Как найти площадь куба по его грани

В данной публикации мы рассмотрим, как можно найти площадь поверхности куба и разберем примеры решения задач для закрепления материала.

  • Формула вычисления площади куба

    • 1. Через длину ребра

    • 2. Через длину диагонали грани

  • Примеры задач

Формула вычисления площади куба

1. Через длину ребра

Площадь (S) поверхности куба равна произведению числа 6 на длину его ребра в квадрате.

S = 6 ⋅ a2

Площадь поверхности куба через длину ребра

Данная формула получена следующим образом:

  • Куб – это правильная геометрическая фигура, все грани которого являются равными квадратами с длиной стороны a (одновременно является ребром куба).
  • Площадь каждой грани считается так: S = a ⋅ a = a2.
  • Всего у куба 6 граней, а значит, площадь его поверхности равняется шести площадям одной грани: S = 6 ⋅ a2.

2. Через длину диагонали грани

Сторона любой грани куба (ребро) может быть рассчитана через длину ее диагонали по формуле: a=d/√2.

Площадь поверхности куба через диагональ грани

Это значит, что вычислить площадь поверхности фигуры можно так:

S = 6 ⋅ (d/√2)2

Примеры задач

Задание 1
Найдите площадь поверхности куба, если длина его ребра составляет 12 см.

Решение:
Используем первую формулу выше и получаем:
S = 6 ⋅ (12 см)2 = 864 см2.

Задание 2
Площадь поверхности куба равняется 294 см2. Вычислите длину его ребра.

Решение:
Примем ребро куба за a. Из формулы расчета площади следует:
Расчет длины ребра куба из площади его поверхности

Задание 3
Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.

Решение:
Воспользуемся формулой, в которой задействована длина диагонали:
S = 6 ⋅ (5 см : √2)2 = 75 см2.

Определение куба

Куб (или гексаэдр) — это правильный многогранник, который состоит из многоугольников, являющихся квадратами.

Онлайн-калькулятор площади поверхности куба

площадь треугольника

У куба есть двенадцать ребер, то есть, отрезков, которые являются сторонами квадратов.
Также он имеет восемь вершин и шесть граней.
У куба есть диагональ, соединяющая противоположные вершины.

Формула площади поверхности куба

Площадь поверхности куба – это сумма площадей всех его граней:

S=S1+S2+S3+S4+S5+S6S=S_1+S_2+S_3+S_4+S_5+S_6

Площадь каждой грани одинакова, то есть:

S1=S2=S3=S4=S5=S6=S′S_1=S_2=S_3=S_4=S_5=S_6=S’

S′S’ — площадь любой грани куба.

Тогда полная площадь поверхности куба запишется как:

S=6⋅S′S=6cdot S’

Рассмотрим на примерах разные способы вычисления полной площади поверхности куба.

Формула площади поверхности куба по длине ребра куба

Площадь каждой грани куба вычисляется как площадь квадрата, со стороной ребра куба по формуле:

S′=a⋅a=a2S’=acdot a=a^2

aa — сторона куба.

Отсюда, окончательно площадь поверхности куба:

S=6⋅a2S=6cdot a^2

aa — длина стороны куба.

Пример

Найти площадь поверхности куба, если длина его ребра равна 12 (см.).

Решение

a=12a=12

S=6⋅a2=6⋅122=6⋅144=864S=6cdot a^2=6cdot 12^2=6cdot 144=864 (см. кв.)

Ответ: 864 см. кв.

Формула площади поверхности куба по диагонали куба

По теореме Пифагора, диагональ куба связанна с длиной его ребра по формуле:

d2=a2+a2+a2d^2=a^2+a^2+a^2
d2=3⋅a2d^2=3cdot a^2
d=3⋅ad=sqrt{3}cdot a

Отсюда:

a=d3a=frac{d}{sqrt{3}}

Подставим в формулу для площади:

S=6⋅a2=6⋅(d3)2=2⋅d2S=6cdot a^2=6cdotBig(frac{d}{sqrt{3}}Big)^2=2cdot d^2

S=2⋅d2S=2cdot d^2

dd — диагональ куба.

Пример

Одна четвертая часть диагонали куба равна 2 (см.). Найти площадь поверхности куба.

Решение

14⋅d=2frac{1}{4}cdot d=2

Найдем диагональ:

d=4⋅2=8d=4cdot 2=8

Площадь:

S=2⋅d2=2⋅82=2⋅64=128S=2cdot d^2=2cdot 8^2=2cdot 64=128 (см. кв.)

Ответ: 128 см. кв.

Формула площади поверхности куба по длине диагонали квадрата (грани куба)

По теореме Пифагора, диагональ квадрата ll связанна с его стороной aa:

l2=a2+a2l^2=a^2+a^2
l2=2⋅a2l^2=2cdot a^2
l=2⋅al=sqrt{2}cdot a

Тогда сторона квадрата:

a=l2a=frac{l}{sqrt{2}}

Подставляем в формулу для площади и получаем:

S=6⋅a2=3⋅l2S=6cdot a^2=3cdot l^2

S=3⋅l2S=3cdot l^2

ll — диагональ квадрата (грани куба).

Пример

Одна четвертая часть диагонали квадрата равна 1 (см). Найти площадь поверхности куба, образованного данным четырехугольником.

Решение

14⋅l=1frac{1}{4}cdot l=1

Найдем диагональ квадрата:

l=4⋅1=4l=4cdot 1=4

Тогда площадь:

S=3⋅l2=3⋅42=48S=3cdot l^2=3cdot 4^2=48 (см. кв.)

Ответ: 48 см. кв.

Разберем более сложные примеры.

Формула площади поверхности куба по площади вписанного в куб шара

В куб вписан шар площади SшарS_{text{шар}}. Тогда радиус RR этого шара равен половине длины стороны куба aa:

R=a2R=frac{a}{2}

Площадь шара дается формулой:

Sшар=4⋅π⋅R2S_{text{шар}}=4cdotpicdot R^2

Отсюда найдем радиус шара:

R=Sшар4⋅πR=sqrt{frac{S_{text{шар}}}{4cdotpi}}

Сторона грани куба:

a=2⋅R=2⋅Sшар4⋅πa=2cdot R=2cdotsqrt{frac{S_{text{шар}}}{4cdotpi}}

Наконец площадь поверхности куба:

S=6⋅a2=6⋅SшарπS=6cdot a^2=frac{6cdot S_{text{шар}}}{pi}

S=6⋅SшарπS=frac{6cdot S_{text{шар}}}{pi}

SшарS_{text{шар}} — площадь шара, вписанного в куб.

Пример

В куб вписан шар, площадь которого равна 64 “пи” (см. кв.). Найти полную площадь поверхности куба.

Решение

Sшар=64πS_{text{шар}}=64pi

По формуле:

S=6⋅Sшарπ=6⋅64⋅ππ=384S=frac{6cdot S_{text{шар}}}{pi}=frac{6cdot 64cdotpi}{pi}=384 (см. кв.)

Ответ: 384 см. кв.

Не знаете, кто сможет решить контрольную работу на заказ для вас? Наши эксперты с удовольствием окажут вам помощь!

Тест по теме “Площадь поверхности куба”

Формула площади поверхности куба

Площадь поверхности куба – это сумма площадей всех его граней:

S=S1+S2+S3+S4+S5+S6S=S_1+S_2+S_3+S_4+S_5+S_6S=S1​+S2​+S3​+S4​+S5​+S6​

Площадь каждой грани одинакова, то есть:

S1=S2=S3=S4=S5=S6=S′S_1=S_2=S_3=S_4=S_5=S_6=S’S1​=S2​=S3​=S4​=S5​=S6​=S′

S′S’S′ — площадь любой грани куба.

Тогда полная площадь поверхности куба запишется как:

Рассмотрим на примерах разные способы вычисления полной площади поверхности куба.

Формула площади поверхности куба по длине ребра куба

Площадь каждой грани куба вычисляется как площадь квадрата, со стороной ребра куба по формуле:

S′=a⋅a=a2S’=acdot a=a^2S′=a⋅a=a2

aaa — сторона куба.

Отсюда, окончательно площадь поверхности куба:

S=6⋅a2S=6cdot a^2S=6⋅a2

aaa — длина стороны куба.

Пример

Найти площадь поверхности куба, если длина его ребра равна 12 (см.).

Решение

a=12a=12a=12

S=6⋅a2=6⋅122=6⋅144=864S=6cdot a^2=6cdot 12^2=6cdot 144=864S=6⋅a2=6⋅122=6⋅144=864 (см. кв.)

Ответ: 864 см. кв.

Формула площади поверхности куба по диагонали куба

По теореме Пифагора, диагональ куба связанна с длиной его ребра по формуле:

d2=a2+a2+a2d^2=a^2+a^2+a^2d2=a2+a2+a2d2=3⋅a2d^2=3cdot a^2d2=3⋅a2d=3⋅ad=sqrt{3}cdot ad=3​⋅a

Отсюда:

a=d3a=frac{d}{sqrt{3}}a=3​d​

Подставим в формулу для площади:

S=6⋅a2=6⋅(d3)2=2⋅d2S=6cdot a^2=6cdotBig(frac{d}{sqrt{3}}Big)^2=2cdot d^2S=6⋅a2=6⋅(3​d​)2=2⋅d2

S=2⋅d2S=2cdot d^2S=2⋅d2

ddd — диагональ куба.

Пример

Одна четвертая часть диагонали куба равна 2 (см.). Найти площадь поверхности куба.

Решение

14⋅d=2frac{1}{4}cdot d=241​⋅d=2

Найдем диагональ:

d=4⋅2=8d=4cdot 2=8d=4⋅2=8

Площадь:

S=2⋅d2=2⋅82=2⋅64=128S=2cdot d^2=2cdot 8^2=2cdot 64=128S=2⋅d2=2⋅82=2⋅64=128 (см. кв.)

Ответ: 128 см. кв.

Формула площади поверхности куба по длине диагонали квадрата (грани куба)

По теореме Пифагора, диагональ квадрата lll связанна с его стороной aaa:

l2=a2+a2l^2=a^2+a^2l2=a2+a2l2=2⋅a2l^2=2cdot a^2l2=2⋅a2l=2⋅al=sqrt{2}cdot al=2​⋅a

Тогда сторона квадрата:

a=l2a=frac{l}{sqrt{2}}a=2​l​

Подставляем в формулу для площади и получаем:

S=6⋅a2=3⋅l2S=6cdot a^2=3cdot l^2S=6⋅a2=3⋅l2

S=3⋅l2S=3cdot l^2S=3⋅l2

lll — диагональ квадрата (грани куба).

Пример

Одна четвертая часть диагонали квадрата равна 1 (см). Найти площадь поверхности куба, образованного данным четырехугольником.

Решение

14⋅l=1frac{1}{4}cdot l=141​⋅l=1

Найдем диагональ квадрата:

l=4⋅1=4l=4cdot 1=4l=4⋅1=4

Тогда площадь:

S=3⋅l2=3⋅42=48S=3cdot l^2=3cdot 4^2=48S=3⋅l2=3⋅42=48 (см. кв.)

Ответ: 48 см. кв.

Разберем более сложные примеры.

Формула площади поверхности куба по площади вписанного в куб шара

В куб вписан шар площади SшарS_{text{шар}}Sшар​. Тогда радиус RRR этого шара равен половине длины стороны куба aaa:

R=a2R=frac{a}{2}R=2a​

Площадь шара дается формулой:

Sшар=4⋅π⋅R2S_{text{шар}}=4cdotpicdot R^2Sшар​=4⋅π⋅R2

Отсюда найдем радиус шара:

R=Sшар4⋅πR=sqrt{frac{S_{text{шар}}}{4cdotpi}}R=4⋅πSшар​​​

Сторона грани куба:

a=2⋅R=2⋅Sшар4⋅πa=2cdot R=2cdotsqrt{frac{S_{text{шар}}}{4cdotpi}}a=2⋅R=2⋅4⋅πSшар​​​

Наконец площадь поверхности куба:

S=6⋅a2=6⋅SшарπS=6cdot a^2=frac{6cdot S_{text{шар}}}{pi}S=6⋅a2=π6⋅Sшар​​

S=6⋅SшарπS=frac{6cdot S_{text{шар}}}{pi}S=π6⋅Sшар​​

SшарS_{text{шар}}Sшар​ — площадь шара, вписанного в куб.

Пример

В куб вписан шар, площадь которого равна 64 “пи” (см. кв.). Найти полную площадь поверхности куба.

Решение

Sшар=64πS_{text{шар}}=64piSшар​=64π

По формуле:

S=6⋅Sшарπ=6⋅64⋅ππ=384S=frac{6cdot S_{text{шар}}}{pi}=frac{6cdot 64cdotpi}{pi}=384S=π6⋅Sшар​​=π6⋅64⋅π​=384 (см. кв.)

Ответ: 384 см. кв.

Формулы?

Площадь поверхности куба равна сумме площадей шесть квадратов, которые и составляют поверхность куба.

Площадь каждого такого квадрата, которые являются гранями данного куба, вычисляются по формуле:

текст при наведении

, где а – длина ребра квадрата.

Чтобы найти площадь всей поверхности квадрата, надо найти сумму площадей всех шести его граней или просто, умножить площадь одной из граней на 6.

Вот так можно вывести формулу вычисления площади поверхности куба:

текст при наведении

модератор выбрал этот ответ лучшим

Турук Макто
[55.4K]

9 лет назад 

Я формул не помню, если они специально какие-то есть. Но давайте по логике. Если сторона одна – это квадрат, то сторона умножается на сторону – это будет площадь квадрата. И таких квадратов шесть штук. Вот собственно и всё. Сторона в квадрате шесть раз! 6*а*а.

MarkT­olkie­n
[85.3K]

9 лет назад 

Для того, чтобы найти площадь поверхности куба, нужно вычислить площадь грани. Площадь одной грани – длина ребра в квадрате, то есть во второй степени. У куба шесть сторон (граней), поэтому площадь одной множим на 6.

текст при наведении

Ракит­ин Серге­й
[450K]

9 лет назад 

У куба шесть граней, каждая из которых представляет собой квадрат. Если сторона куба равна a, то площадь его поверхности будет равна 6a^2. В справочниках эту формулу обычно не приводят в силу её очевидности.

Асюшк­а
[101K]

9 лет назад 

Так как грани куба – это квадраты. И куб состоит из шести таких граней, то получается, что чтобы найти площадь поверхности куба, нам необходимо для начала найти площадь квадрата(грани куба) умножаем на 6 (6 граней). Ой, сейчас сама запутаюсь и Вас запутаю, проще, действительно, формулой записать:

S (площадь куба) = 6 * а2 (площадь одной грани – квадрата).

Медве­д
[141K]

9 лет назад 

Куб – это параллелепипед, у которого все стороны равны. Значит, каждая из граней куба является квадратом, и все эти квадраты равны между собой. Если обозначить сторону куба как Н, площадь одного квадрата будет (Н)в квадрате. Таких квадратов 6. Поэтому имеем формулу для определения поверхности куба S:

S=6x[(Н)в квадрате]

текст при наведении

Sambo­rskay­a
[7K]

9 лет назад 

Площадь поверхности куба складывается из всех площадей его сторон. Каждая сторона представляет из себя квадрат, а площадь квадрата равна произведению его сторон. Пусть сторона квадрата равна Х, тогда площадь всей поверхности куба вычисляется как S = 6 * X * X.

Любов­ь7800
[4K]

9 лет назад 

И без формул даже можно, если нужно измерить все поверхности, то найти площать одной, умножив одну сторону на другую и потом умножить на шесть. Так ка у куда все стороны равны, то можно одну сторону умножить сразу на 12, так как граней 12.

Радуг­а-Весна
[50.4K]

9 лет назад 

Площадь поверхности куба равняется шесть умножить на квадрат длины грани куба.

А вот и сама формула площади куба

S = 6* a2

S – это площадь куба,

a – это длина грани куба.

Как видно площадь куба рассчитывается совсем просто.

Solnc­e lychi­k
[40.9K]

9 лет назад 

Эту площадь учили еще в школе. А формула выглядит так:

s=6*a2

где s-площадь куба

a-длина грани

Если честно без интернета я бы это и не вспомнила.

Да все что учила в школе со временем забывается. А вспомнить очень сложно.

Знаете ответ?

Как найти площадь грани куба

Под кубом подразумевается правильный многогранник, у которого все грани образованы правильными четырехугольниками – квадратами. Для того, чтобы найти площадь грани любого куба, не потребуется тяжелых расчетов.

Как найти площадь грани куба

Инструкция

Для начала стоит заострить внимание на само определение куба. Из него видно, что любая из граней куба представляет собой квадрат. Таким образом, задача по нахождению площади грани куба сводится к задаче по нахождению площади любого из квадратов (граней куба). Можно взять именно любую из граней куба, так как длины всех его ребер равны между собой.

Для того, чтобы найти площадь грани куба, требуется перемножить между собой пару любых из его сторон, ведь все они между собой равны. Формулой это можно выразить так:

S = a², где а – сторона квадрата (ребро куба).

Пример: Длина ребра куба 11 см, требуется найти ее площадь.

Решение: зная длину грани, можно найти ее площадь:

S = 11² = 121 см²

Ответ: площадь грани куба с ребром 11 см равна 121 см²

Обратите внимание

Любой куб имеет 8 вершин, 12 ребер, 6 граней и 3 грани при вершине.
Куб – это такая фигура, которая встречается в быту невероятно часто. Достаточно вспомнить игровые кубики, игральные кости, кубики в различны детских и подростковых конструкторах.
Многие элементы архитектуры имеют кубическую форму.
Кубическими метрами принято измерять объемы различных веществ в различных сферах жизни общества.
Говоря научным языком, кубический метр – это мера измерения объема вещества, которое способно поместиться в куб с длиной ребра 1 м
Таким образом, можно ввести и иные единицы измерения объема: кубические миллиметры, сантиметры, дециметры и т.п.
Помимо различных кубических единиц измерения объема, в нефтяной и газовой промышленности возможно применение иной единицы – баррель (1м³ = 6.29 баррелей)

Полезный совет

Если у куба известна длина ее ребра, то, помимо площади грани можно найти и другие параметры данного куба, например:
Площадь поверхности куба: S = 6*a²;
Объем: V = 6*a³;
Радиус вписанной сферы: r = a/2;
Радиус сферы, описанной вокруг куба: R = ((√3)*a))/2;
Диагональ куба (отрезок, соединяющие две противоположные вершины куба, который проходит через его центр): d = a*√3

Источники:

  • площадь куба если ребра равны 11 см

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий