Как найти площадь криволинейной трапеции ограниченной параболой

Определенный интеграл. Площадь криволинейной трапеции

  1. Теорема о площади криволинейной трапеции
  2. Формула Ньютона-Лейбница
  3. Геометрический смысл теоремы Лагранжа о среднем
  4. Площадь плоской фигуры, ограниченной двумя кривыми
  5. Примеры

п.1. Теорема о площади криволинейной трапеции

Фигуру, ограниченную прямыми (x=a, x=b), осью абсцисс (y=0) и графиком функции (y=f(x)) называют криволинейной трапецией.

Теорема о площади криволинейной трапеции

Теорема
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b], равна (F(b)-F(a)), где (F(x)) – первообразная функции (f(x)) на [a;b].

Теорема о площади криволинейной трапеции

Доказательство:
Выберем на интервале (xin [a;b]). Площадь соответствующей криволинейной трапеции (S(x)) является функцией от (x). Дадим переменной (x) приращение (triangle x).
Площадь криволинейной трапеции на интервале (left[a;x+triangle xright]) равна сумме
(S(x+triangle x)=S(x)+S(triangle x)). Откуда приращение площади: $$ triangle S=S(triangle x)=S(x+triangle x)-S(x) $$ По теореме о среднем (см. ниже в этом параграфе) между (x) и (x+triangle x) всегда найдется такое (t), что приращение площади равно произведению: $$ triangle S=f(t)cdot (x+triangle x-x)=f(t)cdot triangle x $$ Если (triangle xrightarrow 0), то (trightarrow x), и в пределе получаем: begin{gather*} S'(x)=lim_{triangle xrightarrow 0}frac{triangle S}{triangle x}=lim_{triangle xrightarrow 0} frac{f(t)cdot triangle x}{triangle x}=lim_{triangle xrightarrow 0}f(t)=f(x) end{gather*} Т.е. (S(x)) является первообразной для (f(x)) на [a;b]. В общем виде: $$ S(x)=F(x)+C $$ Найдем C. В точке a: $$ S(a)=0=F(a)+CRightarrow C=-F(a) $$ Тогда вся площадь: $$ S=S(b)=F(b)+C=F(b)-F(a) $$ Что и требовалось доказать.

п.2. Формула Ньютона-Лейбница

Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b] записывают в виде определенного интеграла: $$ S=int_{a}^{b}f(x)dx $$ По формуле Ньютона-Лейбница определенный интеграл равен: $$ int_{a}^{b}f(x)dx=F(x)|_a^b=F(a)-F(b) $$

Например:
Найдем площадь фигуры, ограниченной осью абсцисс и графиком функции $$ y=3-2x-x^2 $$

Формула Ньютона-Лейбница Построим график
(см. §28 справочника для 8 класса).
Это парабола. (alt 0) – ветки вниз.
Координаты вершины: begin{gather*} x_0=-frac{b}{2a}=-frac{-2}{2cdot (-1)}=-1,\ y_0=3+2-1=4 end{gather*} Точки пересечения с осью OX: begin{gather*} 3-2x-x^2=0Rightarrow x^2+2x-3=0\ (x+3)(x-1)=0Rightarrow left[ begin{array}{l} x=-3,\ x=1 end{array} right. end{gather*} Точка пересечения с осью OY: $$ x=0, y=3 $$

Необходимо найти площадь заштрихованной фигуры.
Функция: (f(x)=3-2x-x^2)
Пределы интегрирования: (a=-3, b=1) begin{gather*} S=int_{-3}^{1}(3-2x-x^2)dx=left(3x-2cdotfrac{x^2}{2}-frac{x^3}{3}right)|_{1}^{-3}=left(3x-x^2-frac{x^3}{3}right)|_{1}^{-3}=\ =left(3-cdot 1-1^2-frac{1^3}{3}right)-left(3cdot(-3)-(-3)^2-frac{(-3)^3}{3}right)=2-frac13+9=10frac23 end{gather*} Ответ: (10frac23)

п.3. Геометрический смысл теоремы Лагранжа о среднем

Теорема Лагранжа о среднем
Если функция (F(x)) непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), то существует такая точка (muin(a;b)), что $$ F(b)-F(a)=F'(mu)(a-b) $$ Пусть (F'(x)=f(x)), т.е. функция (F(x)) является первообразной для (f(x)). Тогда: $$ F(b)-F(a)=int_{a}^{b}f(x)dx=f(mu)(b-a) $$

Геометрический смысл теоремы Лагранжа о среднем

Геометрический смысл теоремы Лагранжа о среднем в интегральной форме заключается в том, что площадь криволинейной трапеции равна площади прямоугольника с основанием (d=b-a) и высотой (h=f(mu)), где (aleqmuleq b).
Теорема о среднем используется при доказательстве многих формул, связанных с использованием определенных интегралов (центра тяжести тела, площади поверхности и т.д.).

п.4. Площадь плоской фигуры, ограниченной двумя кривыми

Площадь плоской фигуры, ограниченной прямыми (x=a, x=b, alt b) и кривыми (y=f(x), y=g(x)), причем (f(x)geq g(x)) для любого (xin [a;b]), равна: $$ S=int_{a}^{b}(f(x)-g(x))dx $$

Например:
Найдем площадь фигуры, ограниченной двумя параболами (y=x^2) и (y=4x-x^2).

Найдем точки пересечения парабол: $$ x^2=4x-x^2Rightarrow 2x^2-4x=0Rightarrow 2x(x-2)=0Rightarrow left[ begin{array}{l} x=0\ x=2 end{array} right. $$ Строим графики.
Площадь плоской фигуры, ограниченной двумя кривыми
Необходимо найти площадь заштрихованной фигуры.
Функция сверху: (f(x)=4x-x^2)
Функция снизу: (g(x)=x^2)
Пределы интегрирования: (a=0, b=2) begin{gather*} S=int_{0}^{2}left((4x-x^2)-x^2right)dx=int_{0}^{2}(4x-2x^2)dx=left(4cdotfrac{x^2}{2}-2cdotfrac{x^3}{3}right)|_0^2=\ =left(2x^2-frac23 x^3right)|_0^2=2cdot 2^2-frac23cdot 2^3-0=8-frac{16}{3}=frac83=2frac23 end{gather*} Ответ: (2frac23)

п.5. Примеры

Пример 1. Найдите определенный интеграл:
a) (int_{-2}^{3}x^2dx) $$ int_{-2}^{3}x^2dx=frac{x^3}{3}|_{-2}^{3}=frac{3^3}{3}-frac{(-2)^3}{3}=9-frac83=frac{19}{3}=6frac13 $$
б) (int_{0}^{fracpi 3}sinxdx) $$ int_{0}^{fracpi 3}sinxdx=(-cosx)|_{0}^{fracpi 3}=-cosfracpi 3+cos0=-frac12+1=frac12 $$
в) (int_{1}^{2}left(e^x+frac 1xright)dx) $$ int_{1}^{2}left(e^x+frac 1xright)dx=(e^x+ln|x|)|_{1}^{2}=e^2+ln 2-e^1-underbrace{ln 1}_{=0}=e(e-1)+ln 2 $$
г) (int_{2}^{3}(2x-1)^2 dx) begin{gather*} int_{2}^{3}(2x-1)^2 dx=frac12cdotfrac{(2x-3)^3}{3}|_{2}^{3}=frac16((2cdot 3-1)^3)-(2cdot 2-1)^3)=frac{5^3-3^3}{6}=\ =frac{125-27}{6}=frac{98}{6}=frac{49}{3}=16frac13 end{gather*}
д) (int_{1}^{3}frac{dx}{3x-2}) begin{gather*} int_{1}^{3}frac{dx}{3x-2}=frac13cdot ln|3x-2| |_{1}^{3}=frac13left(ln 7-underbrace{ln 1}_{=0}right)=frac{ln 7}{3} end{gather*}
e) (int_{-1}^{4}frac{dx}{sqrt{3x+4}}) begin{gather*} int_{-1}^{4}frac{dx}{sqrt{3x+4}}=frac13cdotfrac{(3x+4)^{-frac12+1}}{-frac12+1}|_{-1}^{4}=frac23sqrt{3x+4}|_{-1}^{4}=\ =frac23left(sqrt{3cdot 4+4}-sqrt{3cdot(-1)+4}right)=frac23(4-1)=2 end{gather*}

Пример 2. Найдите площадь фигуры под кривой на заданном интервале:
a) (f(x)=x^3+3, xinleft[-1;1right])
Пример 2a $$ S=int_{-1}^{1}(x^3+3)dx=left(frac{x^4}{4}+3xright)|_{-1}^{1}=frac14+3-left(frac14-3right)=6 $$
б) (f(x)=sin2x, xinleft[0;fracpi 2right])
Пример 2б $$ S=int_{0}^{fracpi 2}sin2xdx=-frac12cos2x|_{0}^{fracpi 2}=-frac12left(cosleft(2cdotfracpi 2right)-cos0right)=-frac12(-1-1)=1 $$
в) (f(x)=frac4x+3, xinleft[2;6right])
Пример 2в
(f(x)=frac4x+3) – гипербола с асимптотами (x=0, y=3)
Площадь под кривой: begin{gather*} S=int_{2}^{6}left(frac4x+3right)dx=(4cdot ln|x|+3x)|_{2}^{6}=(4ln 6+18)-(4ln 2+6)=\ =4(ln 6-ln 2)+12=4lnfrac62+12=4ln 3+12=4(ln 3+3) end{gather*}
г) (f(x)=frac{1}{sqrt{x}}, xinleft[1;4right])
Пример 2г $$ S=int_{1}^{4}frac{dx}{sqrt{x}}=frac{x^{-frac12+1}}{-frac12+1}|_{1}^{4}=2sqrt{x}|_{1}^{4}=2(sqrt{4}-sqrt{1})=2 $$

Пример 3. Найдите площадь фигуры, ограниченной линиями:
a) (y=x-2, y=x^2-4x+2)
Найдем точки пересечения прямой и параболы: $$ x-2=x^2-4x+2Rightarrow x^2-5x+4=0Rightarrow (x-1)(x-4)=0Rightarrow left[ begin{array}{l} x=1,\ x=4 end{array} right. $$ Пример 3a
Функция сверху: (f(x)=x-2)
Функция снизу: (g(x)=x^2-4x+2)
Пределы интегрирования: (a=1, b=4) begin{gather*} S=int_{1}^{4}left((x-2)-(x^2-4x+2)right)dx=int_{1}^{4}(-x^2+5x-4)dx=\ =left(-frac{x^3}{3}+frac{5x^2}{2}-4xright)|_{1}^{4}=left(-frac{64}{3}+5cdotfrac{16}{2}-4cdot 4right)-left(-frac13+frac52-4right)=\ =-frac{63}{3}+24+1,5=4,5 end{gather*} Ответ: 4,5
б) (y=e^{frac x2}, y=frac1x, x=2, x=3)
Пример 3б
Функция сверху: (f(x)=e^{x/2})
Функция снизу: (g(x)=frac1x)
Пределы интегрирования: (a=2, b=3) begin{gather*} S=int_{2}^{3}left(e^{x/2}-frac1xright)dx=(2e^{x/2}-ln|x|)|_{2}^{3}=left(2e^{frac32}-ln 3right)-(2e-ln 2)=\ =2e^{frac32}-2e-ln 3+ln 2=2e(sqrt{e}-1)+lnfrac23 end{gather*} Ответ: (2e(sqrt{e}-1)+lnfrac23)
в*) (y=3-x^2, y=1+|x|)
Найдем точки пересечения ломаной и параболы: begin{gather*} 3-x^2=1+|x|Rightarrow x^2+|x|-2=0Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ x^2+x-2=0 end{cases} \ begin{cases} xlt 0\ x^2-x-2=0 end{cases} end{array} right. Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ (x+2)(x-1)=0 end{cases} \ begin{cases} xlt 0\ (x-2)(x+1)=0 end{cases} end{array} right. Rightarrow \ left[ begin{array}{l} begin{cases} xgeq 0\ left[ begin{array}{l} x=-2\ x=1 end{array} right. end{cases} \ begin{cases} xlt 0\ left[ begin{array}{l} x=2\ x=-1 end{array} right. end{cases} end{array} right. Rightarrow left[ begin{array}{l} x=1\ x=-1 end{array} right. end{gather*} Пример 3в
Функция сверху: (f(x)=3-x^2)
Функция снизу: (g(x)=1+|x|)
Пределы интегрирования: (a=-1, b=1)
Чтобы не раскрывать модуль под интегралом, заметим, что площади на интервалах [-1;0] и [0;1] равны, т.к. обе функции четные и симметричные относительно оси OY. Поэтому можно рассматривать только положительные (xinleft[0;1right]), найти для них интеграл (площадь) и умножить на 2: begin{gather*} S=2int_{0}^{1}left((3-x^2)-(1+x)right)dx=2int_{0}^{1}(-x^2-x+2)dx=2left(-frac{x^3}{3}-frac{x^2}{2}+2xright)|_{0}^{1}=\ =2left(-frac13-frac12+2right)-0=frac73=2frac13 end{gather*} Ответ: (2frac13)
г*) (y=3sinx, y=cosx, x=-frac{5pi}{4}, x=fracpi 4)
Пример 3г
На отрезке (left[-frac{5pi}{4};-frac{3pi}{4}right]) синус над косинусом, далее на (left[-frac{3pi}{4};frac{pi}{4}right]) – косинус над синусом.
Площадь фигуры, закрашенной голубым, в два раза больше площади фигуры, закрашенной сиреневым. Поэтому общая площадь будет равна трем площадям, закрашенным сиреневым: begin{gather*} S=3int_{-frac{5pi}{4}}^{-frac{3pi}{4}}(sinx-cosx)dx=3(-cosx-sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}} end{gather*} Прибавим полный период, он одинаков для обеих функций:
(-frac{3pi}{4}+2pi=frac{5pi}{4}; -frac{5pi}{4}+2pi=frac{3pi}{4}) begin{gather*} -3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3left(cosleft(frac{5pi}{4}right)+sinleft(frac{5pi}{4}right)-cosleft(frac{3pi}{4}right)-sinleft(frac{3pi}{4}right)right)=\ =-3left(-frac{sqrt{2}}{2}-frac{sqrt{2}}{2}+frac{sqrt{2}}{2}-frac{sqrt{2}}{2}right)=3sqrt{2} end{gather*} Ответ: (3sqrt{2})

Пример 4*. Пусть (S(k)) – это площадь фигуры, образованной параболой (y=x^2+2x-3) и прямой (y=kx+1). Найдите (S(-1)) и вычислите наименьшее значение (S(k)).

1) Найдем (S(-1)).
(k=-1, y=-x+1 )

Пример 4 Точки пересечения прямой и параболы: begin{gather*} -x+1=x^2+2x-3\ x^2+3x-4=0\ (x+4)(x-1)=0Rightarrow left[ begin{array}{l} x=-4,\ x=1 end{array} right. end{gather*} Функция сверху: (y=-x+1)
Функция снизу: (y=x^2+2x-3)
Пределы интегрирования: (a=-4, b=1)

begin{gather*} S(-1)=int_{-4}^{1}left((-x+1)-(x^2+2x-3)right)dx=int_{-4}^{1}(-x-3x+4)dx=\ =left(-frac{x^3}{3}-frac{3x^2}{2}+4xright)|_{-4}^{1}=left(-frac13-frac32+4right)-left(frac{64}{3}-24-16right)=-21frac23+42frac12=20frac56 end{gather*}
2) Решаем в общем виде.
Все прямые (y=kx+1) проходят через точку (0;1) и при образовании фигуры находятся над параболой.
Точки пересечения прямой и параболы: begin{gather*} kx+1=x^2+2x-3Rightarrow x^2+(2-k)x-4=0\ D=(2-k)^2-4cdot (-4)=(k-2)^2+16gt 0 end{gather*} Дискриминант (Dgt 0) при всех (k). Точки пересечения (пределы интегрирования): $$ x_{1,2}=frac{-(2-k)pmsqrt{D}}{2}=frac{k-2pmsqrt{D}}{2} $$ Разность корней: $$ x_2-x_1=sqrt{D}=sqrt{(k-2)^2+16} $$ Минимальное значение разности корней будет при (k=2).
Площадь: begin{gather*} S(k)=int_{x_1}^{x_2}left((kx+1)-(x^2+2x-3)right)dx=int_{x_1}^{x_2}(-x^2+(k-2)x+4)dx=\ =left(-frac{x^3}{3}+frac{(k-2)x^2}{2}+4xright)|_{x_1}^{x_2}=-frac13(x_2^3-x_1^3)+frac{k-2}{2}(x_2^2-x_1^2)+4(x_2-x_1) end{gather*}

Пример 4 begin{gather*} S(k)_{min}=S(2)\ x_{1,2}=pm 2\ S(2)=-frac13cdot(2^3+2^3)+0+4sqrt{16}=\ =-frac{16}{3}+16=frac{32}{3}=10frac23 end{gather*}

Ответ: 1) (S(-1)=20frac56); 2) (S(k)_{min}=S(2)=10frac23)

Пример 5*. Фигура ограничена линиями (y=(x+3)^2, y=0, x=0). Под каким углом к оси OX надо провести прямые через точку (0;9), чтобы они разбивали фигуру на три равновеликие части?

Пример 4 Площадь криволинейной трапеции AOB: begin{gather*} S_0=int_{-3}^{0}(x+3)^2dx=frac{(x+3)^3}{3}|_{-3}^{0}=\ =9-0=9 end{gather*} Площадь каждой части: (S_i=frac13 S_0=3)
Точки (C(x_1; 0)) и (D(x_2; 0)) c (-3lt x_1lt x_2lt 0) такие, что прямые AC и AD отсекают по 1/3 от фигуры.
Площадь прямоугольного треугольника (triangle AOD): begin{gather*} S_3=frac12|x_2|cdot 9=3Rightarrow |x_2|=frac69=frac23Rightarrow\ x_2=-frac23 end{gather*} Площадь прямоугольного треугольника (triangle AOC): begin{gather*} S_2+S_3=frac12|x_1|cdot 9=6Rightarrow |x_1|=frac{12}{9}=frac43Rightarrow\ x_1=-frac43 end{gather*}

Находим углы соответствующих прямых.
Для (x_1: tgalpha=frac{9}{|x_1|}=frac{9}{4/3}=frac{27}{4}, alpha=arctgfrac{27}{4})
Для (x_x: tgbeta=frac{9}{|x_2|}=frac{9}{2/3}=frac{27}{2}, beta=arctgfrac{27}{2})

Ответ: (arctgfrac{27}{4}) и (arctgfrac{27}{2})

На чтение 2 мин. Просмотров 43k.

Площадь криволинейной трапеции, ограниченной сверху графиком функции y=f (x), снизу — осью Ох, слева и справа прямыми х=a, x=b, находят по формуле Ньютона-Лейбница (ф. Н-Л):

11.1.9.2. Площадь криволинейной трапеции. Примеры.

11.1.9.2. Площадь криволинейной трапеции. Примеры.Пример 1. Найти площадь криволинейной трапеции, ограниченной линиями: y=4x-x²; y=0; x=0; x=4.

Решение.  Строим графики данных линий.  (рис. 1).
1) y=4x-x² — парабола (вида y=ax²+bx+c). Запишем данное уравнение в общем виде: y=-x²+4x. Ветви этой параболы направлены вниз, так как первый коэффициент а=-1<0.

Вершина параболы находится

в точке O′(m; n), где

11.1.9.2. Площадь криволинейной трапеции. Примеры.

О′(2; 4). Нули функции (точки пересечения графика с осью Ох) найдем из уравнения:

4х-х²=0.

Выносим х за скобки, получаем:  х(4-х)=0. Отсюда, х=0 или х=4.  Абсциссы точек найдены, ордината равна нулю — искомые точки: (0; 0) и (4; 0).

2) y=0 — это ось Ох; 3) х=0 — это ось Оy; 4) х=4 — прямая, параллельная оси Оy и отстоящая от нее на 4 единичных отрезка вправо.

Площадь построенной криволинейной трапеции находим по (ф. Н-Л). У нас f (x)=4x-x², a=0, b=4.

11.1.9.2. Площадь криволинейной трапеции. Примеры.

Кстати, если Вы подсчитаете все целые заштрихованные клетки и добавите к ним половину всех остальных клеток заштрихованной фигуры, то получите приближенное значение искомой площади. Действительно, если единичный отрезок равен одной клетке, то площадь квадратика со стороной, равной 1 клетке, равна 1·1=1 (кв. ед.). Сколько квадратиков — столько квадратных единиц и составляет площадь фигуры.

Пример 2. Найти площадь криволинейной трапеции, ограниченной линиями:

11.1.9.2. Площадь криволинейной трапеции. Примеры.

Решение. Строим графики данных линий. (рис. 2).

11.1.9.2. Площадь криволинейной трапеции. Примеры.

Площадь данной криволинейной трапеции:

11.1.9.2. Площадь криволинейной трапеции. Примеры.

( 11 оценок, среднее 3.55 из 5 )

Содержание:

  1. Примеры с решением

Рассмотрим функцию Площадь криволинейной трапеции, которая непрерывна на отрезке Площадь криволинейной трапеции и принимает на этом промежутке неотрицательные значения. Фигуру, ограниченную графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции, называют криволинейной трапецией.

На рисунке 26.1 приведены примеры криволинейных трапеций.

Площадь криволинейной трапеции

Рассмотрим теорему, которая позволяет вычислять площади криволинейных трапеций.

Теорема 26.1.

Площадь Площадь криволинейной трапеции криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции Площадь криволинейной трапеции, можно вычислить по формуле

Площадь криволинейной трапеции

где Площадь криволинейной трапеции — любая первообразная функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Доказательство. Рассмотрим функцию Площадь криволинейной трапеции, где Площадь криволинейной трапеции, которая определена таким правилом.

Если Площадь криволинейной трапеции, то Площадь криволинейной трапеции; если Площадь криволинейной трапеции, то Площадь криволинейной трапеции — это площадь криволинейной трапеции, показанной штриховкой на рисунке 26.2.

Докажем, что Площадь криволинейной трапеции для всех Площадь криволинейной трапеции.

Пусть Площадь криволинейной трапеции — произвольная точка отрезка Площадь криволинейной трапеции и Площадь криволинейной трапеции — приращение аргумента в точке Площадь криволинейной трапеции, Ограничимся рассмотрением случая, когда Площадь криволинейной трапеции (случай, когда Площадь криволинейной трапеции, рассматривают аналогично).

Имеем: Площадь криволинейной трапеции

Получаем, что Площадь криволинейной трапеции — это площадь криволинейной трапеции, заштрихованной на рисунке 26.3.

Площадь криволинейной трапеции

На отрезке Площадь криволинейной трапеции как на стороне построим прямоугольник, площадь которого равна Площадь криволинейной трапеции (рис. 26.4). Длины сторон этого прямоугольника равны Площадь криволинейной трапеции и Площадь криволинейной трапеции, где Площадь криволинейной трапеции — некоторая точка промежутка Площадь криволинейной трапеции. Тогда Площадь криволинейной трапеции Отсюда Площадь криволинейной трапеции

Если Площадь криволинейной трапеции, то Площадь криволинейной трапеции.

Возможно вам будут полезны данные страницы:

Поскольку функция Площадь криволинейной трапеции непрерывна в точке Площадь криволинейной трапеции, то Площадь криволинейной трапеции. Отсюда, если Площадь криволинейной трапеции, то Площадь криволинейной трапеции

Имеем

Площадь криволинейной трапеции

Поскольку Площадь криволинейной трапеции — произвольная точка области определения функции Площадь криволинейной трапеции, то для любого Площадь криволинейной трапеции выполняется равенство Площадь криволинейной трапеции. Получили, что функция Площадь криволинейной трапеции является одной из первообразных функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции.

Пусть Площадь криволинейной трапеции — некоторая первообразная функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции. Тогда по основному свойству первообразной можно записать

Площадь криволинейной трапеции

где Площадь криволинейной трапеции — некоторое число.

Имеем:

Площадь криволинейной трапеции

По определению функции Площадь криволинейной трапеции искомая площадь Площадь криволинейной трапеции криволинейной трапеции равна Площадь криволинейной трапеции. Следовательно,

Площадь криволинейной трапеции

Примеры с решением

Пример 1.

Найдите площадь Площадь криволинейной трапеции фигуры, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции

Решение:

На рисунке 26.5 изображена криволинейная трапеция, площадь которой требуется найти.

Площадь криволинейной трапеции

Одной из первообразных функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции является функция Площадь криволинейной трапеции Тогда

Площадь криволинейной трапеции

Пример 2.

Найдите площадь Площадь криволинейной трапеции фигуры, ограниченной графиком функции Площадь криволинейной трапеции и прямой Площадь криволинейной трапеции .

Решение:

График функции Площадь криволинейной трапеции пересекает прямую Площадь криволинейной трапеции в точках Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.6). Тогда фигура, площадь которой требуется найти, является криволинейной трапецией, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции Площадь криволинейной трапеции

Площадь криволинейной трапеции

Одной из первообразных функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции является функция Площадь криволинейной трапеции ТогдаПлощадь криволинейной трапеции

Определение. Пусть Площадь криволинейной трапеции — первообразная функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции, числа Площадь криволинейной трапеции и Площадь криволинейной трапеции, где Площадь криволинейной трапеции, принадлежат промежутку Площадь криволинейной трапеции. Разность Площадь криволинейной трапеции называют определенным интегралом функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции.

Определенный интеграл функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции обозначают Площадь криволинейной трапеции (читают: «интеграл от Площадь криволинейной трапеции до Площадь криволинейной трапеции эф от икс де икс»). Следовательно,

Площадь криволинейной трапеции Площадь криволинейной трапеции

где Площадь криволинейной трапеции — произвольная первообразная функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции.

Например, функция Площадь криволинейной трапеции является первообразной функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции. Тогда для произвольных чисел Площадь криволинейной трапеции и Площадь криволинейной трапеции, где Площадь криволинейной трапеции, можно записать:

Площадь криволинейной трапеции

Заметим, что значение разности Площадь криволинейной трапеции не зависит от того, какую именно первообразную функции Площадь криволинейной трапеции выбрали. Действительно, каждую первообразную Площадь криволинейной трапеции функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции можно представить в виде Площадь криволинейной трапеции, где Площадь криволинейной трапеции — некоторая постоянная. Тогда

Площадь криволинейной трапеции

Равенство (1) называют формулой Ньютона—Лейбница. Следовательно, для вычисления определенного интеграла Площадь криволинейной трапеции по формуле Ньютона-Лейбница надо:

  1. найти любую первообразную Площадь криволинейной трапеции функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции;
  2. вычислить значение первообразной Площадь криволинейной трапеции в точках Площадь криволинейной трапеции и Площадь криволинейной трапеции;
  3. найти разность Площадь криволинейной трапеции.

При вычислении определенных интегралов разность Площадь криволинейной трапеции обозначают Площадь криволинейной трапеции

Используя такое обозначение, вычислим, например, Площадь криволинейной трапеции Имеем:

Площадь криволинейной трапеции

Пример 3.

Вычислите Площадь криволинейной трапеции

Решение:

Имеем:

Площадь криволинейной трапеции

Если функция Площадь криволинейной трапеции имеет первообразную Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции и Площадь криволинейной трапеции, то из формулы Ньютона-Лейбница следует такое свойство определенного интеграла:

Площадь криволинейной трапеции

Действительно,

Площадь криволинейной трапеции

Если каждая из функций Площадь криволинейной трапеции и Площадь криволинейной трапеции имеет первообразную на отрезке Площадь криволинейной трапеции, то, используя теоремы 25.1 и 25.2, можно доказать (сделайте это самостоятельно) такие свойства определенного интеграла:

  1. Площадь криволинейной трапеции
  2.  Площадь криволинейной трапеции где Площадь криволинейной трапеции — некоторое число.

Формула Ньютона-Лейбница позволяет установить связь между определенным интегралом и площадью Площадь криволинейной трапеции криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции (Площадь криволинейной трапеции).

Используя теорему 26.1, можно записать:

Площадь криволинейной трапеции

Заметим, что в этой формуле рассматриваются непрерывные функции Площадь криволинейной трапеции, которые на отрезке Площадь криволинейной трапеции принимают только неотрицательные значения. Однако определенный интеграл можно использовать для вычисления площадей более сложных фигур.

Рассмотрим непрерывные на отрезке Площадь криволинейной трапеции функции Площадь криволинейной трапеции и Площадь криволинейной трапеции такие, что для всех Площадь криволинейной трапеции выполняется неравенство Площадь криволинейной трапеции

Покажем, как найти площадь Площадь криволинейной трапеции фигуры Площадь криволинейной трапеции, ограниченной графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.7).

Перенесем фигуру Площадь криволинейной трапеции вверх на Площадь криволинейной трапеции единиц так, чтобы полученная фигура Площадь криволинейной трапеции находилась выше оси абсцисс (рис. 26.8). Фигура Площадь криволинейной трапеции ограничена графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции.

Площадь криволинейной трапеции

Поскольку фигуры Площадь криволинейной трапеции и Площадь криволинейной трапеции имеют равные площади, то искомая площадь Площадь криволинейной трапеции равна разности Площадь криволинейной трапеции

где Площадь криволинейной трапеции — площадь криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.9, а);

Площадь криволинейной трапеции — площадь криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.9, б).

Площадь криволинейной трапеции

Таким образом, используя свойства определенного интеграла, можем записать:

Площадь криволинейной трапеции

Следовательно, если функции Площадь криволинейной трапеции и Площадь криволинейной трапеции непрерывны на отрезке Площадь криволинейной трапеции и для всех Площадь криволинейной трапеции выполняется неравенство Площадь криволинейной трапеции то площадь Площадь криволинейной трапеции фигуры, ограниченной графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции и Площадь криволинейной трапеции, можно вычислить по формуле

Площадь криволинейной трапеции

Пример 4.

Найдите площадь Площадь криволинейной трапеции фигуры, ограниченной графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции

Решение:

На рисунке 26.10 изображена фигура, площадь которой требуется найти.

Площадь криволинейной трапеции

Решив уравнение Площадь криволинейной трапеции, устанавливаем, что графики функций Площадь криволинейной трапеции и Площадь криволинейной трапеции пересекаются в двух точках с абсциссами Площадь криволинейной трапеции и Площадь криволинейной трапеции.

Тогда искомая площадь

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Лекции:

  • Экспонента, натуральные логарифмы и гиперболические функции
  • Непрерывная случайная величина
  • Математическое ожидание и дисперсия случайной величины
  • Исследование функции: пример решения
  • Понятие функции. Теория пределов
  • Элементарные функции комплексного переменного. Дробно-рациональные функции
  • Равномерная сходимость функционального ряда
  • Критерий Сильвестра
  • Преобразования в пространстве и на плоскости
  • Площадь поверхности подобных фигур

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S(G)=∫abf(x)dx  для непрерывной и неотрицательной функции y=f(x) на отрезке [a;b],

S(G)=-∫abf(x)dx  для непрерывной и неположительной функции y=f(x) на отрезке [a;b].

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y=f(x) или x=g(y).

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Теорема

Пусть функции y=f1(x)  и y=f2(x) определены и непрерывны на отрезке [a;b], причем f1(x)≤f2(x) для любого значения x из [a;b]. Тогда формула для вычисления площади фигуры G, ограниченной линиями x=a, x=b, y=f1(x)  и y=f2(x) будет иметь вид S(G)=∫abf2(x)-f1(x)dx.

Похожая формула будет применима для площади фигуры, ограниченной линиями y=c, y=d, x=g1(y) и x=g2(y): S(G)=∫cd(g2(y)-g1(y)dy.

Доказательство

Разберем три случая, для которых формула будет справедлива.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G1 равна площади фигуры G2. Это значит, что

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Поэтому, S(G)=S(G2)-S(G1)=∫abf2(x)dx-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx.

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S(G)=S(G2)+S(G1)=∫abf2(x)dx+-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx

Графическая иллюстрация будет иметь вид:

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Если обе функции неположительные, получаем: S(G)=S(G2)-S(G1)=-∫abf2(x)dx–∫abf1(x)dx=∫ab(f2(x)-f1(x))dx . Графическая иллюстрация будет иметь вид:

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Перейдем к рассмотрению общего случая, когда  y=f1(x)  и y=f2(x) пересекают ось Ox.

Точки пересечения мы обозначим как  xi, i=1, 2,…, n-1. Эти точки разбивают отрезок [a; b] на n частей xi-1; xi, i=1, 2,…, n, где α=x0<x1<x2<…<xn-1<xn=b. Фигуру G можно представить объединением фигур Gi, i=1, 2,…, n. Очевидно, что на своем интервале Gi попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S(Gi)=∫xi-1xi(f2(x)-f1(x))dx, i=1, 2,…, n

Следовательно, 

S(G)=∑i=1nS(Gi)=∑i=1n∫xixif2(x)-f1(x))dx==∫x0xn(f2(x)-f(x))dx=∫abf2(x)-f1(x)dx

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Формулу S(G)=∫abf2(x)-f1(x)dx можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y=f(x) и x=g(y).

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Пример 1

Необходимо определить площадь фигуры, которая ограничена параболой y=-x2+6x-5 и прямыми линиями y=-13x-12, x=1, x=4.

Решение

Изобразим линии на графике в декартовой системе координат.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

На отрезке [1;4] график параболы y=-x2+6x-5 расположен выше прямой y=-13x-12. В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по  формуле Ньютона-Лейбница:

S(G)=∫14-x2+6x-5–13x-12dx==∫14-x2+193x-92dx=-13×3+196×2-92×14==-13·43+196·42-92·4–13·13+196·12-92·1==-643+1523-18+13-196+92=13

Ответ: S(G)=13

Рассмотрим более сложный пример.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена линиями y=x+2, y=x, x=7.

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x=7. Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y=x и полу параболы y=x+2. Для нахождения абсциссы используем равенства:

y=x+2ОДЗ: x≥-2×2=x+22×2-x-2=0D=(-1)2-4·1·(-2)=9×1=1+92=2∈ОДЗx2=1-92=-1∉ОДЗ

Получается, что абсциссой точки пересечения является x=2.

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y=x+2 , y=x пересекаются в точке (2;2), поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [2;7] график функции y=x расположен выше графика функции y=x+2 . Применим формулу для вычисления площади:

S(G)=∫27(x-x+2)dx=x22-23·(x+2)3227==722-23·(7+2)32-222-23·2+232==492-18-2+163=596

Ответ: S(G)=596

Пример 3

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y=1x и y=-x2+4x-2.

Решение

Нанесем линии на график.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1x  и -x2+4x-2. При условии, что x не равно нулю, равенство 1x=-x2+4x-2становится эквивалентным уравнению третьей степени -x3+4×2-2x-1=0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х=1: -13+4·12-2·1-1=0.

Разделив выражение -x3+4×2-2x-1 на двучлен x-1, получаем: -x3+4×2-2x-1⇔-(x-1)(x2-3x-1)=0

Оставшиеся корни мы можем найти из уравнения x2-3x-1=0:

x2-3x-1=0D=(-3)2-4·1·(-1)=13×1=3+132≈3.3 ; x2=3-132≈-0.3

Мы нашли интервал x∈1; 3+132, на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S(G)=∫13+132-x2+4x-2-1xdx=-x33+2×2-2x-ln x13+132==-3+13233+2·3+1322-2·3+132-ln3+132—133+2·12-2·1-ln 1=7+133-ln3+132

Ответ: S(G)=7+133-ln3+132

Пример 4

Необходимо вычислить площадь фигуры, которая ограничена кривыми y=x3, y=-log2x+1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y=-log2x+1 из графика y=log2x, если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у=0.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y=x3 и y=0 пересекаются в точке (0;0). Так получается потому, что х=0 является единственным действительным корнем уравнения x3=0.

x=2 является единственным корнем уравнения -log2x+1=0, поэтому графики функций y=-log2x+1  и y=0 пересекаются в точке (2;0).

x=1 является единственным корнем уравнения x3=-log2x+1. В связи с этим графики функций y=x3 и y=-log2x+1 пересекаются в точке (1;1). Последнее утверждение может быть неочевидным, но уравнение x3=-log2x+1 не может иметь более одного корня, так как функция y=x3 является строго возрастающей, а функция y=-log2x+1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x∈0; 1, а вторая ниже красной линии на отрезке x∈1;2. Это значит, что площадь будет равна S(G)=∫01x3dx+∫12(-log2x+1)dx.

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x∈0; 2, а вторая между красной и синей линиями на отрезке x∈1; 2. Это позволяет нам найти площадь следующим образом:

S(G)=∫02x3dx-∫12×3-(-log2x+1)dx

В этом случае для нахождения площади придется использовать формулу вида S(G)=∫cd(g2(y)-g1(y))dy.  Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y.

Разрешим уравнения y=x3 и -log2x+1 относительно x: 

y=x3⇒x=y3y=-log2x+1⇒log2x=1-y⇒x=21-y

Получим искомую площадь:

S(G)=∫01(21-y-y3)dy=-21-yln 2-y4401==-21-1ln 2-144–21-0ln 2-044=-1ln 2-14+2ln 2=1ln 2-14

Ответ: S(G)=1ln 2-14

Пример 5

Необходимо вычислить площадь фигуры, которая ограничена линиями y=x, y=23x-3, y=-12x+4.

Решение

Красной линией нанесем на график линию, заданную функцией y=x. Синим цветом нанесем линию y=-12x+4, черным цветом обозначим линию y=23x-3.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Отметим точки пересечения.

Найдем точки пересечения графиков функций y=x и y=-12x+4 :

x=-12x+4ОДЗ: x≥0x=-12x+42⇒x=14×2-4x+16⇔x2-20x+64=0D=(-20)2-4·1·64=144×1=20+1442=16; x2=20-1442=4Проверка:x1=16=4, -12×1+4=-12·16+4=-4⇒x1=16 не является решением уравненияx2=4=2, -12×2+4=-12·4+4=2⇒x2=4 является решением уравниния ⇒(4; 2) точка пересечения y=x и y=-12x+4

Найдем точку пересечения графиков функций y=x  и y=23x-3:

x=23x-3ОДЗ: x≥0x=23x-32⇔x=49×2-4x+9⇔4×2-45x+81=0D=(-45)2-4·4·81=729×1=45+7298=9, x245-7298=94Проверка:x1=9=3, 23×1-3=23·9-3=3⇒x1=9 является решением уравнения ⇒(9; 3) точка пересечания y=x и y=23x-3×2=94=32, 23×1-3=23·94-3=-32⇒x2=94 не является решением уравнения

Найдем точку пересечения линий y=-12x+4  и y=23x-3:

-12x+4=23x-3⇔-3x+24=4x-18⇔7x=42⇔x=6-12·6+4=23·6-3=1⇒(6; 1) точка пересечения y=-12x+4 и y=23x-3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Тогда площадь фигуры равна:

S(G)=∫46x–12x+4dx+∫69x-23x-3dx==23×32+x24-4×46+23×32-x23+3×69==23·632+624-4·6-23·432+424-4·4++23·932-923+3·9-23·632-623+3·6==-253+46+-46+12=113

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Тогда решим уравнение линии относительно x, а только после этого применим формулу вычисления площади фигуры.

y=x⇒x=y2 красная линияy=23x-3⇒x=32y+92 черная линияy=-12x+4⇒x=-2y+8 синяя линия

Таким образом, площадь равна:

S(G)=∫1232y+92–2y+8dy+∫2332y+92-y2dy==∫1272y-72dy+∫2332y+92-y2dy==74y2-74y12+-y33+3y24+92y23=74·22-74·2-74·12-74·1++-333+3·324+92·3–233+3·224+92·2==74+2312=113

Как видите, значения совпадают.

Ответ: S(G)=113

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Пример1Вычислить
площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_5.jpeg


Выполним построение фигуры (см. рис.) Строим
прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х,
получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2,
находим

S = = [-0,25=11,25 кв. ед

Пример 2. Вычислить площадь
фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.

Решение. Выполним построение фигуры.

Построим прямую х – 2у + 4 = 0: у = 0, х = – 4, А(-4; 0); х = 0,
у = 2, В(0; 2).

Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у =
5, D(0; 5).

Найдем точку пересечения прямых, решив систему уравнений:

х = 2, у = 3; М(2; 3).

Для вычисления искомой площади разобьем треугольник АМС на два
треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена
прямой , а при изменении х от N до С – прямой

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_6.png


Для треугольника АМN имеем: ; у = 0,5х + 2, т.
е. f(x) = 0,5х + 2, a = – 4, b = 2.

Для треугольника NМС имеем: y = – x + 5, т. е. f(x) = – x + 5, a
= 2, b = 5.

Вычислив площадь каждого из треугольников и сложив результаты,
находим:

кв. ед.

кв. ед.

= 9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.

Пример 3. Вычислить площадь фигуры,
ограниченной линиями: y = x
2, y =
0, x = 2, x = 3.

В данном случае требуется вычислить площадь криволинейной
трапеции, ограниченной параболой y = x
2,
прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь
криволинейной трапеции

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_7.jpeg


= = 6кв. ед.

Пример 4. Вычислить площадь
фигуры, ограниченной линиями: у = – x
2 +
4 и у = 0

Выполним построение фигуры. Искомая площадь заключена между
параболой у = – x
2 +
4 и осью Ох.

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_8.jpeg


Найдем точки пересечения параболы с осью Ох.
Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси
Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный
результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.

Пример 5. Вычислить площадь
фигуры, ограниченной линиями: y
2 =
x, yx = 1, x = 4

Здесь требуется вычислить площадь криволинейной трапеции,
ограниченной верхней ветвью параболыy
2 =
x, осью Ох и прямыми x = 1иx = 4 (см. рис.)

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_9.jpeg


По формуле (1), где f(x) = a = 1 и b = 4 имеем =
( = кв. ед.

Пример 6.Вычислить
площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .

Искомая площадь ограничена полуволной синусоиды и осью Ох (см.
рис.).

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_10.png


Имеем – cosx = – cos = 1 + 1 = 2 кв. ед.

Пример 7. Вычислить площадь
фигуры, ограниченной линиями: y = – 6х, у = 0 и х = 4.

Фигура расположена под осью Ох (см. рис.).

Следовательно, её площадь находим по формуле (3)

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_11.png


= =

Пример 8. Вычислить
площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам
(см. рис.). Таким образом, площадь фигуры находим по формуле (4 )

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_12.png +
= = + = 1

Пример 9. Вычислить
площадь фигуры, ограниченной линиями:

х2 +
у
2 = r2.

Здесь требуется вычислить площадь, ограниченную окружностью х2 +
у
2 = r2,
т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую
часть этой площади, взяв пределы интегрирования от 0

доr; имеем: 1 =
= [

Следовательно, 1 =

Пример 10. Вычислить площадь
фигуры, ограниченной линиями: у= х
2 и
у = 2х

Данная фигура ограничена параболой у= х2 и
прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим
систему уравнений:х
2 –
2х = 0 х = 0 и х = 2

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_13.png


Используя для нахождения площади формулу (5),
получим

= [x2 –
=

Пример 7. Вычислить площадь фигуры, ограниченной линиями: 7x2 –
9y + 9 = 0 и 5x
2 –
9y + 27 = 0.

Запишем уравнения парабол в виде у =

Построим эти параболы.

https://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_14.jpeg


Для нахождения точек их пересечения решим
систему.Так как фигура симметрична относительно оси Оу, то найдем половину её
площади, взяв пределы интегрирования от 0 до 3, и результат удвоим:
1 = = =
4
1 =
8

Задания для самостоятельной работы

Вычислить площадь фигуры, ограниченной линиями:

1. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png+
3х и у = 0 2. у = 6х – хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png и
у = х + 4

3.y = x; y = ; y = 0; x = 2; 4.у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.pngи
у = -3х 5y = x
2 –
6x +9; y = x
2 + 4x + 4; y = 0;

Группа 2.

1. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png
4х + 3 и у = 0

2. у = 4 – хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.pngи
у = х + 2

3. y = y = 2x; y = ;

4. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png+
2 и у = 6

5. y = x2 –
6x +9; y = x
2 + 4x + 4; y = 0;

Группа 3.

1. у = 8х – 4хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png и
у = 0

2. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.pngи
у = 4х – 3

3. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.pngи
у = -3х

4. y =x; y = ; y = 0; x = 2;

5. y = x2 –
6x +9; y = x
2 + 4x + 4; y = 0;

Группа4.

1. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png
6х + 5 и у = 0

2. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png+
1 и у = 3 – х

3. у = хhttps://arhivurokov.ru/kopilka/uploads/user_file_56dbea00b2752/vychislieniieploshchadikrivolinieinoitrapietsii_15.png и
у = 2х

4. у = ; у = 0,5х

5. y = y = 2x; y = ;

Добавить комментарий