{S = a ^2}
На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.
Квадрат – четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.
Содержание:
- калькулятор площади квадрата
- формула площади квадрата через сторону
- формула площади квадрата через диагональ
- формула площади квадрата через радиус вписанной окружности
- формула площади квадрата через радиус описанной окружности
- формула площади квадрата через периметр
- примеры задач
Формула площади квадрата через сторону
S = a ^2
a – сторона квадрата
Формула площади квадрата через диагональ
S=dfrac{d^2}{2}
d – диагональ квадрата
Формула площади квадрата через радиус вписанной окружности
S = 4r^2
r – радиус вписанной окружности
Формула площади квадрата через радиус описанной окружности
S = 2R^2
R – радиус описанной окружности
Формула площади квадрата через периметр
S = dfrac{P^2}{16}
P – периметр квадрата
Примеры задач на нахождение площади квадрата
Задача 1
Найдите площадь квадрата если его диагональ равна 1.
Решение
Для решения задачи воспользуемся формулой.
S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2
Ответ: 0.5 см²
Проверим ответ на калькуляторе .
Задача 2
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Решение
Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.
S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2
Ответ: 13778 см²
Проверим ответ с помощью калькулятора .
Задача 3
Найдите площадь квадрата если его сторона равна 8 см.
Решение
Используем первую формулу.
S = a ^2 = 8 ^2 = 64 : см^2
Ответ: 64 см²
Проверим результат на калькуляторе .
Задача 4
Найдите площадь квадрата периметр которого равен 456 см.
Решение
Используем формулу для площади квадрата через периметр.
S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2
Ответ: 12996 см²
Проверка .
Задача 5
Найдите площадь квадрата со стороной 15 см.
Решение
Воспользуемся формулой площади квадрата через сторону.
S = a ^2 = 15 ^2 = 225 : см^2
Ответ: 225 см²
Проверка .
По какой формуле рассчитывается площадь квадрата?
Анонимный вопрос
2 ноября 2018 · 54,6 K
6,8 K
Комментировать ответ…Комментировать…
Увлекаюсь бухгалтерией, математикой, педагогикой, статистикой. Люблю точные науки. · 8 нояб 2018
Существует 5 формул для нахождения площади квадрата:
1. S=a⋅a=a2 – формула площади квадрата через сторону,
2. S = ½ d² – формула площади квадрата через диагональ,
3. S=4⋅r² – формула площади квадрата через радиус вписанной окружности,
4. S=2⋅R² – формула площади квадрата через радиус описанной окружности,
5. S= Р²/ 16 – формула площади квадрата через периметр… Читать далее
33,8 K
Комментировать ответ…Комментировать…
Engineer – programmer ⚡⚡ Разбираюсь в компьютерах, технике, электронике, интернете и… · 2 нояб 2018 ·
Посчитать площадь квадрата можно через его диагональ по формуле: S = ½ d²,
где d — диагональ, т.е. отрезок, который соединяет два противоположных не смежных угла квадрата. Диагональ разделяет квадрат на два равных прямоугольных треугольника.
10,7 K
Комментировать ответ…Комментировать…
Хорошист преуспеваю в Биологии , Географии и Геометрии · 4 мая 2022
Привет, сейчас расскажу максимально доходчиво ,чтобы найти его площадь нам надо знать одну сторону, если одна сторона ровна 6 то тебе надо возвести число в квадрат, и получится 36 то есть тебе надо сторону возвести в квадрат все очень просто надеюсь ,что помог
634
Комментировать ответ…Комментировать…
Квадрат – это геометрическая фигура; правильный четырехугольник, т.е. четырехугольник, имеющий равные стороны и углы (90°).
- Формула вычисления площади
- Примеры задач
Формула вычисления площади
1. По длине стороны:
Площадь квадрата (S) равняется квадрату длины его стороны:
S = a2
Данная формула следует из того, что квадрат является частным случаем прямоугольника, площадь которого находится путем умножения его смежных сторон:
S = a*b
А т.к. все стороны квадрата равны, то вместо стороны b мы снова подставляем в формулу сторону a, т.е. S = a*a = a2.
2. По по длине диагонали
Площадь квадрата равняется половине квадрата длины его диагонали:
S = d2/2
Соотношение стороны и диагонали квадрата: d=a√2.
Примеры задач
Задание 1
Найдите площадь квадрата, сторона которого равна 7 см.
Решение:
Используем формулу по длине стороны, т.е. S = 72 = 49 см2.
Задание 2
Найдите площадь квадрата, диагональ которого равняется 4 см.
Решение 1:
Воспользуемся второй формулой (по длине диагонали): S = 42/2 = 8 см2.
Решение 2:
Мы можем выразить длину стороны через диагональ: a = 4/√2. И тогда, используя первую формулу, S = (4/√2)2 = 8 см2.
Кроме стандартного произведения сторон в геометрии есть еще как минимум пять методов, о которых я хочу сейчас рассказать. Итак, поехали!
Формула 1. Площади квадрата через его диагональ
Выводится элементарно через один из прямоугольных треугольников.
Формула 2. Через периметр
Получается подстановкой в стандартную формулу площади значения а = p/4.
Формула 3. Через отрезок из вершины квадрата к середине противоположной стороны
Аналогично всё выводится из прямоугольного треугольника ABE.
Формула 4. Через радиус вписанной окружности
Очевидно, что радиус вписанной окружности равен половине стороны квадрата, исходя из чего, и выводится формула.
Формула 5. Через радиус описанной окружности
Вот такая тривиальная геометрия в это солнечное субботнее утро. Спасибо за внимание, уважаемые Читатели!
Читайте также:
Квадрат | |
---|---|
Квадрат со стороной и диагональю |
|
Рёбра | 4 |
Символ Шлефли | {4} |
Вид симметрии | Диэдрическая группа (D4) |
Площадь | a2 |
Внутренний угол | 90° |
Свойства | |
Выпуклый многоугольник, Изогональная фигура, изотоксальная фигура | |
Медиафайлы на Викискладе |
Квадра́т (от лат. quadratus, четырёхугольный[1]) — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой [2].
Варианты определения[править | править код]
Квадрат может быть однозначно охарактеризован разными способами[3][4].
- Четырёхугольник, диагонали которого равны и взаимно перпендикулярны, причём точка пересечения делит их пополам.
- Четырёхугольник, являющийся одновременно прямоугольником и ромбом.
- Прямоугольник, у которого длины двух смежных сторон равны.
- Прямоугольник, у которого диагонали пересекаются под прямым углом.
- Ромб, у которого диагонали равны.
- Ромб, у которого два соседних угла равны.
- Ромб, один из углов которого — прямой (прочие углы, как легко доказать, тогда также прямые).
- Параллелограмм, у которого длины двух смежных сторон равны, а угол между ними — прямой.
- Параллелограмм, у которого диагонали равны, а угол между ними — прямой.
- Дельтоид, все углы которого прямые.
Свойства[править | править код]
Основной источник: [4]
Далее в этом разделе обозначает длину стороны квадрата, — длину диагонали, — радиус описанной окружности, — радиус вписанной окружности.
Стороны и диагонали[править | править код]
Диагонали квадрата равны, взаимно перпендикулярны, делятся точкой пересечения пополам и сами делят углы квадрата пополам (другими словами, являются биссектрисами внутренних углов квадрата). Длина каждой диагонали
Периметр квадрата равен:
- .
Вписанная и описанная окружности[править | править код]
Вписанная и описанная окружности для квадрата
Центр описанной и вписанной окружностей квадрата совпадает с точкой пересечения его диагоналей.
Радиус вписанной окружности квадрата равен половине стороны квадрата:
Радиус описанной окружности квадрата равен половине диагонали квадрата:
Из этих формул следует, что площадь описанной окружности вдвое больше площади вписанной.
Площадь[править | править код]
-
-
Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади
Площадь квадрата равна
- .
Из формулы связывающей сторону квадрата с его площадью, видно, почему возведение числа во вторую степень традиционно называется «возведением в квадрат», а результаты такого возведения называются «квадратными числами» или просто квадратами. Аналогично корень 2-й степени называется квадратным корнем.
Квадрат имеет два замечательных свойства[5].
- Из всех четырёхугольников с заданным периметром квадрат имеет наибольшую площадь.
- Из всех четырёхугольников с заданной площадью квадрат имеет наименьший периметр.
К уравнению квадрата; здесь
Уравнение квадрата[править | править код]
В прямоугольной системе координат уравнение квадрата с центром в точке и диагоналями, параллельными осям координат (см. рисунок), может быть записано в виде[6]:
где — радиус описанной окружности, равный половине длины диагонали квадрата. Сторона квадрата тогда равна его диагональ равна а площадь квадрата равна
Уравнение квадрата с центром в начале координат и сторонами, параллельными осям координат (см. рисунок), может быть представлено в одной из следующих форм:
- (легко получается применением поворота на 45° к предыдущему уравнению)
- (в полярных координатах[7])
Математические проблемы[править | править код]
С квадратами связаны ряд проблем, часть из которых до сих пор не имеет решения.
- Квадратура круга — древняя проблема построения циркулем и линейкой квадрата, равновеликого по площади заданному кругу. В 1882 году Фердинанд Линдеман доказал, что это невозможно.
Пример квадрирования квадрата
- Квадрирование квадрата — задача о разбиении квадрата на конечное число меньших квадратов, без «дырок», причём длины сторон квадратов должны отличаться друг от друга (в идеале должны быть все различны). Найден ряд решений этой задачи.
- Долгое время математики пытались доказать, что непрерывное отображение отрезка прямой в квадрат невозможно, пока Джузеппе Пеано не построил свой контрпример.
