Как найти площадь квадрата через вписанную окружность

Площадь квадрата через сторону

{S = a ^2}

На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.

Квадрат – четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.

Содержание:
  1. калькулятор площади квадрата
  2. формула площади квадрата через сторону
  3. формула площади квадрата через диагональ
  4. формула площади квадрата через радиус вписанной окружности
  5. формула площади квадрата через радиус описанной окружности
  6. формула площади квадрата через периметр
  7. примеры задач

Формула площади квадрата через сторону

Площадь квадрата через сторону

S = a ^2

a – сторона квадрата

Формула площади квадрата через диагональ

Площадь квадрата через диагональ

S=dfrac{d^2}{2}

d – диагональ квадрата

Формула площади квадрата через радиус вписанной окружности

Площадь квадрата через радиус вписанной окружности

S = 4r^2

r – радиус вписанной окружности

Формула площади квадрата через радиус описанной окружности

Площадь квадрата через радиус описанной окружности

S = 2R^2

R – радиус описанной окружности

Формула площади квадрата через периметр

Площадь квадрата через периметр

S = dfrac{P^2}{16}

P – периметр квадрата

Примеры задач на нахождение площади квадрата

Задача 1

Найдите площадь квадрата если его диагональ равна 1.

Решение

Для решения задачи воспользуемся формулой.

S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2

Ответ: 0.5 см²

Проверим ответ на калькуляторе .

Задача 2

Найдите площадь квадрата, описанного вокруг окружности радиуса 83.

Решение

Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.

S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2

Ответ: 13778 см²

Проверим ответ с помощью калькулятора .

Задача 3

Найдите площадь квадрата если его сторона равна 8 см.

Решение

Используем первую формулу.

S = a ^2 = 8 ^2 = 64 : см^2

Ответ: 64 см²

Проверим результат на калькуляторе .

Задача 4

Найдите площадь квадрата периметр которого равен 456 см.

Решение

Используем формулу для площади квадрата через периметр.

S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2

Ответ: 12996 см²

Проверка .

Задача 5

Найдите площадь квадрата со стороной 15 см.

Решение

Воспользуемся формулой площади квадрата через сторону.

S = a ^2 = 15 ^2 = 225 : см^2

Ответ: 225 см²

Проверка .

Расчёт площади квадрата через площадь окружности, вписанной в этот квадрат

Калькулятор рассчитывает площадь квадрата через площадь окружности вписанной в этот квадрат

Площадь квадрата через площадь окружности вписанной в этот квадрат

Введите площадь окружности Sокр

Формула площади квадрата через площадь окружности вписанной в этот квадрат

Где S – площадь квадрата,
Sокр – площадь окружности

Вывод формулы площади квадрата через площадь окружности вписанной в этот квадрат

Площадь квадрата через площадь окружности вписанной в этот квадрат

Из формулы площади окружности выведем радиус

Сторона квадрата равна двум радиусам

Подставим в формулу площади квадрата

Подставим в формулу выведенный ранее радиус

Похожие калькуляторы

Что такое квадрат и понятие его площади

Квадрат — простейшая плоская геометрическая фигура. Является одновременно правильным четырёхугольником и прямоугольником, все стороны которого равны.

Состоит соответственно из четырёх равных сторон, четырёх вершин ABCD и прямых углов 90°.

Под площадью квадрата подразумевается пространство, ограниченное его сторонами (та часть плоскости, что внутри). Способов расчёта существует немного, а формулы для вычисления площади весьма простые.

Как найти площадь квадрата через сторону

Данный способ и калькулятор позволит найти площадь квадрата через значение длины его сторон — введите его в соответствующее поле. В зелёном поле автоматически выведется результат.

Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …

Как найти площадь квадрата через периметр

Данный способ и калькулятор позволит найти площадь квадрата через значение его периметра — введите его в соответствующее поле. В зелёном поле выведется результат.

Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …

Как найти площадь квадрата через диагональ

Данный способ и калькулятор позволит найти площадь квадрата через значение длины его диагонали — введите его в соответствующее поле. В зелёном поле получите результат.

Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …

Как найти площадь квадрата через радиус вписанной окружности

Данный способ и калькулятор позволит найти площадь квадрата через значение радиуса вписанной окружности — введите его в соответствующее поле. В зелёном поле выведется результат.

Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …

Как найти площадь квадрата через радиус описанной окружности

Данный способ и калькулятор позволит найти площадь квадрата через значение радиуса описанной окружности — введите его в соответствующее поле. В зелёном поле выведется результат автоматически.

Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …

Ваша оценка?

[Оценок: 5 / Средняя: 4.6]

Площадь квадрата онлайн

С помощю этого онлайн калькулятора можно найти площадь квадрата. Для нахождения площади квадрата, введите известные данные в ячейку и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Площадь квадрата. Определение

Определение 1. Площадь квадрата − это величина той части плоскости, которую занимает квадрат.

Единицы измерения площади квадрата

За единицу измерения площадей применяют квадрат, сторона которого равна единице измерения отрезков. В качестве единицы измерения площадей принимают квадраты со сторонами 1мм, 1см, 1дм, 1м и т.д (Рис.1). Такие квадраты назыают квадратным миллиметром, квадратным сантиметром, квадратным дециметром, квадратным метром и т.д., соответственно. Обозначаются они мм2, см2, дм2, м2 и т.д., соответственно.

Если выбрана единица измерения, то площадь измеряемого объекта (квадрата, треугольника, прямоугольника, многоугольника и т.д.)определяется положительным числом, которая определяет сколько раз единица измерения и ее части укладываются в данном объекте.

Для измерения отдельных плоских фигур используются специальные формулы. В данной статье мы выведем формулу для вычисления площади квадрата.

Площадь квадрата. Доказательство

Теорема 1. Площадь S квадрата со стороной a равна .

Доказательство. Пусть n целое неотрицательное число и пусть . Рассмотрим квадрат со стороной 1 (Рис.2). Разделим этот квадрат по ветрикали и по горизонлали на n равных частей. Получим маленьких квадратов состоронами . Поскольку площадь большого квадрата равна 1 (так как является единицей измерения), то очевидно, что площадь маленького квадрата равна:

а поскольку , то имеем:

Пусть теперь a является конечной десятичной дробью, содержащую n знаков после запятой. (Если n=0, то a будет целым числом). Тогда a можно представить в виде обыкновенной дроби, умножив и делив на :

откуда

где m − целое число.

Возьмем квадрат со стороной a и разделим его по горизонлали и вертикали на m ровных частей. Получим m2 маленьких квадратов (Рис.3).

Тогда, учитывая (2), сторона каждого квадрата равна:

По формуле (1) площадь маленького квадрата равна:

Следовательно, площадь квадрата со стороной a равна:

Пусть, далее, число a представляет собой бесконечную десятичную дробь. Рассмотрим число an которая получается из a отбрасыванием всех десятичных знаков после запятой, начиная с (n+1)-го. Поскольку a отличается от an не более, чем на , то имеем:

откуда

Из неравенства (4) следует, что площадь S квадрата со стороной a заключена между площадью квадрата со стороной an и площадью квадрата со стороной (Рис.4), т.е.

При неограниченном увеличении числа n, число будет становиться сколь угодно малым и, следовательно, число будет сколь угодно мало отличаться от . Тогда из неравенства (5) следует, что число S будет мало отличаться от числа . Следовательно они равны, т.е. .

Площадь квадрата по стороне

Из вышеизложенного доказательства получили, что площадь квадрата равна:

где ( small a ) сторона квадрата.

Пример 1. Сторона квадрата равна . Найти площадь квадрата.

Решение. Для нахождения плошади квадрата воспользуемся формулой (6). Подставляя в (6), получим:

Ответ:

Площадь квадрата по диагонали

Пусть известна диагональ ( small d ) квадрата (Рис.5). Найдем площадь квадрата.

Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Для этого воспользуемся теоремой Пифагора:

Подставляя (7) в (6), получим:

то есть площадь квадрата по диагонали вычисляется из следующей формулы:

Пример 2. Диагональ квадрата равна . Найти площадь квадрата.

Решение. Для нахождения плошади квадрата воспользуемся формулой (8). Подставляя в (8), получим:

Ответ:

Площадь квадрата по радиусу вписанной окружности

Пусть известен ( small r ) радиус окружности вписанной в квадрат (Рис.6). Найдем площадь квадрата.

Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Нетрудно заметить, что радиус ( small r ) равна половине стороны ( small a ) квадрата, т.е.

Подставляя (9) в (6), получим:

или

Пример 3. Радиус вписанной в квадрат окружности равен . Найти площадь квадрата.

Решение. Для нахождения плошади квадрата воспользуемся формулой (10). Подставляя в (10), получим:

Ответ:

Площадь квадрата по радиусу описанной окружности

Пусть известен ( small R ) радиус окружности описанной около квадрата (Рис.7). Найдем площадь квадрата.

Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Восрользуемся теоремой Пифагора:

Подставляя (11) в (6), получим:

Пример 4. Радиус описанной окружности равен . Найти площадь квадрата.

Решение. Для нахождения площади квадрата воспользуемся формулой (12). Подставляя в (12), получим:

Ответ:

Площадь квадрата по периметру

Пусть известен периметр ( small P ) квадрата. Найдем площадь квадрата. По периметру можно найти сторону квадрата:

Подставляя (13) в (6), получим:

то есть площадь квадрата через периметр равна:

Пример 5. Периметр квадрата равен . Найти площадь квадрата.

Решение. Для нахождения площади квадрата воспользуемся формулой (14). Подставляя в (14), получим:

Ответ:

Смотрите также:

  • Квадрат. Онлайн калькулятор

Как найти площадь квадрата?

Площадь квадрата может быть найдена по его стороне, диагонали, радиусам вписанной и описанной окружности.

1. Площадь квадрата равна квадрату его стороны.

kak-najti-ploshchad-kvadrataФормула для нахождения площади квадрата по его стороне:

    [S = {a^2}]

Например, площадь квадрата ABCD можно найти как квадрат его стороны AB:

    [{S_{ABCD}} = A{B^2}]

2. Площадь квадрата равна половине квадрата диагонали его стороны.

ploshchad-kvadrata-cherez-diagonal

Формула для нахождения площади квадрата по его диагонали:

    [S = frac{1}{2}{d^2}]

Например, площадь квадрата ABCD можно найти через его диагональ AC:

    [{S_{ABCD}} = frac{1}{2}A{C^2}]

3. Площадь квадрата в четыре раза больше квадрата радиуса вписанной к него окружности.

ploshchad-kvadrata-cherez-radius-vpisannoj-okruzhnostiТак как

    [r = frac{a}{2},a = 2r,]

то из формулы площади квадрата по стороне получаем

формулу для нахождения площади квадрата через радиус вписанной окружности:

    [S = 4{r^2}]

4. Площадь квадрата равна удвоенному квадрату радиуса описанной около него окружности.

ploshchad-kvadrata-cherez-radius-opisannoj-okruzhnostiТак как

    [R = frac{a}{{sqrt 2 }},a = Rsqrt 2 ,]

то из формулы площади квадрата по стороне вытекает

формула для нахождения площади квадрата через радиус вписанной окружности:

    [S = 2{R^2}]

Добавить комментарий