Как найти площадь криволинейной трапеции по рисунку

Содержание:

  1. Примеры с решением

Рассмотрим функцию Площадь криволинейной трапеции, которая непрерывна на отрезке Площадь криволинейной трапеции и принимает на этом промежутке неотрицательные значения. Фигуру, ограниченную графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции, называют криволинейной трапецией.

На рисунке 26.1 приведены примеры криволинейных трапеций.

Площадь криволинейной трапеции

Рассмотрим теорему, которая позволяет вычислять площади криволинейных трапеций.

Теорема 26.1.

Площадь Площадь криволинейной трапеции криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции Площадь криволинейной трапеции, можно вычислить по формуле

Площадь криволинейной трапеции

где Площадь криволинейной трапеции — любая первообразная функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Доказательство. Рассмотрим функцию Площадь криволинейной трапеции, где Площадь криволинейной трапеции, которая определена таким правилом.

Если Площадь криволинейной трапеции, то Площадь криволинейной трапеции; если Площадь криволинейной трапеции, то Площадь криволинейной трапеции — это площадь криволинейной трапеции, показанной штриховкой на рисунке 26.2.

Докажем, что Площадь криволинейной трапеции для всех Площадь криволинейной трапеции.

Пусть Площадь криволинейной трапеции — произвольная точка отрезка Площадь криволинейной трапеции и Площадь криволинейной трапеции — приращение аргумента в точке Площадь криволинейной трапеции, Ограничимся рассмотрением случая, когда Площадь криволинейной трапеции (случай, когда Площадь криволинейной трапеции, рассматривают аналогично).

Имеем: Площадь криволинейной трапеции

Получаем, что Площадь криволинейной трапеции — это площадь криволинейной трапеции, заштрихованной на рисунке 26.3.

Площадь криволинейной трапеции

На отрезке Площадь криволинейной трапеции как на стороне построим прямоугольник, площадь которого равна Площадь криволинейной трапеции (рис. 26.4). Длины сторон этого прямоугольника равны Площадь криволинейной трапеции и Площадь криволинейной трапеции, где Площадь криволинейной трапеции — некоторая точка промежутка Площадь криволинейной трапеции. Тогда Площадь криволинейной трапеции Отсюда Площадь криволинейной трапеции

Если Площадь криволинейной трапеции, то Площадь криволинейной трапеции.

Возможно вам будут полезны данные страницы:

Поскольку функция Площадь криволинейной трапеции непрерывна в точке Площадь криволинейной трапеции, то Площадь криволинейной трапеции. Отсюда, если Площадь криволинейной трапеции, то Площадь криволинейной трапеции

Имеем

Площадь криволинейной трапеции

Поскольку Площадь криволинейной трапеции — произвольная точка области определения функции Площадь криволинейной трапеции, то для любого Площадь криволинейной трапеции выполняется равенство Площадь криволинейной трапеции. Получили, что функция Площадь криволинейной трапеции является одной из первообразных функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции.

Пусть Площадь криволинейной трапеции — некоторая первообразная функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции. Тогда по основному свойству первообразной можно записать

Площадь криволинейной трапеции

где Площадь криволинейной трапеции — некоторое число.

Имеем:

Площадь криволинейной трапеции

По определению функции Площадь криволинейной трапеции искомая площадь Площадь криволинейной трапеции криволинейной трапеции равна Площадь криволинейной трапеции. Следовательно,

Площадь криволинейной трапеции

Примеры с решением

Пример 1.

Найдите площадь Площадь криволинейной трапеции фигуры, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции

Решение:

На рисунке 26.5 изображена криволинейная трапеция, площадь которой требуется найти.

Площадь криволинейной трапеции

Одной из первообразных функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции является функция Площадь криволинейной трапеции Тогда

Площадь криволинейной трапеции

Пример 2.

Найдите площадь Площадь криволинейной трапеции фигуры, ограниченной графиком функции Площадь криволинейной трапеции и прямой Площадь криволинейной трапеции .

Решение:

График функции Площадь криволинейной трапеции пересекает прямую Площадь криволинейной трапеции в точках Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.6). Тогда фигура, площадь которой требуется найти, является криволинейной трапецией, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции Площадь криволинейной трапеции

Площадь криволинейной трапеции

Одной из первообразных функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции является функция Площадь криволинейной трапеции ТогдаПлощадь криволинейной трапеции

Определение. Пусть Площадь криволинейной трапеции — первообразная функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции, числа Площадь криволинейной трапеции и Площадь криволинейной трапеции, где Площадь криволинейной трапеции, принадлежат промежутку Площадь криволинейной трапеции. Разность Площадь криволинейной трапеции называют определенным интегралом функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции.

Определенный интеграл функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции обозначают Площадь криволинейной трапеции (читают: «интеграл от Площадь криволинейной трапеции до Площадь криволинейной трапеции эф от икс де икс»). Следовательно,

Площадь криволинейной трапеции Площадь криволинейной трапеции

где Площадь криволинейной трапеции — произвольная первообразная функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции.

Например, функция Площадь криволинейной трапеции является первообразной функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции. Тогда для произвольных чисел Площадь криволинейной трапеции и Площадь криволинейной трапеции, где Площадь криволинейной трапеции, можно записать:

Площадь криволинейной трапеции

Заметим, что значение разности Площадь криволинейной трапеции не зависит от того, какую именно первообразную функции Площадь криволинейной трапеции выбрали. Действительно, каждую первообразную Площадь криволинейной трапеции функции Площадь криволинейной трапеции на промежутке Площадь криволинейной трапеции можно представить в виде Площадь криволинейной трапеции, где Площадь криволинейной трапеции — некоторая постоянная. Тогда

Площадь криволинейной трапеции

Равенство (1) называют формулой Ньютона—Лейбница. Следовательно, для вычисления определенного интеграла Площадь криволинейной трапеции по формуле Ньютона-Лейбница надо:

  1. найти любую первообразную Площадь криволинейной трапеции функции Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции;
  2. вычислить значение первообразной Площадь криволинейной трапеции в точках Площадь криволинейной трапеции и Площадь криволинейной трапеции;
  3. найти разность Площадь криволинейной трапеции.

При вычислении определенных интегралов разность Площадь криволинейной трапеции обозначают Площадь криволинейной трапеции

Используя такое обозначение, вычислим, например, Площадь криволинейной трапеции Имеем:

Площадь криволинейной трапеции

Пример 3.

Вычислите Площадь криволинейной трапеции

Решение:

Имеем:

Площадь криволинейной трапеции

Если функция Площадь криволинейной трапеции имеет первообразную Площадь криволинейной трапеции на отрезке Площадь криволинейной трапеции и Площадь криволинейной трапеции, то из формулы Ньютона-Лейбница следует такое свойство определенного интеграла:

Площадь криволинейной трапеции

Действительно,

Площадь криволинейной трапеции

Если каждая из функций Площадь криволинейной трапеции и Площадь криволинейной трапеции имеет первообразную на отрезке Площадь криволинейной трапеции, то, используя теоремы 25.1 и 25.2, можно доказать (сделайте это самостоятельно) такие свойства определенного интеграла:

  1. Площадь криволинейной трапеции
  2.  Площадь криволинейной трапеции где Площадь криволинейной трапеции — некоторое число.

Формула Ньютона-Лейбница позволяет установить связь между определенным интегралом и площадью Площадь криволинейной трапеции криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции (Площадь криволинейной трапеции).

Используя теорему 26.1, можно записать:

Площадь криволинейной трапеции

Заметим, что в этой формуле рассматриваются непрерывные функции Площадь криволинейной трапеции, которые на отрезке Площадь криволинейной трапеции принимают только неотрицательные значения. Однако определенный интеграл можно использовать для вычисления площадей более сложных фигур.

Рассмотрим непрерывные на отрезке Площадь криволинейной трапеции функции Площадь криволинейной трапеции и Площадь криволинейной трапеции такие, что для всех Площадь криволинейной трапеции выполняется неравенство Площадь криволинейной трапеции

Покажем, как найти площадь Площадь криволинейной трапеции фигуры Площадь криволинейной трапеции, ограниченной графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.7).

Перенесем фигуру Площадь криволинейной трапеции вверх на Площадь криволинейной трапеции единиц так, чтобы полученная фигура Площадь криволинейной трапеции находилась выше оси абсцисс (рис. 26.8). Фигура Площадь криволинейной трапеции ограничена графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции.

