Определенный интеграл. Площадь криволинейной трапеции
- Теорема о площади криволинейной трапеции
- Формула Ньютона-Лейбница
- Геометрический смысл теоремы Лагранжа о среднем
- Площадь плоской фигуры, ограниченной двумя кривыми
- Примеры
п.1. Теорема о площади криволинейной трапеции
Фигуру, ограниченную прямыми (x=a, x=b), осью абсцисс (y=0) и графиком функции (y=f(x)) называют криволинейной трапецией.
Теорема
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b], равна (F(b)-F(a)), где (F(x)) – первообразная функции (f(x)) на [a;b].
Доказательство:
Выберем на интервале (xin [a;b]). Площадь соответствующей криволинейной трапеции (S(x)) является функцией от (x). Дадим переменной (x) приращение (triangle x).
Площадь криволинейной трапеции на интервале (left[a;x+triangle xright]) равна сумме
(S(x+triangle x)=S(x)+S(triangle x)). Откуда приращение площади: $$ triangle S=S(triangle x)=S(x+triangle x)-S(x) $$ По теореме о среднем (см. ниже в этом параграфе) между (x) и (x+triangle x) всегда найдется такое (t), что приращение площади равно произведению: $$ triangle S=f(t)cdot (x+triangle x-x)=f(t)cdot triangle x $$ Если (triangle xrightarrow 0), то (trightarrow x), и в пределе получаем: begin{gather*} S'(x)=lim_{triangle xrightarrow 0}frac{triangle S}{triangle x}=lim_{triangle xrightarrow 0} frac{f(t)cdot triangle x}{triangle x}=lim_{triangle xrightarrow 0}f(t)=f(x) end{gather*} Т.е. (S(x)) является первообразной для (f(x)) на [a;b]. В общем виде: $$ S(x)=F(x)+C $$ Найдем C. В точке a: $$ S(a)=0=F(a)+CRightarrow C=-F(a) $$ Тогда вся площадь: $$ S=S(b)=F(b)+C=F(b)-F(a) $$ Что и требовалось доказать.
п.2. Формула Ньютона-Лейбница
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b] записывают в виде определенного интеграла: $$ S=int_{a}^{b}f(x)dx $$ По формуле Ньютона-Лейбница определенный интеграл равен: $$ int_{a}^{b}f(x)dx=F(x)|_a^b=F(a)-F(b) $$
Например:
Найдем площадь фигуры, ограниченной осью абсцисс и графиком функции $$ y=3-2x-x^2 $$
Построим график (см. §28 справочника для 8 класса). Это парабола. (alt 0) – ветки вниз. Координаты вершины: begin{gather*} x_0=-frac{b}{2a}=-frac{-2}{2cdot (-1)}=-1,\ y_0=3+2-1=4 end{gather*} Точки пересечения с осью OX: begin{gather*} 3-2x-x^2=0Rightarrow x^2+2x-3=0\ (x+3)(x-1)=0Rightarrow left[ begin{array}{l} x=-3,\ x=1 end{array} right. end{gather*} Точка пересечения с осью OY: $$ x=0, y=3 $$ |
Необходимо найти площадь заштрихованной фигуры.
Функция: (f(x)=3-2x-x^2)
Пределы интегрирования: (a=-3, b=1) begin{gather*} S=int_{-3}^{1}(3-2x-x^2)dx=left(3x-2cdotfrac{x^2}{2}-frac{x^3}{3}right)|_{1}^{-3}=left(3x-x^2-frac{x^3}{3}right)|_{1}^{-3}=\ =left(3-cdot 1-1^2-frac{1^3}{3}right)-left(3cdot(-3)-(-3)^2-frac{(-3)^3}{3}right)=2-frac13+9=10frac23 end{gather*} Ответ: (10frac23)
п.3. Геометрический смысл теоремы Лагранжа о среднем
Теорема Лагранжа о среднем
Если функция (F(x)) непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), то существует такая точка (muin(a;b)), что $$ F(b)-F(a)=F'(mu)(a-b) $$ Пусть (F'(x)=f(x)), т.е. функция (F(x)) является первообразной для (f(x)). Тогда: $$ F(b)-F(a)=int_{a}^{b}f(x)dx=f(mu)(b-a) $$
Геометрический смысл теоремы Лагранжа о среднем в интегральной форме заключается в том, что площадь криволинейной трапеции равна площади прямоугольника с основанием (d=b-a) и высотой (h=f(mu)), где (aleqmuleq b).
Теорема о среднем используется при доказательстве многих формул, связанных с использованием определенных интегралов (центра тяжести тела, площади поверхности и т.д.).
п.4. Площадь плоской фигуры, ограниченной двумя кривыми
Площадь плоской фигуры, ограниченной прямыми (x=a, x=b, alt b) и кривыми (y=f(x), y=g(x)), причем (f(x)geq g(x)) для любого (xin [a;b]), равна: $$ S=int_{a}^{b}(f(x)-g(x))dx $$
Например:
Найдем площадь фигуры, ограниченной двумя параболами (y=x^2) и (y=4x-x^2).
Найдем точки пересечения парабол: $$ x^2=4x-x^2Rightarrow 2x^2-4x=0Rightarrow 2x(x-2)=0Rightarrow left[ begin{array}{l} x=0\ x=2 end{array} right. $$ Строим графики.
Необходимо найти площадь заштрихованной фигуры.
Функция сверху: (f(x)=4x-x^2)
Функция снизу: (g(x)=x^2)
Пределы интегрирования: (a=0, b=2) begin{gather*} S=int_{0}^{2}left((4x-x^2)-x^2right)dx=int_{0}^{2}(4x-2x^2)dx=left(4cdotfrac{x^2}{2}-2cdotfrac{x^3}{3}right)|_0^2=\ =left(2x^2-frac23 x^3right)|_0^2=2cdot 2^2-frac23cdot 2^3-0=8-frac{16}{3}=frac83=2frac23 end{gather*} Ответ: (2frac23)
п.5. Примеры
Пример 1. Найдите определенный интеграл:
a) (int_{-2}^{3}x^2dx) $$ int_{-2}^{3}x^2dx=frac{x^3}{3}|_{-2}^{3}=frac{3^3}{3}-frac{(-2)^3}{3}=9-frac83=frac{19}{3}=6frac13 $$
б) (int_{0}^{fracpi 3}sinxdx) $$ int_{0}^{fracpi 3}sinxdx=(-cosx)|_{0}^{fracpi 3}=-cosfracpi 3+cos0=-frac12+1=frac12 $$
в) (int_{1}^{2}left(e^x+frac 1xright)dx) $$ int_{1}^{2}left(e^x+frac 1xright)dx=(e^x+ln|x|)|_{1}^{2}=e^2+ln 2-e^1-underbrace{ln 1}_{=0}=e(e-1)+ln 2 $$
г) (int_{2}^{3}(2x-1)^2 dx) begin{gather*} int_{2}^{3}(2x-1)^2 dx=frac12cdotfrac{(2x-3)^3}{3}|_{2}^{3}=frac16((2cdot 3-1)^3)-(2cdot 2-1)^3)=frac{5^3-3^3}{6}=\ =frac{125-27}{6}=frac{98}{6}=frac{49}{3}=16frac13 end{gather*}
д) (int_{1}^{3}frac{dx}{3x-2}) begin{gather*} int_{1}^{3}frac{dx}{3x-2}=frac13cdot ln|3x-2| |_{1}^{3}=frac13left(ln 7-underbrace{ln 1}_{=0}right)=frac{ln 7}{3} end{gather*}
e) (int_{-1}^{4}frac{dx}{sqrt{3x+4}}) begin{gather*} int_{-1}^{4}frac{dx}{sqrt{3x+4}}=frac13cdotfrac{(3x+4)^{-frac12+1}}{-frac12+1}|_{-1}^{4}=frac23sqrt{3x+4}|_{-1}^{4}=\ =frac23left(sqrt{3cdot 4+4}-sqrt{3cdot(-1)+4}right)=frac23(4-1)=2 end{gather*}
Пример 2. Найдите площадь фигуры под кривой на заданном интервале:
a) (f(x)=x^3+3, xinleft[-1;1right])
$$ S=int_{-1}^{1}(x^3+3)dx=left(frac{x^4}{4}+3xright)|_{-1}^{1}=frac14+3-left(frac14-3right)=6 $$
б) (f(x)=sin2x, xinleft[0;fracpi 2right])
$$ S=int_{0}^{fracpi 2}sin2xdx=-frac12cos2x|_{0}^{fracpi 2}=-frac12left(cosleft(2cdotfracpi 2right)-cos0right)=-frac12(-1-1)=1 $$
в) (f(x)=frac4x+3, xinleft[2;6right])
(f(x)=frac4x+3) – гипербола с асимптотами (x=0, y=3)
Площадь под кривой: begin{gather*} S=int_{2}^{6}left(frac4x+3right)dx=(4cdot ln|x|+3x)|_{2}^{6}=(4ln 6+18)-(4ln 2+6)=\ =4(ln 6-ln 2)+12=4lnfrac62+12=4ln 3+12=4(ln 3+3) end{gather*}
г) (f(x)=frac{1}{sqrt{x}}, xinleft[1;4right])
$$ S=int_{1}^{4}frac{dx}{sqrt{x}}=frac{x^{-frac12+1}}{-frac12+1}|_{1}^{4}=2sqrt{x}|_{1}^{4}=2(sqrt{4}-sqrt{1})=2 $$
Пример 3. Найдите площадь фигуры, ограниченной линиями:
a) (y=x-2, y=x^2-4x+2)
Найдем точки пересечения прямой и параболы: $$ x-2=x^2-4x+2Rightarrow x^2-5x+4=0Rightarrow (x-1)(x-4)=0Rightarrow left[ begin{array}{l} x=1,\ x=4 end{array} right. $$
Функция сверху: (f(x)=x-2)
Функция снизу: (g(x)=x^2-4x+2)
Пределы интегрирования: (a=1, b=4) begin{gather*} S=int_{1}^{4}left((x-2)-(x^2-4x+2)right)dx=int_{1}^{4}(-x^2+5x-4)dx=\ =left(-frac{x^3}{3}+frac{5x^2}{2}-4xright)|_{1}^{4}=left(-frac{64}{3}+5cdotfrac{16}{2}-4cdot 4right)-left(-frac13+frac52-4right)=\ =-frac{63}{3}+24+1,5=4,5 end{gather*} Ответ: 4,5
б) (y=e^{frac x2}, y=frac1x, x=2, x=3)
Функция сверху: (f(x)=e^{x/2})
Функция снизу: (g(x)=frac1x)
Пределы интегрирования: (a=2, b=3) begin{gather*} S=int_{2}^{3}left(e^{x/2}-frac1xright)dx=(2e^{x/2}-ln|x|)|_{2}^{3}=left(2e^{frac32}-ln 3right)-(2e-ln 2)=\ =2e^{frac32}-2e-ln 3+ln 2=2e(sqrt{e}-1)+lnfrac23 end{gather*} Ответ: (2e(sqrt{e}-1)+lnfrac23)
в*) (y=3-x^2, y=1+|x|)
Найдем точки пересечения ломаной и параболы: begin{gather*} 3-x^2=1+|x|Rightarrow x^2+|x|-2=0Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ x^2+x-2=0 end{cases} \ begin{cases} xlt 0\ x^2-x-2=0 end{cases} end{array} right. Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ (x+2)(x-1)=0 end{cases} \ begin{cases} xlt 0\ (x-2)(x+1)=0 end{cases} end{array} right. Rightarrow \ left[ begin{array}{l} begin{cases} xgeq 0\ left[ begin{array}{l} x=-2\ x=1 end{array} right. end{cases} \ begin{cases} xlt 0\ left[ begin{array}{l} x=2\ x=-1 end{array} right. end{cases} end{array} right. Rightarrow left[ begin{array}{l} x=1\ x=-1 end{array} right. end{gather*}
Функция сверху: (f(x)=3-x^2)
Функция снизу: (g(x)=1+|x|)
Пределы интегрирования: (a=-1, b=1)
Чтобы не раскрывать модуль под интегралом, заметим, что площади на интервалах [-1;0] и [0;1] равны, т.к. обе функции четные и симметричные относительно оси OY. Поэтому можно рассматривать только положительные (xinleft[0;1right]), найти для них интеграл (площадь) и умножить на 2: begin{gather*} S=2int_{0}^{1}left((3-x^2)-(1+x)right)dx=2int_{0}^{1}(-x^2-x+2)dx=2left(-frac{x^3}{3}-frac{x^2}{2}+2xright)|_{0}^{1}=\ =2left(-frac13-frac12+2right)-0=frac73=2frac13 end{gather*} Ответ: (2frac13)
г*) (y=3sinx, y=cosx, x=-frac{5pi}{4}, x=fracpi 4)
На отрезке (left[-frac{5pi}{4};-frac{3pi}{4}right]) синус над косинусом, далее на (left[-frac{3pi}{4};frac{pi}{4}right]) – косинус над синусом.
Площадь фигуры, закрашенной голубым, в два раза больше площади фигуры, закрашенной сиреневым. Поэтому общая площадь будет равна трем площадям, закрашенным сиреневым: begin{gather*} S=3int_{-frac{5pi}{4}}^{-frac{3pi}{4}}(sinx-cosx)dx=3(-cosx-sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}} end{gather*} Прибавим полный период, он одинаков для обеих функций:
(-frac{3pi}{4}+2pi=frac{5pi}{4}; -frac{5pi}{4}+2pi=frac{3pi}{4}) begin{gather*} -3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3left(cosleft(frac{5pi}{4}right)+sinleft(frac{5pi}{4}right)-cosleft(frac{3pi}{4}right)-sinleft(frac{3pi}{4}right)right)=\ =-3left(-frac{sqrt{2}}{2}-frac{sqrt{2}}{2}+frac{sqrt{2}}{2}-frac{sqrt{2}}{2}right)=3sqrt{2} end{gather*} Ответ: (3sqrt{2})
Пример 4*. Пусть (S(k)) – это площадь фигуры, образованной параболой (y=x^2+2x-3) и прямой (y=kx+1). Найдите (S(-1)) и вычислите наименьшее значение (S(k)).
1) Найдем (S(-1)).
(k=-1, y=-x+1 )
Точки пересечения прямой и параболы: begin{gather*} -x+1=x^2+2x-3\ x^2+3x-4=0\ (x+4)(x-1)=0Rightarrow left[ begin{array}{l} x=-4,\ x=1 end{array} right. end{gather*} Функция сверху: (y=-x+1) Функция снизу: (y=x^2+2x-3) Пределы интегрирования: (a=-4, b=1) |
begin{gather*} S(-1)=int_{-4}^{1}left((-x+1)-(x^2+2x-3)right)dx=int_{-4}^{1}(-x-3x+4)dx=\ =left(-frac{x^3}{3}-frac{3x^2}{2}+4xright)|_{-4}^{1}=left(-frac13-frac32+4right)-left(frac{64}{3}-24-16right)=-21frac23+42frac12=20frac56 end{gather*}
2) Решаем в общем виде.
Все прямые (y=kx+1) проходят через точку (0;1) и при образовании фигуры находятся над параболой.
Точки пересечения прямой и параболы: begin{gather*} kx+1=x^2+2x-3Rightarrow x^2+(2-k)x-4=0\ D=(2-k)^2-4cdot (-4)=(k-2)^2+16gt 0 end{gather*} Дискриминант (Dgt 0) при всех (k). Точки пересечения (пределы интегрирования): $$ x_{1,2}=frac{-(2-k)pmsqrt{D}}{2}=frac{k-2pmsqrt{D}}{2} $$ Разность корней: $$ x_2-x_1=sqrt{D}=sqrt{(k-2)^2+16} $$ Минимальное значение разности корней будет при (k=2).
Площадь: begin{gather*} S(k)=int_{x_1}^{x_2}left((kx+1)-(x^2+2x-3)right)dx=int_{x_1}^{x_2}(-x^2+(k-2)x+4)dx=\ =left(-frac{x^3}{3}+frac{(k-2)x^2}{2}+4xright)|_{x_1}^{x_2}=-frac13(x_2^3-x_1^3)+frac{k-2}{2}(x_2^2-x_1^2)+4(x_2-x_1) end{gather*}
begin{gather*} S(k)_{min}=S(2)\ x_{1,2}=pm 2\ S(2)=-frac13cdot(2^3+2^3)+0+4sqrt{16}=\ =-frac{16}{3}+16=frac{32}{3}=10frac23 end{gather*} |
Ответ: 1) (S(-1)=20frac56); 2) (S(k)_{min}=S(2)=10frac23)
Пример 5*. Фигура ограничена линиями (y=(x+3)^2, y=0, x=0). Под каким углом к оси OX надо провести прямые через точку (0;9), чтобы они разбивали фигуру на три равновеликие части?
Площадь криволинейной трапеции AOB: begin{gather*} S_0=int_{-3}^{0}(x+3)^2dx=frac{(x+3)^3}{3}|_{-3}^{0}=\ =9-0=9 end{gather*} Площадь каждой части: (S_i=frac13 S_0=3) Точки (C(x_1; 0)) и (D(x_2; 0)) c (-3lt x_1lt x_2lt 0) такие, что прямые AC и AD отсекают по 1/3 от фигуры. Площадь прямоугольного треугольника (triangle AOD): begin{gather*} S_3=frac12|x_2|cdot 9=3Rightarrow |x_2|=frac69=frac23Rightarrow\ x_2=-frac23 end{gather*} Площадь прямоугольного треугольника (triangle AOC): begin{gather*} S_2+S_3=frac12|x_1|cdot 9=6Rightarrow |x_1|=frac{12}{9}=frac43Rightarrow\ x_1=-frac43 end{gather*} |
Находим углы соответствующих прямых.
Для (x_1: tgalpha=frac{9}{|x_1|}=frac{9}{4/3}=frac{27}{4}, alpha=arctgfrac{27}{4})
Для (x_x: tgbeta=frac{9}{|x_2|}=frac{9}{2/3}=frac{27}{2}, beta=arctgfrac{27}{2})
Ответ: (arctgfrac{27}{4}) и (arctgfrac{27}{2})
На чтение 2 мин. Просмотров 43k.
Площадь криволинейной трапеции, ограниченной сверху графиком функции y=f (x), снизу — осью Ох, слева и справа прямыми х=a, x=b, находят по формуле Ньютона-Лейбница (ф. Н-Л):
Пример 1. Найти площадь криволинейной трапеции, ограниченной линиями: y=4x-x²; y=0; x=0; x=4.
Решение. Строим графики данных линий. (рис. 1).
1) y=4x-x² — парабола (вида y=ax²+bx+c). Запишем данное уравнение в общем виде: y=-x²+4x. Ветви этой параболы направлены вниз, так как первый коэффициент а=-1<0.
Вершина параболы находится
в точке O′(m; n), где
О′(2; 4). Нули функции (точки пересечения графика с осью Ох) найдем из уравнения:
4х-х²=0.
Выносим х за скобки, получаем: х(4-х)=0. Отсюда, х=0 или х=4. Абсциссы точек найдены, ордината равна нулю — искомые точки: (0; 0) и (4; 0).
2) y=0 — это ось Ох; 3) х=0 — это ось Оy; 4) х=4 — прямая, параллельная оси Оy и отстоящая от нее на 4 единичных отрезка вправо.
Площадь построенной криволинейной трапеции находим по (ф. Н-Л). У нас f (x)=4x-x², a=0, b=4.
Кстати, если Вы подсчитаете все целые заштрихованные клетки и добавите к ним половину всех остальных клеток заштрихованной фигуры, то получите приближенное значение искомой площади. Действительно, если единичный отрезок равен одной клетке, то площадь квадратика со стороной, равной 1 клетке, равна 1·1=1 (кв. ед.). Сколько квадратиков — столько квадратных единиц и составляет площадь фигуры.
Пример 2. Найти площадь криволинейной трапеции, ограниченной линиями:
Решение. Строим графики данных линий. (рис. 2).
Площадь данной криволинейной трапеции:
( 11 оценок, среднее 3.55 из 5 )
Содержание:
- Примеры с решением
Рассмотрим функцию , которая непрерывна на отрезке и принимает на этом промежутке неотрицательные значения. Фигуру, ограниченную графиком функции и прямыми , и , называют криволинейной трапецией.
На рисунке 26.1 приведены примеры криволинейных трапеций.
Рассмотрим теорему, которая позволяет вычислять площади криволинейных трапеций.
Теорема 26.1.
Площадь криволинейной трапеции, ограниченной графиком функции и прямыми , и , можно вычислить по формуле
где — любая первообразная функции на отрезке .
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Доказательство. Рассмотрим функцию , где , которая определена таким правилом.
Если , то ; если , то — это площадь криволинейной трапеции, показанной штриховкой на рисунке 26.2.
Докажем, что для всех .
Пусть — произвольная точка отрезка и — приращение аргумента в точке , Ограничимся рассмотрением случая, когда (случай, когда , рассматривают аналогично).
Имеем:
Получаем, что — это площадь криволинейной трапеции, заштрихованной на рисунке 26.3.
На отрезке как на стороне построим прямоугольник, площадь которого равна (рис. 26.4). Длины сторон этого прямоугольника равны и , где — некоторая точка промежутка . Тогда Отсюда
Если , то .
Возможно вам будут полезны данные страницы:
Поскольку функция непрерывна в точке , то . Отсюда, если , то
Имеем
Поскольку — произвольная точка области определения функции , то для любого выполняется равенство . Получили, что функция является одной из первообразных функции на отрезке .
Пусть — некоторая первообразная функции на отрезке . Тогда по основному свойству первообразной можно записать
где — некоторое число.
Имеем:
По определению функции искомая площадь криволинейной трапеции равна . Следовательно,
Примеры с решением
Пример 1.
Найдите площадь фигуры, ограниченной графиком функции и прямыми , и
Решение:
На рисунке 26.5 изображена криволинейная трапеция, площадь которой требуется найти.
Одной из первообразных функции на отрезке является функция Тогда
Пример 2.
Найдите площадь фигуры, ограниченной графиком функции и прямой .
Решение:
График функции пересекает прямую в точках и (рис. 26.6). Тогда фигура, площадь которой требуется найти, является криволинейной трапецией, ограниченной графиком функции и прямыми
Одной из первообразных функции на отрезке является функция Тогда
Определение. Пусть — первообразная функции на промежутке , числа и , где , принадлежат промежутку . Разность называют определенным интегралом функции на отрезке .
Определенный интеграл функции на отрезке обозначают (читают: «интеграл от до эф от икс де икс»). Следовательно,
где — произвольная первообразная функции на промежутке .
Например, функция является первообразной функции на промежутке . Тогда для произвольных чисел и , где , можно записать:
Заметим, что значение разности не зависит от того, какую именно первообразную функции выбрали. Действительно, каждую первообразную функции на промежутке можно представить в виде , где — некоторая постоянная. Тогда
Равенство (1) называют формулой Ньютона—Лейбница. Следовательно, для вычисления определенного интеграла по формуле Ньютона-Лейбница надо:
- найти любую первообразную функции на отрезке ;
- вычислить значение первообразной в точках и ;
- найти разность .
При вычислении определенных интегралов разность обозначают
Используя такое обозначение, вычислим, например, Имеем:
Пример 3.
Вычислите
Решение:
Имеем:
Если функция имеет первообразную на отрезке и , то из формулы Ньютона-Лейбница следует такое свойство определенного интеграла:
Действительно,
Если каждая из функций и имеет первообразную на отрезке , то, используя теоремы 25.1 и 25.2, можно доказать (сделайте это самостоятельно) такие свойства определенного интеграла:
- где — некоторое число.
Формула Ньютона-Лейбница позволяет установить связь между определенным интегралом и площадью криволинейной трапеции, ограниченной графиком функции и прямыми , и ().
Используя теорему 26.1, можно записать:
Заметим, что в этой формуле рассматриваются непрерывные функции , которые на отрезке принимают только неотрицательные значения. Однако определенный интеграл можно использовать для вычисления площадей более сложных фигур.
Рассмотрим непрерывные на отрезке функции и такие, что для всех выполняется неравенство
Покажем, как найти площадь фигуры , ограниченной графиками функций и и прямыми и (рис. 26.7).
Перенесем фигуру вверх на единиц так, чтобы полученная фигура находилась выше оси абсцисс (рис. 26.8). Фигура ограничена графиками функций и и прямыми , .
Поскольку фигуры и имеют равные площади, то искомая площадь равна разности
где — площадь криволинейной трапеции, ограниченной графиком функции и прямыми , и (рис. 26.9, а);
— площадь криволинейной трапеции, ограниченной графиком функции и прямыми , и (рис. 26.9, б).
Таким образом, используя свойства определенного интеграла, можем записать:
Следовательно, если функции и непрерывны на отрезке и для всех выполняется неравенство то площадь фигуры, ограниченной графиками функций и и прямыми и , можно вычислить по формуле
Пример 4.
Найдите площадь фигуры, ограниченной графиками функций и
Решение:
На рисунке 26.10 изображена фигура, площадь которой требуется найти.
Решив уравнение , устанавливаем, что графики функций и пересекаются в двух точках с абсциссами и .
Тогда искомая площадь
Лекции:
- Экспонента, натуральные логарифмы и гиперболические функции
- Непрерывная случайная величина
- Математическое ожидание и дисперсия случайной величины
- Исследование функции: пример решения
- Понятие функции. Теория пределов
- Элементарные функции комплексного переменного. Дробно-рациональные функции
- Равномерная сходимость функционального ряда
- Критерий Сильвестра
- Преобразования в пространстве и на плоскости
- Площадь поверхности подобных фигур
В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:
S(G)=∫abf(x)dx для непрерывной и неотрицательной функции y=f(x) на отрезке [a;b],
S(G)=-∫abf(x)dx для непрерывной и неположительной функции y=f(x) на отрезке [a;b].
Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y=f(x) или x=g(y).
Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)
Пусть функции y=f1(x) и y=f2(x) определены и непрерывны на отрезке [a;b], причем f1(x)≤f2(x) для любого значения x из [a;b]. Тогда формула для вычисления площади фигуры G, ограниченной линиями x=a, x=b, y=f1(x) и y=f2(x) будет иметь вид S(G)=∫abf2(x)-f1(x)dx.
Похожая формула будет применима для площади фигуры, ограниченной линиями y=c, y=d, x=g1(y) и x=g2(y): S(G)=∫cd(g2(y)-g1(y)dy.
Разберем три случая, для которых формула будет справедлива.
В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G1 равна площади фигуры G2. Это значит, что
Поэтому, S(G)=S(G2)-S(G1)=∫abf2(x)dx-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx.
Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.
Во втором случае справедливо равенство: S(G)=S(G2)+S(G1)=∫abf2(x)dx+-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx
Графическая иллюстрация будет иметь вид:
Если обе функции неположительные, получаем: S(G)=S(G2)-S(G1)=-∫abf2(x)dx–∫abf1(x)dx=∫ab(f2(x)-f1(x))dx . Графическая иллюстрация будет иметь вид:
Перейдем к рассмотрению общего случая, когда y=f1(x) и y=f2(x) пересекают ось Ox.
Точки пересечения мы обозначим как xi, i=1, 2,…, n-1. Эти точки разбивают отрезок [a; b] на n частей xi-1; xi, i=1, 2,…, n, где α=x0<x1<x2<…<xn-1<xn=b. Фигуру G можно представить объединением фигур Gi, i=1, 2,…, n. Очевидно, что на своем интервале Gi попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S(Gi)=∫xi-1xi(f2(x)-f1(x))dx, i=1, 2,…, n
Следовательно,
S(G)=∑i=1nS(Gi)=∑i=1n∫xixif2(x)-f1(x))dx==∫x0xn(f2(x)-f(x))dx=∫abf2(x)-f1(x)dx
Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.
Проиллюстрируем на графике общий случай.
Формулу S(G)=∫abf2(x)-f1(x)dx можно считать доказанной.
А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y=f(x) и x=g(y).
Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)
Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.
Необходимо определить площадь фигуры, которая ограничена параболой y=-x2+6x-5 и прямыми линиями y=-13x-12, x=1, x=4.
Решение
Изобразим линии на графике в декартовой системе координат.
На отрезке [1;4] график параболы y=-x2+6x-5 расположен выше прямой y=-13x-12. В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:
S(G)=∫14-x2+6x-5–13x-12dx==∫14-x2+193x-92dx=-13×3+196×2-92×14==-13·43+196·42-92·4–13·13+196·12-92·1==-643+1523-18+13-196+92=13
Ответ: S(G)=13
Рассмотрим более сложный пример.
Необходимо вычислить площадь фигуры, которая ограничена линиями y=x+2, y=x, x=7.
Решение
В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x=7. Это требует от нас найти второй предел интегрирования самостоятельно.
Построим график и нанесем на него линии, данные в условии задачи.
Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y=x и полу параболы y=x+2. Для нахождения абсциссы используем равенства:
y=x+2ОДЗ: x≥-2×2=x+22×2-x-2=0D=(-1)2-4·1·(-2)=9×1=1+92=2∈ОДЗx2=1-92=-1∉ОДЗ
Получается, что абсциссой точки пересечения является x=2.
Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y=x+2 , y=x пересекаются в точке (2;2), поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.
На интервале [2;7] график функции y=x расположен выше графика функции y=x+2 . Применим формулу для вычисления площади:
S(G)=∫27(x-x+2)dx=x22-23·(x+2)3227==722-23·(7+2)32-222-23·2+232==492-18-2+163=596
Ответ: S(G)=596
Необходимо вычислить площадь фигуры, которая ограничена графиками функций y=1x и y=-x2+4x-2.
Решение
Нанесем линии на график.
Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1x и -x2+4x-2. При условии, что x не равно нулю, равенство 1x=-x2+4x-2становится эквивалентным уравнению третьей степени -x3+4×2-2x-1=0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».
Корнем этого уравнения является х=1: -13+4·12-2·1-1=0.
Разделив выражение -x3+4×2-2x-1 на двучлен x-1, получаем: -x3+4×2-2x-1⇔-(x-1)(x2-3x-1)=0
Оставшиеся корни мы можем найти из уравнения x2-3x-1=0:
x2-3x-1=0D=(-3)2-4·1·(-1)=13×1=3+132≈3.3 ; x2=3-132≈-0.3
Мы нашли интервал x∈1; 3+132, на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:
S(G)=∫13+132-x2+4x-2-1xdx=-x33+2×2-2x-ln x13+132==-3+13233+2·3+1322-2·3+132-ln3+132—133+2·12-2·1-ln 1=7+133-ln3+132
Ответ: S(G)=7+133-ln3+132
Необходимо вычислить площадь фигуры, которая ограничена кривыми y=x3, y=-log2x+1 и осью абсцисс.
Решение
Нанесем все линии на график. Мы можем получить график функции y=-log2x+1 из графика y=log2x, если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у=0.
Обозначим точки пересечения линий.
Как видно из рисунка, графики функций y=x3 и y=0 пересекаются в точке (0;0). Так получается потому, что х=0 является единственным действительным корнем уравнения x3=0.
x=2 является единственным корнем уравнения -log2x+1=0, поэтому графики функций y=-log2x+1 и y=0 пересекаются в точке (2;0).
x=1 является единственным корнем уравнения x3=-log2x+1. В связи с этим графики функций y=x3 и y=-log2x+1 пересекаются в точке (1;1). Последнее утверждение может быть неочевидным, но уравнение x3=-log2x+1 не может иметь более одного корня, так как функция y=x3 является строго возрастающей, а функция y=-log2x+1 строго убывающей.
Дальнейшее решение предполагает несколько вариантов.
Вариант №1
Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x∈0; 1, а вторая ниже красной линии на отрезке x∈1;2. Это значит, что площадь будет равна S(G)=∫01x3dx+∫12(-log2x+1)dx.
Вариант №2
Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x∈0; 2, а вторая между красной и синей линиями на отрезке x∈1; 2. Это позволяет нам найти площадь следующим образом:
S(G)=∫02x3dx-∫12×3-(-log2x+1)dx
В этом случае для нахождения площади придется использовать формулу вида S(G)=∫cd(g2(y)-g1(y))dy. Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y.
Разрешим уравнения y=x3 и -log2x+1 относительно x:
y=x3⇒x=y3y=-log2x+1⇒log2x=1-y⇒x=21-y
Получим искомую площадь:
S(G)=∫01(21-y-y3)dy=-21-yln 2-y4401==-21-1ln 2-144–21-0ln 2-044=-1ln 2-14+2ln 2=1ln 2-14
Ответ: S(G)=1ln 2-14
Необходимо вычислить площадь фигуры, которая ограничена линиями y=x, y=23x-3, y=-12x+4.
Решение
Красной линией нанесем на график линию, заданную функцией y=x. Синим цветом нанесем линию y=-12x+4, черным цветом обозначим линию y=23x-3.
Отметим точки пересечения.
Найдем точки пересечения графиков функций y=x и y=-12x+4 :
x=-12x+4ОДЗ: x≥0x=-12x+42⇒x=14×2-4x+16⇔x2-20x+64=0D=(-20)2-4·1·64=144×1=20+1442=16; x2=20-1442=4Проверка:x1=16=4, -12×1+4=-12·16+4=-4⇒x1=16 не является решением уравненияx2=4=2, -12×2+4=-12·4+4=2⇒x2=4 является решением уравниния ⇒(4; 2) точка пересечения y=x и y=-12x+4
Найдем точку пересечения графиков функций y=x и y=23x-3:
x=23x-3ОДЗ: x≥0x=23x-32⇔x=49×2-4x+9⇔4×2-45x+81=0D=(-45)2-4·4·81=729×1=45+7298=9, x245-7298=94Проверка:x1=9=3, 23×1-3=23·9-3=3⇒x1=9 является решением уравнения ⇒(9; 3) точка пересечания y=x и y=23x-3×2=94=32, 23×1-3=23·94-3=-32⇒x2=94 не является решением уравнения
Найдем точку пересечения линий y=-12x+4 и y=23x-3:
-12x+4=23x-3⇔-3x+24=4x-18⇔7x=42⇔x=6-12·6+4=23·6-3=1⇒(6; 1) точка пересечения y=-12x+4 и y=23x-3
Дальше мы можем продолжить вычисления двумя способами.
Способ №1
Представим площадь искомой фигуры как сумму площадей отдельных фигур.
Тогда площадь фигуры равна:
S(G)=∫46x–12x+4dx+∫69x-23x-3dx==23×32+x24-4×46+23×32-x23+3×69==23·632+624-4·6-23·432+424-4·4++23·932-923+3·9-23·632-623+3·6==-253+46+-46+12=113
Способ №2
Площадь исходной фигуры можно представить как сумму двух других фигур.
Тогда решим уравнение линии относительно x, а только после этого применим формулу вычисления площади фигуры.
y=x⇒x=y2 красная линияy=23x-3⇒x=32y+92 черная линияy=-12x+4⇒x=-2y+8 синяя линия
Таким образом, площадь равна:
S(G)=∫1232y+92–2y+8dy+∫2332y+92-y2dy==∫1272y-72dy+∫2332y+92-y2dy==74y2-74y12+-y33+3y24+92y23=74·22-74·2-74·12-74·1++-333+3·324+92·3–233+3·224+92·2==74+2312=113
Как видите, значения совпадают.
Ответ: S(G)=113
Итоги
Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Пример1. Вычислить
площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2
Выполним построение фигуры (см. рис.) Строим
прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х,
получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2,
находим
S = = [-0,25=11,25 кв. ед
Пример 2. Вычислить площадь
фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.
Решение. Выполним построение фигуры.
Построим прямую х – 2у + 4 = 0: у = 0, х = – 4, А(-4; 0); х = 0,
у = 2, В(0; 2).
Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у =
5, D(0; 5).
Найдем точку пересечения прямых, решив систему уравнений:
х = 2, у = 3; М(2; 3).
Для вычисления искомой площади разобьем треугольник АМС на два
треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена
прямой , а при изменении х от N до С – прямой
Для треугольника АМN имеем: ; у = 0,5х + 2, т.
е. f(x) = 0,5х + 2, a = – 4, b = 2.
Для треугольника NМС имеем: y = – x + 5, т. е. f(x) = – x + 5, a
= 2, b = 5.
Вычислив площадь каждого из треугольников и сложив результаты,
находим:
кв. ед.
кв. ед.
= 9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.
Пример 3. Вычислить площадь фигуры,
ограниченной линиями: y = x2, y =
0, x = 2, x = 3.
В данном случае требуется вычислить площадь криволинейной
трапеции, ограниченной параболой y = x2,
прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь
криволинейной трапеции
= = 6кв. ед.
Пример 4. Вычислить площадь
фигуры, ограниченной линиями: у = – x2 +
4 и у = 0
Выполним построение фигуры. Искомая площадь заключена между
параболой у = – x2 +
4 и осью Ох.
Найдем точки пересечения параболы с осью Ох.
Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси
Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный
результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.
Пример 5. Вычислить площадь
фигуры, ограниченной линиями: y2 =
x, yx = 1, x = 4
Здесь требуется вычислить площадь криволинейной трапеции,
ограниченной верхней ветвью параболыy2 =
x, осью Ох и прямыми x = 1иx = 4 (см. рис.)
По формуле (1), где f(x) = a = 1 и b = 4 имеем =
( = кв. ед.
Пример 6.Вычислить
площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .
Искомая площадь ограничена полуволной синусоиды и осью Ох (см.
рис.).
Имеем – cosx = – cos = 1 + 1 = 2 кв. ед.
Пример 7. Вычислить площадь
фигуры, ограниченной линиями: y = – 6х, у = 0 и х = 4.
Фигура расположена под осью Ох (см. рис.).
Следовательно, её площадь находим по формуле (3)
= =
Пример 8. Вычислить
площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам
(см. рис.). Таким образом, площадь фигуры находим по формуле (4 )
+
= = + = 1
Пример 9. Вычислить
площадь фигуры, ограниченной линиями:
х2 +
у2 = r2.
Здесь требуется вычислить площадь, ограниченную окружностью х2 +
у2 = r2,
т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую
часть этой площади, взяв пределы интегрирования от 0
доr; имеем: 1 =
= [
Следовательно, 1 =
Пример 10. Вычислить площадь
фигуры, ограниченной линиями: у= х2 и
у = 2х
Данная фигура ограничена параболой у= х2 и
прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим
систему уравнений:х2 –
2х = 0 х = 0 и х = 2
Используя для нахождения площади формулу (5),
получим
= [x2 –
=
Пример 7. Вычислить площадь фигуры, ограниченной линиями: 7x2 –
9y + 9 = 0 и 5x2 –
9y + 27 = 0.
Запишем уравнения парабол в виде у =
Построим эти параболы.
Для нахождения точек их пересечения решим
систему.Так как фигура симметрична относительно оси Оу, то найдем половину её
площади, взяв пределы интегрирования от 0 до 3, и результат удвоим:1 = = =
41 =
8
Задания для самостоятельной работы
Вычислить площадь фигуры, ограниченной линиями:
1. у = х+
3х и у = 0 2. у = 6х – х и
у = х + 4
3.y = x; y = ; y = 0; x = 2; 4.у = хи
у = -3х 5. y = x2 –
6x +9; y = x2 + 4x + 4; y = 0;
Группа 2.
1. у = х–
4х + 3 и у = 0
2. у = 4 – хи
у = х + 2
3. y = y = 2x; y = ;
4. у = х+
2 и у = 6
5. y = x2 –
6x +9; y = x2 + 4x + 4; y = 0;
Группа 3.
1. у = 8х – 4х и
у = 0
2. у = хи
у = 4х – 3
3. у = хи
у = -3х
4. y =x; y = ; y = 0; x = 2;
5. y = x2 –
6x +9; y = x2 + 4x + 4; y = 0;
Группа4.
1. у = х–
6х + 5 и у = 0
2. у = х+
1 и у = 3 – х
3. у = х и
у = 2х
4. у = ; у = 0,5х
5. y = y = 2x; y = ;