{S = a ^2}
На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.
Квадрат – четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.
Содержание:
- калькулятор площади квадрата
- формула площади квадрата через сторону
- формула площади квадрата через диагональ
- формула площади квадрата через радиус вписанной окружности
- формула площади квадрата через радиус описанной окружности
- формула площади квадрата через периметр
- примеры задач
Формула площади квадрата через сторону
S = a ^2
a – сторона квадрата
Формула площади квадрата через диагональ
S=dfrac{d^2}{2}
d – диагональ квадрата
Формула площади квадрата через радиус вписанной окружности
S = 4r^2
r – радиус вписанной окружности
Формула площади квадрата через радиус описанной окружности
S = 2R^2
R – радиус описанной окружности
Формула площади квадрата через периметр
S = dfrac{P^2}{16}
P – периметр квадрата
Примеры задач на нахождение площади квадрата
Задача 1
Найдите площадь квадрата если его диагональ равна 1.
Решение
Для решения задачи воспользуемся формулой.
S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2
Ответ: 0.5 см²
Проверим ответ на калькуляторе .
Задача 2
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Решение
Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.
S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2
Ответ: 13778 см²
Проверим ответ с помощью калькулятора .
Задача 3
Найдите площадь квадрата если его сторона равна 8 см.
Решение
Используем первую формулу.
S = a ^2 = 8 ^2 = 64 : см^2
Ответ: 64 см²
Проверим результат на калькуляторе .
Задача 4
Найдите площадь квадрата периметр которого равен 456 см.
Решение
Используем формулу для площади квадрата через периметр.
S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2
Ответ: 12996 см²
Проверка .
Задача 5
Найдите площадь квадрата со стороной 15 см.
Решение
Воспользуемся формулой площади квадрата через сторону.
S = a ^2 = 15 ^2 = 225 : см^2
Ответ: 225 см²
Проверка .
Расчёт площади квадрата через площадь окружности, вписанной в этот квадрат
Калькулятор рассчитывает площадь квадрата через площадь окружности вписанной в этот квадрат
Введите площадь окружности Sокр
Формула площади квадрата через площадь окружности вписанной в этот квадрат
Где S – площадь квадрата,
Sокр – площадь окружности
Вывод формулы площади квадрата через площадь окружности вписанной в этот квадрат
Из формулы площади окружности выведем радиус
Сторона квадрата равна двум радиусам
Подставим в формулу площади квадрата
Подставим в формулу выведенный ранее радиус
Похожие калькуляторы
Что такое квадрат и понятие его площади
Квадрат — простейшая плоская геометрическая фигура. Является одновременно правильным четырёхугольником и прямоугольником, все стороны которого равны.
Состоит соответственно из четырёх равных сторон, четырёх вершин ABCD и прямых углов 90°.
Под площадью квадрата подразумевается пространство, ограниченное его сторонами (та часть плоскости, что внутри). Способов расчёта существует немного, а формулы для вычисления площади весьма простые.
Как найти площадь квадрата через сторону
Данный способ и калькулятор позволит найти площадь квадрата через значение длины его сторон — введите его в соответствующее поле. В зелёном поле автоматически выведется результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через периметр
Данный способ и калькулятор позволит найти площадь квадрата через значение его периметра — введите его в соответствующее поле. В зелёном поле выведется результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через диагональ
Данный способ и калькулятор позволит найти площадь квадрата через значение длины его диагонали — введите его в соответствующее поле. В зелёном поле получите результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через радиус вписанной окружности
Данный способ и калькулятор позволит найти площадь квадрата через значение радиуса вписанной окружности — введите его в соответствующее поле. В зелёном поле выведется результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через радиус описанной окружности
Данный способ и калькулятор позволит найти площадь квадрата через значение радиуса описанной окружности — введите его в соответствующее поле. В зелёном поле выведется результат автоматически.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Ваша оценка?
[Оценок: 5 / Средняя: 4.6]
Площадь квадрата онлайн
С помощю этого онлайн калькулятора можно найти площадь квадрата. Для нахождения площади квадрата, введите известные данные в ячейку и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.
Площадь квадрата. Определение
Определение 1. Площадь квадрата − это величина той части плоскости, которую занимает квадрат.
Единицы измерения площади квадрата
За единицу измерения площадей применяют квадрат, сторона которого равна единице измерения отрезков. В качестве единицы измерения площадей принимают квадраты со сторонами 1мм, 1см, 1дм, 1м и т.д (Рис.1). Такие квадраты назыают квадратным миллиметром, квадратным сантиметром, квадратным дециметром, квадратным метром и т.д., соответственно. Обозначаются они мм2, см2, дм2, м2 и т.д., соответственно.
Если выбрана единица измерения, то площадь измеряемого объекта (квадрата, треугольника, прямоугольника, многоугольника и т.д.)определяется положительным числом, которая определяет сколько раз единица измерения и ее части укладываются в данном объекте.
Для измерения отдельных плоских фигур используются специальные формулы. В данной статье мы выведем формулу для вычисления площади квадрата.
Площадь квадрата. Доказательство
Теорема 1. Площадь S квадрата со стороной a равна .
Доказательство. Пусть n целое неотрицательное число и пусть . Рассмотрим квадрат со стороной 1 (Рис.2). Разделим этот квадрат по ветрикали и по горизонлали на n равных частей. Получим маленьких квадратов состоронами . Поскольку площадь большого квадрата равна 1 (так как является единицей измерения), то очевидно, что площадь маленького квадрата равна:
а поскольку , то имеем:
Пусть теперь a является конечной десятичной дробью, содержащую n знаков после запятой. (Если n=0, то a будет целым числом). Тогда a можно представить в виде обыкновенной дроби, умножив и делив на :
откуда
где m − целое число.
Возьмем квадрат со стороной a и разделим его по горизонлали и вертикали на m ровных частей. Получим m2 маленьких квадратов (Рис.3).
Тогда, учитывая (2), сторона каждого квадрата равна:
По формуле (1) площадь маленького квадрата равна:
Следовательно, площадь квадрата со стороной a равна:
Пусть, далее, число a представляет собой бесконечную десятичную дробь. Рассмотрим число an которая получается из a отбрасыванием всех десятичных знаков после запятой, начиная с (n+1)-го. Поскольку a отличается от an не более, чем на , то имеем:
откуда
Из неравенства (4) следует, что площадь S квадрата со стороной a заключена между площадью квадрата со стороной an и площадью квадрата со стороной (Рис.4), т.е.
При неограниченном увеличении числа n, число будет становиться сколь угодно малым и, следовательно, число будет сколь угодно мало отличаться от . Тогда из неравенства (5) следует, что число S будет мало отличаться от числа . Следовательно они равны, т.е. .
Площадь квадрата по стороне
Из вышеизложенного доказательства получили, что площадь квадрата равна:
где ( small a ) сторона квадрата.
Пример 1. Сторона квадрата равна . Найти площадь квадрата.
Решение. Для нахождения плошади квадрата воспользуемся формулой (6). Подставляя в (6), получим:
Ответ:
Площадь квадрата по диагонали
Пусть известна диагональ ( small d ) квадрата (Рис.5). Найдем площадь квадрата.
Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Для этого воспользуемся теоремой Пифагора:
Подставляя (7) в (6), получим:
то есть площадь квадрата по диагонали вычисляется из следующей формулы:
Пример 2. Диагональ квадрата равна . Найти площадь квадрата.
Решение. Для нахождения плошади квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Площадь квадрата по радиусу вписанной окружности
Пусть известен ( small r ) радиус окружности вписанной в квадрат (Рис.6). Найдем площадь квадрата.
Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Нетрудно заметить, что радиус ( small r ) равна половине стороны ( small a ) квадрата, т.е.
Подставляя (9) в (6), получим:
или
Пример 3. Радиус вписанной в квадрат окружности равен . Найти площадь квадрата.
Решение. Для нахождения плошади квадрата воспользуемся формулой (10). Подставляя в (10), получим:
Ответ:
Площадь квадрата по радиусу описанной окружности
Пусть известен ( small R ) радиус окружности описанной около квадрата (Рис.7). Найдем площадь квадрата.
Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Восрользуемся теоремой Пифагора:
Подставляя (11) в (6), получим:
Пример 4. Радиус описанной окружности равен . Найти площадь квадрата.
Решение. Для нахождения площади квадрата воспользуемся формулой (12). Подставляя в (12), получим:
Ответ:
Площадь квадрата по периметру
Пусть известен периметр ( small P ) квадрата. Найдем площадь квадрата. По периметру можно найти сторону квадрата:
Подставляя (13) в (6), получим:
то есть площадь квадрата через периметр равна:
Пример 5. Периметр квадрата равен . Найти площадь квадрата.
Решение. Для нахождения площади квадрата воспользуемся формулой (14). Подставляя в (14), получим:
Ответ:
Смотрите также:
- Квадрат. Онлайн калькулятор
Как найти площадь квадрата?
Площадь квадрата может быть найдена по его стороне, диагонали, радиусам вписанной и описанной окружности.
1. Площадь квадрата равна квадрату его стороны.
Формула для нахождения площади квадрата по его стороне:
Например, площадь квадрата ABCD можно найти как квадрат его стороны AB:
2. Площадь квадрата равна половине квадрата диагонали его стороны.
Формула для нахождения площади квадрата по его диагонали:
Например, площадь квадрата ABCD можно найти через его диагональ AC:
3. Площадь квадрата в четыре раза больше квадрата радиуса вписанной к него окружности.
Так как
то из формулы площади квадрата по стороне получаем
формулу для нахождения площади квадрата через радиус вписанной окружности:
4. Площадь квадрата равна удвоенному квадрату радиуса описанной около него окружности.
Так как
то из формулы площади квадрата по стороне вытекает
формула для нахождения площади квадрата через радиус вписанной окружности: