомая площадь равна
Пример 3. Найти площадь фигуры, ограниченной графиками функций (рис. 35).
Решение. Искомая площадь равна разности площадей криволинейного треугольника и прямоугольного треугольника
Пример 4. Вычислить площадь фигуры, ограниченной петлей кривой .
Решение. Из уравнения кривой видно, что она расположена симметрично относительно оси . Следовательно, можно сначала вычислить половину искомой площади (рис. 36). Рекомендуем читателю подробно исследовать и построить данную кривую.
Записав уравнение кривой в виде , найдем точки пересечения ее с осью , положив . Учитывая сказанное, найдем площадь половины петли:
Воспользовавшись формулой из таблицы при , получим:
Значит, окончательно имеем:
Площадь фигуры, ограниченной кривой, заданной параметрически
Пусть кривая задана в параметрической форме
где функция монотонна на отрезке , причем , и имеет на этом отрезке непрерывную производную. Так как , то по формуле замены переменной под знаком определенного интеграла получаем:
Итак, площадь фигуры, ограниченной кривой, заданной параметрически, вычисляется по формуле:
(5)
Пример 5. Вычислить площадь эллипса, заданного параметрически
Решение. Выберем ту часть эллипса (рис. 37), которая расположена в первом квадранте. Точке соответствует значение , а точке — значение . Поэтому
Площадь фигуры, заданной в полярных координатах
Вычислить площадь сектора, ограниченного лучами и , выходящими из точки , и непрерывной кривой (рис. 38). Выберем полярную систему координат, полюсом которой является точка . Пусть — полярное уравнение кривой , а и — углы между полярной осью и лучами и соответственно. При этом пусть функция непрерывна на .
Разобьем данный сектор на частей лучами
и рассмотрим k-й частичный сектор (рис. 39). Пусть — наименьшее значение функции в , a — наибольшее значение функции в этом отрезке.
Построим два круговых сектора с радиусами и . Обозначим через величину угла рассматриваемого частичного сектора. Тогда площадь частичного криволинейного сектора будет заключена между площадями вписанного и описанного частичных круговых секторов
Построим аналогичным образом внутренние и внешние круговые секторы для всех частичных криволинейных секторов. Объединяя их, получим внутреннюю и внешнюю фигуры.
Площадь внутренней фигуры, состоящей из круговых секторов, равна , а площадь внешней фигуры равна — . Эти выражения являются нижней и верхней суммами Дарбу и для интеграла . Так как функция непрерывна, то непрерывна, а потому и интегрируема функция . Поэтому для любого найдется такое разбиение отрезка , что . Из теоремы 2 пункта 2 следует, что заданный криволинейный сектор квадрируем. При этом для его площади выполняются неравенства
(6)
В то же время по определению определенного интеграла
(7)
В силу единственности разделяющего числа из неравенств (6) и (7) следует, что
(8)
Пример 6. Вычислить площадь, ограниченную одним лепестком розы (рис. 40).
Решение. Значениям и соответствует Поэтому
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Расчет площади фигуры является, пожалуй, одной из самых сложных задач теории площадей. В школьной геометрии учат находить области базовых геометрических фигур, таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т. д. Однако часто приходится иметь дело с вычислением площадей более сложных форм. Именно при решении таких задач очень удобно использовать интегральное исчисление.
Пример 1.
Найти площадьфигуры,офаниченной линиями Построить чертеж.
Решение:
Найдем точки пересечения параболы и прямой. Приравняем правые части уравнений, задающих функции, и решим полученное уравнение
Фигура, площадь которой нужно найти, изображена на рисунке. Используя приведенную формулу, получим
Ответ: площадь фигуры равна 13,5 кв. ед.
Вычисление площадей плоских фигур в полярной системе координат
Пусть плоская фигура ограничена линией и лучами
тогда ее площадь можно найти по формуле
Если же фигура ограничена линиями и лучами как на рисунке, то площадь фигуры равна
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Пример 2.
Найти площадь фигуры, ограниченной линией, заданной в полярной системе координат уравнением
Решение:
Ответ: площадь данной фигуры 9,5л кв. ед.
Пример З.
Найти площадь фигуры, ограниченной линиями, заданными в полярной системе координат
Решение:
Фигура, площадь которой требуется найти, показана на рисунке.
Найдем точки пересечения окружности и кардиоиды. Решая совместно данные уравнения, получим точки
По рисунку видно, что фигура симметрична. Вычислим площадь половины фигуры, учитывая, что она в свою очередь разделена на части и (см. рисунок).
Ответ: площадь фигуры
Возможно вам будут полезны данные страницы:
Пример 4.3.