- Гипотеза Тёплица: на всякой замкнутой плоской жордановой кривой можно отыскать четыре точки, образующие вершины квадрата. Не доказана и не опровергнута.
- Разбиение квадрата сеткой одинаковых более мелких квадратов также приводит к множеству проблем, используемых, в частности, в теории латинских и греко-латинских квадратов, магических квадратов, в игре судоку.
Симметрия[править | править код]
Квадрат обладает наибольшей осевой симметрией среди всех четырёхугольников. Он имеет:
- одну ось симметрии четвёртого порядка — ось, перпендикулярную плоскости квадрата и проходящую через его центр;
- четыре оси симметрии второго порядка (то есть относительно них квадрат отражается сам в себя), из которых две проходят вдоль диагоналей квадрата, а другие две — параллельно сторонам.
Применение[править | править код]
В математике[править | править код]
Единичный квадрат используется как эталон единицы измерения площади, а также в определении площади произвольных плоских фигур. Фигуры, у которых можно определить площадь, называются квадрируемыми.
Теорема Пифагора первоначально формулировалась геометрически: площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Квадратами являются грани куба — одного из пяти правильных многогранников.
В математической физике символ квадрата может означать «оператор Д’Аламбера» (даламбериан) — дифференциальный оператор второго порядка:
Из теоремы Бойяи — Гервина следует, что любой многоугольник равносоставлен квадрату, то есть его можно разрезать на конечное число частей, из которых составляется квадрат (и обратно)[8].
Графы:
K4 полный граф часто изображается как квадрат с шестью рёбрами.
Орнаменты и паркеты[править | править код]
- Мозаики, включающие квадраты
-
-
-
Мозаики, орнаменты и паркеты, содержащие квадраты, широко распространены.
Другие применения[править | править код]
Шахматная доска имеет форму квадрата и поделена на 64 квадрата двух цветов. Квадратная доска для международных шашек поделена на 100 квадратов двух цветов. Квадратную форму имеет боксёрский ринг, площадка для игры в квадрат.
Квадратный флаг Лима поделён на два чёрных и два жёлтых квадрата, будучи поднятым на корабле в гавани, означает, что корабль находится на карантине.
Графика[править | править код]
Символы со сходным начертанием: ロ · ⼝ · ⼞
Ряд символов имеют форму квадрата.
- Символы Юникода U+25A0 — U+25CF
- U+20DE ◌⃞ COMBINING ENCLOSING SQUARE
- ロ (Японский иероглиф «Ро» (катакана))
- 口 (Китайский иероглиф «рот»)
- 囗 (Китайский иероглиф «ограда»)
В Latex для вставки символа квадрата служат конструкции Box
или square
.
В HTML, чтобы заключить произвольный текст в квадрат или прямоугольник, можно использовать конструкцию:
- <span style=”border-style: solid; border-width: 1.5px 1.5px 1.5px 1.5px; padding-left: 4px; padding-right: 4px;”>text</span>; результат: text.
Вариации и обобщения[править | править код]
Многомерное пространство[править | править код]
Квадрат можно рассматривать как двумерный гиперкуб.
Неевклидова геометрия[править | править код]
В неевклидовой геометрии квадрат (в более широком смысле) — многоугольник с четырьмя равными сторонами и равными углами. По величине этих углов можно судить о кривизне плоскости — в евклидовой геометрии и только в ней углы прямые, в сферической геометрии углы сферического квадрата больше прямого, в геометрии Лобачевского — меньше.
Построение квадрата с использованием циркуля и линейки
Складывание квадрата из произвольного куска бумаги
См. также[править | править код]
- Алгоритм «движущиеся квадраты»
- Квадрат Полибия
- Квадратная матрица
- Квадратриса
- Первая теорема Тебо
- Площадь произвольного четырёхугольника
Примечания[править | править код]
- ↑ Квадрат // Советский энциклопедический словарь. — 2-е изд.. — М.: Советская энциклопедия, 1982. — С. 561. — 1600 с.
- ↑ Квадрат // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 776. — 1184 с.
- ↑ Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
- ↑ 1 2 Каплун, 2014, с. 171—173.
- ↑ Понарин Я. П. Элементарная геометрия: В 2 т. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — С. 117, 119. — 312 с. — ISBN 5-94057-171-9.
- ↑ Уравнение квадрата в декартовой системе координат. Дата обращения: 9 ноября 2021. Архивировано 9 ноября 2021 года.
- ↑ What is the polar equation for a square, if any?
- ↑ Болтянский В. Г. Третья проблема Гильберта. — М.: Наука, 1977. — 208 с. Архивировано 28 июня 2021 года.
Литература[править | править код]
- Каплун А. И. Математика, Учебно-практический справочник. — Ростов н/Д.: ООО “Феникс”, 2014. — 240 с. — ISBN 978-5-222-20926-3.
Ссылки[править | править код]
- Квадрат, геометрическая фигура // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.