Площадь криволинейной трапеции

Поскольку фигуры Площадь криволинейной трапеции и Площадь криволинейной трапеции имеют равные площади, то искомая площадь Площадь криволинейной трапеции равна разности Площадь криволинейной трапеции

где Площадь криволинейной трапеции — площадь криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.9, а);

Площадь криволинейной трапеции — площадь криволинейной трапеции, ограниченной графиком функции Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции, Площадь криволинейной трапеции и Площадь криволинейной трапеции (рис. 26.9, б).

Площадь криволинейной трапеции

Таким образом, используя свойства определенного интеграла, можем записать:

Площадь криволинейной трапеции

Следовательно, если функции Площадь криволинейной трапеции и Площадь криволинейной трапеции непрерывны на отрезке Площадь криволинейной трапеции и для всех Площадь криволинейной трапеции выполняется неравенство Площадь криволинейной трапеции то площадь Площадь криволинейной трапеции фигуры, ограниченной графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции и прямыми Площадь криволинейной трапеции и Площадь криволинейной трапеции, можно вычислить по формуле

Площадь криволинейной трапеции

Пример 4.

Найдите площадь Площадь криволинейной трапеции фигуры, ограниченной графиками функций Площадь криволинейной трапеции и Площадь криволинейной трапеции

Решение:

На рисунке 26.10 изображена фигура, площадь которой требуется найти.

Площадь криволинейной трапеции

Решив уравнение Площадь криволинейной трапеции, устанавливаем, что графики функций Площадь криволинейной трапеции и Площадь криволинейной трапеции пересекаются в двух точках с абсциссами Площадь криволинейной трапеции и Площадь криволинейной трапеции.

Тогда искомая площадь

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Лекции:

  • Экспонента, натуральные логарифмы и гиперболические функции
  • Непрерывная случайная величина
  • Математическое ожидание и дисперсия случайной величины
  • Исследование функции: пример решения
  • Понятие функции. Теория пределов
  • Элементарные функции комплексного переменного. Дробно-рациональные функции
  • Равномерная сходимость функционального ряда
  • Критерий Сильвестра
  • Преобразования в пространстве и на плоскости
  • Площадь поверхности подобных фигур

Алгебра и начала математического анализа, 11 класс

Урок №23.Площадь криволинейной трапеции. Интеграл и его свойства.

Перечень вопросов, рассматриваемых в теме

1) Нахождение определенного интеграла

2) Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница

3) Решение задач, с помощью формулы Ньютона – Лейбница

Формула Ньютона – Лейбница

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

ОрловаЕ. А., СеврюковП. Ф., СидельниковВ. И., СмоляковА.Н.Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Криволинейной трапецией называется фигура, ограниченная графиком непрерывной и не меняющей на отрезке [а;b] знака функции f(х), прямыми х=а, x=b и отрезком [а;b].

Отрезок [a;b] называют основанием этой криволинейной трапеции

формула Ньютона – Лейбница

Если в задаче требуется вычислить площадь криволинейной трапеции, то ответ всегда будет положительный. Если требуется, используя чертеж, вычислить интеграл, то его значение может быть любым(зависит от расположения криволинейной трапеции).

Примеры и разбор решения заданий тренировочного модуля

№1.Найти площадь криволинейной трапеции, изображенной на рисунке

Решение

Для вычисления площади криволинейной трапеции воспользуемся формулой Ньютона – Лейбница.

Ответ:

№2. Вычислить определенный интеграл:

Решение: Воспользуемся формулой Ньютона-Лейбница.

Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b) .

Затем подставляем значение нижнего предела в первообразную функцию: F(а).

Рассчитываем разность F(b)  – F(а), это и будет ответ.

№3. Найти площадь криволинейной трапеции (х-1)2, ограниченной линиями х=2 и х=1, осью 0х

Решение:

Воспользуемся формулой Ньютона-Лейбница.

Сначала находим первообразную функцию  F(x). Далее подставляем значение верхнего предела в первообразную функцию: F(b)  .

Затем подставляем значение нижнего предела в первообразную функцию: F(а).

Рассчитываем разность F(b)  – F(а), это и будет ответ.

Криволинейная трапеция – именно так называется фигура на рисунке ниже. Она образована графиком некоторой неотрицательной непрерывной функции и ограничена им сверху.

Слева и справа фигура ограничена вертикальными линиями х=а и х=b, а снизу – осью абсцисс.

Как найти площадь такой фигуры?

Чтобы найти площадь криволинейной трапеции придется вспомнить школу, а именно замечательную формулу Ньютона-Лейбница:

Источник: https://image2.slideserve.com/3818359/slide7-l.jpg
Источник: https://image2.slideserve.com/3818359/slide7-l.jpg

В этой формуле F(b) и F(a) – значение первообразной функции f(x) в точках а и b.

Если вдруг забыли, то первообразная от f(x) – это такая функция F(x), что верно равенство F'(x) = f(x). Надеюсь, воспоминания всколыхнет такая табличка:

Источник: https://www.mosrepetitor.ru/pictures/Fomula_Matem/f_026.jpg
Источник: https://www.mosrepetitor.ru/pictures/Fomula_Matem/f_026.jpg

Давайте уже перейдем к конкретному примеру, в результате которого Вы не только вспомните школьную математику, но и поймёте физический смысл формулы Ньютона-Лейбница:

Как найти площадь такой фигуры?

Итак, имеем такой рисунок. Требуется найти площадь заштрихованной фигуры, которая по всем перечисленным в начале статье параметрам подходит под определение криволинейной трапеции.

Дело за малым – вычислить определенный интеграл:

График расположен целиком выше оси х. В обратном случае перед интегралом мы бы поставили "-".
График расположен целиком выше оси х. В обратном случае перед интегралом мы бы поставили “-“.

Всё сходится!

А что же из себя представляет эта формула, почему она вообще работает?

В данном случае снизу график ограничен прямой линией. В общем случае с помощью этой формулы находится и площадь между разнообразными кривыми.
В данном случае снизу график ограничен прямой линией. В общем случае с помощью этой формулы находится и площадь между разнообразными кривыми.

Дело в том, что мы находим площадь, разбивая криволинейную трапецию на бесконечно малые прямоугольники, площадь которых легко вычислить. (см.рис).

Затем складываем эти прямоугольники, а интегрирование суть непрерывное сложение.

Вуаля! Результат, ставший одним из самых важных достижений математики в истории. обоснован “на пальцах”.

Однако, стоит сказать, что первое применение такого метода разбиений принадлежит еще древним грекам.

Да-да, именно Архимед может считаться отцом интегрального счисления – читайте мой материал про одну и его менее знаменитых теорем.

Читайте также:

Определенный интеграл. Площадь криволинейной трапеции

  1. Теорема о площади криволинейной трапеции
  2. Формула Ньютона-Лейбница
  3. Геометрический смысл теоремы Лагранжа о среднем
  4. Площадь плоской фигуры, ограниченной двумя кривыми
  5. Примеры

п.1. Теорема о площади криволинейной трапеции

Фигуру, ограниченную прямыми (x=a, x=b), осью абсцисс (y=0) и графиком функции (y=f(x)) называют криволинейной трапецией.

Теорема о площади криволинейной трапеции

Теорема
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b], равна (F(b)-F(a)), где (F(x)) – первообразная функции (f(x)) на [a;b].

Теорема о площади криволинейной трапеции

Доказательство:
Выберем на интервале (xin [a;b]). Площадь соответствующей криволинейной трапеции (S(x)) является функцией от (x). Дадим переменной (x) приращение (triangle x).
Площадь криволинейной трапеции на интервале (left[a;x+triangle xright]) равна сумме
(S(x+triangle x)=S(x)+S(triangle x)). Откуда приращение площади: $$ triangle S=S(triangle x)=S(x+triangle x)-S(x) $$ По теореме о среднем (см. ниже в этом параграфе) между (x) и (x+triangle x) всегда найдется такое (t), что приращение площади равно произведению: $$ triangle S=f(t)cdot (x+triangle x-x)=f(t)cdot triangle x $$ Если (triangle xrightarrow 0), то (trightarrow x), и в пределе получаем: begin{gather*} S'(x)=lim_{triangle xrightarrow 0}frac{triangle S}{triangle x}=lim_{triangle xrightarrow 0} frac{f(t)cdot triangle x}{triangle x}=lim_{triangle xrightarrow 0}f(t)=f(x) end{gather*} Т.е. (S(x)) является первообразной для (f(x)) на [a;b]. В общем виде: $$ S(x)=F(x)+C $$ Найдем C. В точке a: $$ S(a)=0=F(a)+CRightarrow C=-F(a) $$ Тогда вся площадь: $$ S=S(b)=F(b)+C=F(b)-F(a) $$ Что и требовалось доказать.

п.2. Формула Ньютона-Лейбница

Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b] записывают в виде определенного интеграла: $$ S=int_{a}^{b}f(x)dx $$ По формуле Ньютона-Лейбница определенный интеграл равен: $$ int_{a}^{b}f(x)dx=F(x)|_a^b=F(a)-F(b) $$

Например:
Найдем площадь фигуры, ограниченной осью абсцисс и графиком функции $$ y=3-2x-x^2 $$

Формула Ньютона-Лейбница Построим график
(см. §28 справочника для 8 класса).
Это парабола. (alt 0) – ветки вниз.
Координаты вершины: begin{gather*} x_0=-frac{b}{2a}=-frac{-2}{2cdot (-1)}=-1,\ y_0=3+2-1=4 end{gather*} Точки пересечения с осью OX: begin{gather*} 3-2x-x^2=0Rightarrow x^2+2x-3=0\ (x+3)(x-1)=0Rightarrow left[ begin{array}{l} x=-3,\ x=1 end{array} right. end{gather*} Точка пересечения с осью OY: $$ x=0, y=3 $$

Необходимо найти площадь заштрихованной фигуры.
Функция: (f(x)=3-2x-x^2)
Пределы интегрирования: (a=-3, b=1) begin{gather*} S=int_{-3}^{1}(3-2x-x^2)dx=left(3x-2cdotfrac{x^2}{2}-frac{x^3}{3}right)|_{1}^{-3}=left(3x-x^2-frac{x^3}{3}right)|_{1}^{-3}=\ =left(3-cdot 1-1^2-frac{1^3}{3}right)-left(3cdot(-3)-(-3)^2-frac{(-3)^3}{3}right)=2-frac13+9=10frac23 end{gather*} Ответ: (10frac23)

п.3. Геометрический смысл теоремы Лагранжа о среднем

Теорема Лагранжа о среднем
Если функция (F(x)) непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), то существует такая точка (muin(a;b)), что $$ F(b)-F(a)=F'(mu)(a-b) $$ Пусть (F'(x)=f(x)), т.е. функция (F(x)) является первообразной для (f(x)). Тогда: $$ F(b)-F(a)=int_{a}^{b}f(x)dx=f(mu)(b-a) $$

Геометрический смысл теоремы Лагранжа о среднем

Геометрический смысл теоремы Лагранжа о среднем в интегральной форме заключается в том, что площадь криволинейной трапеции равна площади прямоугольника с основанием (d=b-a) и высотой (h=f(mu)), где (aleqmuleq b).
Теорема о среднем используется при доказательстве многих формул, связанных с использованием определенных интегралов (центра тяжести тела, площади поверхности и т.д.).

п.4. Площадь плоской фигуры, ограниченной двумя кривыми

Площадь плоской фигуры, ограниченной прямыми (x=a, x=b, alt b) и кривыми (y=f(x), y=g(x)), причем (f(x)geq g(x)) для любого (xin [a;b]), равна: $$ S=int_{a}^{b}(f(x)-g(x))dx $$

Например:
Найдем площадь фигуры, ограниченной двумя параболами (y=x^2) и (y=4x-x^2).

Найдем точки пересечения парабол: $$ x^2=4x-x^2Rightarrow 2x^2-4x=0Rightarrow 2x(x-2)=0Rightarrow left[ begin{array}{l} x=0\ x=2 end{array} right. $$ Строим графики.
Площадь плоской фигуры, ограниченной двумя кривыми
Необходимо найти площадь заштрихованной фигуры.
Функция сверху: (f(x)=4x-x^2)
Функция снизу: (g(x)=x^2)
Пределы интегрирования: (a=0, b=2) begin{gather*} S=int_{0}^{2}left((4x-x^2)-x^2right)dx=int_{0}^{2}(4x-2x^2)dx=left(4cdotfrac{x^2}{2}-2cdotfrac{x^3}{3}right)|_0^2=\ =left(2x^2-frac23 x^3right)|_0^2=2cdot 2^2-frac23cdot 2^3-0=8-frac{16}{3}=frac83=2frac23 end{gather*} Ответ: (2frac23)

п.5. Примеры

Пример 1. Найдите определенный интеграл:
a) (int_{-2}^{3}x^2dx) $$ int_{-2}^{3}x^2dx=frac{x^3}{3}|_{-2}^{3}=frac{3^3}{3}-frac{(-2)^3}{3}=9-frac83=frac{19}{3}=6frac13 $$
б) (int_{0}^{fracpi 3}sinxdx) $$ int_{0}^{fracpi 3}sinxdx=(-cosx)|_{0}^{fracpi 3}=-cosfracpi 3+cos0=-frac12+1=frac12 $$
в) (int_{1}^{2}left(e^x+frac 1xright)dx) $$ int_{1}^{2}left(e^x+frac 1xright)dx=(e^x+ln|x|)|_{1}^{2}=e^2+ln 2-e^1-underbrace{ln 1}_{=0}=e(e-1)+ln 2 $$
г) (int_{2}^{3}(2x-1)^2 dx) begin{gather*} int_{2}^{3}(2x-1)^2 dx=frac12cdotfrac{(2x-3)^3}{3}|_{2}^{3}=frac16((2cdot 3-1)^3)-(2cdot 2-1)^3)=frac{5^3-3^3}{6}=\ =frac{125-27}{6}=frac{98}{6}=frac{49}{3}=16frac13 end{gather*}
д) (int_{1}^{3}frac{dx}{3x-2}) begin{gather*} int_{1}^{3}frac{dx}{3x-2}=frac13cdot ln|3x-2| |_{1}^{3}=frac13left(ln 7-underbrace{ln 1}_{=0}right)=frac{ln 7}{3} end{gather*}
e) (int_{-1}^{4}frac{dx}{sqrt{3x+4}}) begin{gather*} int_{-1}^{4}frac{dx}{sqrt{3x+4}}=frac13cdotfrac{(3x+4)^{-frac12+1}}{-frac12+1}|_{-1}^{4}=frac23sqrt{3x+4}|_{-1}^{4}=\ =frac23left(sqrt{3cdot 4+4}-sqrt{3cdot(-1)+4}right)=frac23(4-1)=2 end{gather*}

Пример 2. Найдите площадь фигуры под кривой на заданном интервале:
a) (f(x)=x^3+3, xinleft[-1;1right])
Пример 2a $$ S=int_{-1}^{1}(x^3+3)dx=left(frac{x^4}{4}+3xright)|_{-1}^{1}=frac14+3-left(frac14-3right)=6 $$
б) (f(x)=sin2x, xinleft[0;fracpi 2right])
Пример 2б $$ S=int_{0}^{fracpi 2}sin2xdx=-frac12cos2x|_{0}^{fracpi 2}=-frac12left(cosleft(2cdotfracpi 2right)-cos0right)=-frac12(-1-1)=1 $$
в) (f(x)=frac4x+3, xinleft[2;6right])
Пример 2в
(f(x)=frac4x+3) – гипербола с асимптотами (x=0, y=3)
Площадь под кривой: begin{gather*} S=int_{2}^{6}left(frac4x+3right)dx=(4cdot ln|x|+3x)|_{2}^{6}=(4ln 6+18)-(4ln 2+6)=\ =4(ln 6-ln 2)+12=4lnfrac62+12=4ln 3+12=4(ln 3+3) end{gather*}
г) (f(x)=frac{1}{sqrt{x}}, xinleft[1;4right])
Пример 2г $$ S=int_{1}^{4}frac{dx}{sqrt{x}}=frac{x^{-frac12+1}}{-frac12+1}|_{1}^{4}=2sqrt{x}|_{1}^{4}=2(sqrt{4}-sqrt{1})=2 $$

Пример 3. Найдите площадь фигуры, ограниченной линиями:
a) (y=x-2, y=x^2-4x+2)
Найдем точки пересечения прямой и параболы: $$ x-2=x^2-4x+2Rightarrow x^2-5x+4=0Rightarrow (x-1)(x-4)=0Rightarrow left[ begin{array}{l} x=1,\ x=4 end{array} right. $$ Пример 3a
Функция сверху: (f(x)=x-2)
Функция снизу: (g(x)=x^2-4x+2)
Пределы интегрирования: (a=1, b=4) begin{gather*} S=int_{1}^{4}left((x-2)-(x^2-4x+2)right)dx=int_{1}^{4}(-x^2+5x-4)dx=\ =left(-frac{x^3}{3}+frac{5x^2}{2}-4xright)|_{1}^{4}=left(-frac{64}{3}+5cdotfrac{16}{2}-4cdot 4right)-left(-frac13+frac52-4right)=\ =-frac{63}{3}+24+1,5=4,5 end{gather*} Ответ: 4,5
б) (y=e^{frac x2}, y=frac1x, x=2, x=3)
Пример 3б
Функция сверху: (f(x)=e^{x/2})
Функция снизу: (g(x)=frac1x)
Пределы интегрирования: (a=2, b=3) begin{gather*} S=int_{2}^{3}left(e^{x/2}-frac1xright)dx=(2e^{x/2}-ln|x|)|_{2}^{3}=left(2e^{frac32}-ln 3right)-(2e-ln 2)=\ =2e^{frac32}-2e-ln 3+ln 2=2e(sqrt{e}-1)+lnfrac23 end{gather*} Ответ: (2e(sqrt{e}-1)+lnfrac23)
в*) (y=3-x^2, y=1+|x|)
Найдем точки пересечения ломаной и параболы: begin{gather*} 3-x^2=1+|x|Rightarrow x^2+|x|-2=0Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ x^2+x-2=0 end{cases} \ begin{cases} xlt 0\ x^2-x-2=0 end{cases} end{array} right. Rightarrow left[ begin{array}{l} begin{cases} xgeq 0\ (x+2)(x-1)=0 end{cases} \ begin{cases} xlt 0\ (x-2)(x+1)=0 end{cases} end{array} right. Rightarrow \ left[ begin{array}{l} begin{cases} xgeq 0\ left[ begin{array}{l} x=-2\ x=1 end{array} right. end{cases} \ begin{cases} xlt 0\ left[ begin{array}{l} x=2\ x=-1 end{array} right. end{cases} end{array} right. Rightarrow left[ begin{array}{l} x=1\ x=-1 end{array} right. end{gather*} Пример 3в
Функция сверху: (f(x)=3-x^2)
Функция снизу: (g(x)=1+|x|)
Пределы интегрирования: (a=-1, b=1)
Чтобы не раскрывать модуль под интегралом, заметим, что площади на интервалах [-1;0] и [0;1] равны, т.к. обе функции четные и симметричные относительно оси OY. Поэтому можно рассматривать только положительные (xinleft[0;1right]), найти для них интеграл (площадь) и умножить на 2: begin{gather*} S=2int_{0}^{1}left((3-x^2)-(1+x)right)dx=2int_{0}^{1}(-x^2-x+2)dx=2left(-frac{x^3}{3}-frac{x^2}{2}+2xright)|_{0}^{1}=\ =2left(-frac13-frac12+2right)-0=frac73=2frac13 end{gather*} Ответ: (2frac13)
г*) (y=3sinx, y=cosx, x=-frac{5pi}{4}, x=fracpi 4)
Пример 3г
На отрезке (left[-frac{5pi}{4};-frac{3pi}{4}right]) синус над косинусом, далее на (left[-frac{3pi}{4};frac{pi}{4}right]) – косинус над синусом.
Площадь фигуры, закрашенной голубым, в два раза больше площади фигуры, закрашенной сиреневым. Поэтому общая площадь будет равна трем площадям, закрашенным сиреневым: begin{gather*} S=3int_{-frac{5pi}{4}}^{-frac{3pi}{4}}(sinx-cosx)dx=3(-cosx-sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}} end{gather*} Прибавим полный период, он одинаков для обеих функций:
(-frac{3pi}{4}+2pi=frac{5pi}{4}; -frac{5pi}{4}+2pi=frac{3pi}{4}) begin{gather*} -3(cosx+sinx)|_{-frac{5pi}{4}}^{-frac{3pi}{4}}=-3left(cosleft(frac{5pi}{4}right)+sinleft(frac{5pi}{4}right)-cosleft(frac{3pi}{4}right)-sinleft(frac{3pi}{4}right)right)=\ =-3left(-frac{sqrt{2}}{2}-frac{sqrt{2}}{2}+frac{sqrt{2}}{2}-frac{sqrt{2}}{2}right)=3sqrt{2} end{gather*} Ответ: (3sqrt{2})

Пример 4*. Пусть (S(k)) – это площадь фигуры, образованной параболой (y=x^2+2x-3) и прямой (y=kx+1). Найдите (S(-1)) и вычислите наименьшее значение (S(k)).

1) Найдем (S(-1)).
(k=-1, y=-x+1 )

Пример 4 Точки пересечения прямой и параболы: begin{gather*} -x+1=x^2+2x-3\ x^2+3x-4=0\ (x+4)(x-1)=0Rightarrow left[ begin{array}{l} x=-4,\ x=1 end{array} right. end{gather*} Функция сверху: (y=-x+1)
Функция снизу: (y=x^2+2x-3)
Пределы интегрирования: (a=-4, b=1)

begin{gather*} S(-1)=int_{-4}^{1}left((-x+1)-(x^2+2x-3)right)dx=int_{-4}^{1}(-x-3x+4)dx=\ =left(-frac{x^3}{3}-frac{3x^2}{2}+4xright)|_{-4}^{1}=left(-frac13-frac32+4right)-left(frac{64}{3}-24-16right)=-21frac23+42frac12=20frac56 end{gather*}
2) Решаем в общем виде.
Все прямые (y=kx+1) проходят через точку (0;1) и при образовании фигуры находятся над параболой.
Точки пересечения прямой и параболы: begin{gather*} kx+1=x^2+2x-3Rightarrow x^2+(2-k)x-4=0\ D=(2-k)^2-4cdot (-4)=(k-2)^2+16gt 0 end{gather*} Дискриминант (Dgt 0) при всех (k). Точки пересечения (пределы интегрирования): $$ x_{1,2}=frac{-(2-k)pmsqrt{D}}{2}=frac{k-2pmsqrt{D}}{2} $$ Разность корней: $$ x_2-x_1=sqrt{D}=sqrt{(k-2)^2+16} $$ Минимальное значение разности корней будет при (k=2).
Площадь: begin{gather*} S(k)=int_{x_1}^{x_2}left((kx+1)-(x^2+2x-3)right)dx=int_{x_1}^{x_2}(-x^2+(k-2)x+4)dx=\ =left(-frac{x^3}{3}+frac{(k-2)x^2}{2}+4xright)|_{x_1}^{x_2}=-frac13(x_2^3-x_1^3)+frac{k-2}{2}(x_2^2-x_1^2)+4(x_2-x_1) end{gather*}

Пример 4 begin{gather*} S(k)_{min}=S(2)\ x_{1,2}=pm 2\ S(2)=-frac13cdot(2^3+2^3)+0+4sqrt{16}=\ =-frac{16}{3}+16=frac{32}{3}=10frac23 end{gather*}

Ответ: 1) (S(-1)=20frac56); 2) (S(k)_{min}=S(2)=10frac23)

Пример 5*. Фигура ограничена линиями (y=(x+3)^2, y=0, x=0). Под каким углом к оси OX надо провести прямые через точку (0;9), чтобы они разбивали фигуру на три равновеликие части?

Пример 4 Площадь криволинейной трапеции AOB: begin{gather*} S_0=int_{-3}^{0}(x+3)^2dx=frac{(x+3)^3}{3}|_{-3}^{0}=\ =9-0=9 end{gather*} Площадь каждой части: (S_i=frac13 S_0=3)
Точки (C(x_1; 0)) и (D(x_2; 0)) c (-3lt x_1lt x_2lt 0) такие, что прямые AC и AD отсекают по 1/3 от фигуры.
Площадь прямоугольного треугольника (triangle AOD): begin{gather*} S_3=frac12|x_2|cdot 9=3Rightarrow |x_2|=frac69=frac23Rightarrow\ x_2=-frac23 end{gather*} Площадь прямоугольного треугольника (triangle AOC): begin{gather*} S_2+S_3=frac12|x_1|cdot 9=6Rightarrow |x_1|=frac{12}{9}=frac43Rightarrow\ x_1=-frac43 end{gather*}

Находим углы соответствующих прямых.
Для (x_1: tgalpha=frac{9}{|x_1|}=frac{9}{4/3}=frac{27}{4}, alpha=arctgfrac{27}{4})
Для (x_x: tgbeta=frac{9}{|x_2|}=frac{9}{2/3}=frac{27}{2}, beta=arctgfrac{27}{2})

Ответ: (arctgfrac{27}{4}) и (arctgfrac{27}{2})



Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая  определяет ось , прямые  параллельны оси  и парабола  симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке   график функции  расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями  и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями ,  и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ:  – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы  и прямой , поскольку здесь будут находиться пределы интегрирования.  Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой  всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
 – именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке  некоторая непрерывная функция  больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось  задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу  либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую  можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке  над осью  расположен график прямой ;
2) на отрезке  над осью  расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , ,  и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс  зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой  и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
 – нижний предел интегрирования,  – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция  (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

1.9. Объём тела вращения

1.7. Геометрический смысл определённого интеграла

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Добавить комментарий