Найти площадь фигуры, ограниченной линиями
Решение:
Из чертежа (см. рис. 7) видно, что искомая площадь криволинейного треугольника равна разности двух площадей: каждая из которых находится по геометрическому смыслу определенного интеграла. Решая систему
получаем, что точка В пересечения прямой и кривой имеет координаты (2;4)
Тогда Окончательно,
Данная задача может быть также решена другим способом. По определению определенного интеграла
Если на то интеграл численно равен площади
криволинейной трапеции, ограниченной кривой и прямыми
Другими словами, в данном случае площадь вычисляется посредством проецирования криволинейной трапеции на ось ординат). Теперь возвращаясь к задаче нашего примера, можем записать:
Если криволинейная трапеция ограничена кривой, заданной в параметрическими уравнениями
прямыми и и отрезком оси то ее площадь вычисляется по формуле где и определяются из равенства
Пример 4.5.
1. Вычислить площадь фигуры, ограниченной линиями: и
Решение:
Решая систему уравнений, находим абсциссы точек пересечения эллипса и параболы Каждое из уравнений разрешаем относительно и учетом симметрии области получаем:
Для вычисления первого интеграла применяем подстановку
Второй интеграл вычисляется непосредственно.
Ответ:
Пример 4.6
Вычислить площадь области, ограниченной эллипсом
Решение:
В силу симметричности эллипса относительно координатных осей вычислим часть области, лежащей в первой четверти, кода и следовательно По формуле а) вычисления площади находим
Пример 4.7
Вычислить площадь области, ограниченной лемнискатой
Решение:
Принимая во внимание симметрию линии относительно полярной оси, получаем:
Пример 4.8
Вычислить площадь фигуры, ограниченной прямыми и кривыми
Решение:
Так как максимум функции достигается в точке и равен а функция на отрезке то
Пример 4.9
Вычислить площадь фигуры, лежащей в первом квадранте, ограниченной линиями и осью
Решение:
Функция
составной график которой ограничивает трапецию сверху, является непрерывной на промежутке
Площадь криволинейной трапеции равна
Пример 5.0
Найти площадь астроиды
Решение:
Запишем уравнение астроиды в параметрическом виде
Здесь удобнее вычислить сначала Отсюда
Лекции:
- Объем цилиндра
- Сходимость степенного ряда
- Матрица перехода
- Дифференциальные уравнения второго порядка
- Сюръекция, инъекция и биекция.
- Исследовать функцию на экстремум
- Нормальный закон распределения
- Что такое производная
- Криволинейный интеграл 1 рода
- Исследовать ряд на сходимость: пример решения
Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:
Пример 10
Вычислить площадь фигуры, ограниченной линиями .
И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций.
В нашей задаче: прямая определяет ось , прямые параллельны оси и парабола симметрична относительно оси , для неё находим несколько опорных точек:
Искомую фигуру желательно штриховать:
Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке график функции расположен над осью , поэтому искомая площадь:
Ответ:
После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.
И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.
Пример 11
Вычислить площадь фигуры, ограниченной линиями и осью
Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :
Пример 12
Вычислить площадь фигуры, ограниченной линиями , и координатными осями.
Решение: найдём несколько опорных точек для построения экспоненты:
и выполним чертёж, получая фигуру площадью около двух клеток:
Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:
Ответ: – ну что же, очень и очень похоже на правду.
На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:
Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .
Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы и прямой , поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:
таким образом:
Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».
С прямой всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:
Выполним чертеж:
А теперь рабочая формула: если на отрезке некоторая непрерывная функция больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:
Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.
В нашем примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из нужно вычесть
Завершение решения может выглядеть так:
На отрезке : , по соответствующей формуле:
Ответ:
Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу либо
А сейчас пара типовых задач для самостоятельного решения
Пример 14
Найти площадь фигур, ограниченных линиями:
а) , .
б) , ,
Решение с чертежами и краткими комментариями в конце книги
В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:
Пример 15
Вычислить площадь фигуры, ограниченной линиями
Решение: выполним бесхитростный чертёж,
хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.
Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:
1) на отрезке над осью расположен график прямой ;
2) на отрезке над осью расположен график гиперболы .
Совершенно понятно, что площади можно (и нужно) сложить:
Ответ:
И познавательный пример для самостоятельного решения:
Пример 16
Вычислить площадь фигуры, ограниченной линиями , , и координатными осями.
Итак, систематизируем важные моменты этой задачи:
На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.
Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.
Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:
и находим его корни:
– нижний предел интегрирования, – верхний предел.
Во-вторых, не всегда понятен «внешний вид» линии, и функция (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html
После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.
Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.
Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.
Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!
1.9. Объём тела вращения
1.7. Геометрический смысл определённого интеграла
| Оглавление |
Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин