Загрузить PDF
Загрузить PDF
Площадь поверхности – это суммарная площадь всех поверхностей, которые составляют объемную фигуру. Площадь поверхности является числовой характеристикой поверхности.[1]
Вычислить площадь поверхности объемной (трехмерной) фигуры довольно просто, если знать соответствующую формулу. Существует определенная формула для каждой фигуры, поэтому сначала нужно определить, какая фигура дана. Чтобы быстро вычислять площадь поверхности, запомните соответствующие формулы для разных фигур. В данной статье рассматриваются наиболее распространенные фигуры.
-
1
Запишите формулу для вычисления площади поверхности куба. У куба шесть равных квадратных граней. Так как стороны квадрата равны, площадь квадрата равна a2, где а – сторона. Так как у куба шесть равных квадратных граней, чтобы найти площадь поверхности, умножьте площадь одной грани (квадрата) на 6. Формула для вычисления площади поверхности (SA) куба: SA = 6а2, где а – ребро куба (сторона квадрата).[2]
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте ребро куба. Ребра куба равны, поэтому можно измерить только одно (любое) ребро. Ребро измерьте с помощью линейки (или рулетки). Обратите внимание на используемые единицы измерения.
- Запишите значение, обозначив его через а.
- Например: а = 2 см
-
3
Значение а возведите в квадрат. То есть возведите в квадрат длину ребра куба. Для этого умножьте значение на себя. Если вы только приступили к изучению формул с квадратами, запишите формулу так: SA = 6*а*а.
- Сейчас вы вычислили значение площади одной из граней куба.
- Например: а = 2 см
- a2 = 2 х 2 = 4 см2
-
4
Вычисленное значение умножьте на шесть. Помните, что у куба шесть равных граней. Вычислив площадь одной из граней, умножьте полученное значение на 6, чтобы включить все грани куба.
- Это последний шаг в процессе вычисления площади поверхности куба.
- Например: а 2 = 4 см2
- SA = 6 х а2 = 6 х 4 = 24 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности прямоугольной призмы. У прямоугольной призмы шесть граней, причем равными являются только противоположные грани.[3]
Поэтому формула для вычисления площади поверхности прямоугольной призмы включает значения трех разных ребер: SA = 2ab + 2bc + 2ac.- Здесь а – ширина, b – высота, с – длина призмы.
- Если проанализировать формулу, можно понять, что она суммирует площади всех граней.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Найдите значения высоты, ширины и длины призмы. Три ребра не являются равными, поэтому нужно выполнить три измерения. Измерьте соответствующие ребра с помощью линейки (или рулетки). Ребра измеряйте в одной единице измерения.
- Измерьте длину грани, которая лежит в основании призмы; длину обозначьте через с.
- Например: с = 5 см
- Измерьте ширину грани, которая лежит в основании призмы; ширину обозначьте через а.
- Например: а = 2 см
- Измерьте высоту призмы; высоту обозначьте через b.
- Например: b = 3 см
-
3
Вычислите площадь одной грани призмы, а затем полученное значение умножьте на два. Помните, что у прямоугольной призмы шесть граней, причем равными являются только противоположные грани. Умножьте длину на высоту (с на а), чтобы найти площадь одной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[4]
- Например: 2 x (a x c) = 2 x (2 x 5) = 2 x 10 = 20 см2
-
4
Вычислите площадь другой грани призмы, а затем полученное значение умножьте на два. Умножьте ширину на высоту (а на b), чтобы найти площадь другой грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[5]
- Например: 2 x (a x b) = 2 x (2 x 3) = 2 x 6 = 12 см2
-
5
Вычислите площадь фронтальной грани, а затем полученное значение умножьте на два. Умножьте длину на ширину (с на b), чтобы найти площадь фронтальной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[6]
- Например: 2 x (b x c) = 2 x (3 x 5) = 2 x 15 = 30 см2
-
6
Сложите три значения. Так как площадь поверхности – это суммарная площадь всех граней фигуры, сложите найденные значения площадей отдельных граней. Вы получите площадь поверхности прямоугольной призмы.[7]
- Например: SA = 2ab + 2bc + 2ac = 12 + 30 + 20 = 62 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности треугольной призмы. Треугольная призма имеет две равные треугольные грани и три прямоугольные грани. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти площади всех граней и сложить их. Формула для вычисления площади поверхности треугольной призмы: SA = 2S + РH, где S – площадь треугольной грани, Р – периметр треугольной грани, H – высота призмы.[8]
- Здесь S – это площадь треугольника (треугольной грани), которая вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание).
- Р – периметр треугольника (треугольной грани), который равен сумме всех сторон треугольника.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Вычислите площадь треугольной грани и умножьте ее на два. Площадь треугольника вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание). Так как треугольная призма имеет две равные треугольные грани, эту формулу можно умножить на два. Поэтому, чтобы вычислить площади двух треугольных граней, просто перемножьте основание и высоту треугольника (b*h).[9]
- Основание треугольника b – это его нижняя сторона.
- Например: b = 4 см
- Высота треугольника h – это перпендикуляр, опущенный на основание из противоположной вершины.
- Например: h = 3 см
- Площадь двух треугольных граней равна: 2(1/2)b*h = b*h = 4*3 =12 см.
-
3
Измерьте каждую сторону треугольника и высоту призмы. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти значение каждой стороны треугольника и высоты призмы. Высота призмы – это расстояние между треугольными гранями.
- Например: Н = 5 см
- Стороны треугольника – это три ребра одной (любой) из треугольных граней.
- Например: а = 2 см, b = 4 см, с = 6 см
-
4
Вычислите периметр треугольника. Для этого сложите все стороны треугольника: Р = а + b + с.
- Например: P = а + b + с = 2 + 4 + 6 = 12 см
-
5
Перемножьте периметр треугольной грани и высоту призмы. Помните, что высота призмы – это расстояние между треугольными гранями. Таким образом, Р умножьте на Н.
- Например: Р х Н = 12 х 5 = 60 см2
-
6
Сложите полученные значения. Чтобы найти площадь поверхности треугольной призмы, сложите два значения, вычисленные ранее.[10]
- Например: 2S + PH = 12 + 60 = 72 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности шара. Шар имеет изогнутую поверхность, поэтому формула включает математическую константу π (число Пи). Чтобы вычислить площадь поверхности шара, воспользуйтесь формулой SA = 4π*r2.[11]
- Здесь r – радиус шара, π ≈ 3,14.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте радиус шара. Радиус шара равен половине его диаметра, то есть половине отрезка, который проходит через центр шара и соединяет две точки, лежащие на его поверхности.[12]
- Например: r = 3 см
-
3
Радиус шара возведите в квадрат. Для этого умножьте значение радиуса (r) на себя. Помните, что формулу можно записать так: SA = 4π*r*r.[13]
- Например: r2 = r x r = 3 x 3 = 9 см2
-
4
Перемножьте квадрат радиуса и приблизительное значение числа Пи. Число Пи является математической константой, которая равна отношению длины окружности к ее диаметру.[14]
Это иррациональное число со множеством цифр после десятичной запятой. Зачастую число Пи округляется до 3,14. Квадрат радиуса умножьте на π (на 3,14), чтобы вычислить площадь круглого сечения шара. [15]
- Например: π*r2 = 3,14 x 9 = 28,26 см2
-
5
Полученное значение умножьте на четыре. Чтобы найти значение площади поверхности сферы, площадь круглого сечения умножьте на 4.[16]
- Например: 4π*r2 = 4 x 28,26 = 113,04 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности цилиндра. Цилиндрическая поверхность этой фигуры ограничена двумя круглыми параллельными плоскостями, которые называются основаниями. Формула для вычисления площади поверхности цилиндра: SA = 2π*r2 + 2π*rh, где r – радиус основания, h – высота цилиндра, π ≈ 3,14.[17]
- 2π*г2 – это площадь двух оснований, а 2πrh – это площадь цилиндрической поверхности.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте радиус основания и высоту цилиндра. Радиус окружности равен половине ее диаметра, то есть половине отрезка, который проходит через центр окружности и соединяет две точки, лежащие на ней.[18]
Высота цилиндра – это расстояние между его основаниями. Измерьте и запишите радиус основания и высоту цилиндра.- Например: r = 3 см
- Например: h = 5 см
-
3
Вычислите площадь основания и умножьте ее на два. Чтобы найти площадь основания, воспользуйтесь формулой для вычисления площади круга: S = π*г2. Сначала радиус возведите в квадрат, а затем полученное значение умножьте на число Пи. Результат умножьте на два, чтобы учесть второе равное основание.[19]
- Например: площадь основания = π*r2 = 3,14 х 3 х 3 = 28,26 см2
- Например: 2π*r2 = 2 x 28,26 = 56,52 см2
-
4
Вычислите площадь цилиндрической поверхности. Для этого воспользуйтесь формулой S = 2π*rh, по которой можно найти площадь поверхности трубы. Здесь труба – это поверхность между двумя основаниями цилиндра. Перемножьте двойку, число Пи, радиус и высоту.[20]
- Например: 2π*rh = 2 x 3,14 x 3 x 5 = 94,2 см2
-
5
Сложите полученные значения. Сложите площади двух оснований и площадь цилиндрической поверхности (между двумя основаниями), чтобы вычислить общую площадь поверхности цилиндра. Обратите внимание, что при сложении этих величин получится исходная формула: SA = 2π*r2 + 2π*rh.[21]
- Например: 2π*r2 + 2π*rh = 56,52 + 94,2 = 150,72 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности квадратной пирамиды. Квадратная пирамида имеет одно квадратное основание и четыре треугольные грани. Помните, что площадь квадрата равна квадрату его стороны. Площадь треугольника равна 1/2sl (половина основания треугольника, умноженная на его высоту). Так как пирамида имеет четыре треугольные грани, нужно площадь треугольника умножить на 4. Таким образом, площадь поверхности квадратной пирамиды вычисляется по формуле: SA = s2 + 2sl.[22]
- В этой формуле s – ребро квадратной грани (сторона квадрата), l – апофема пирамиды.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Найдите значения апофемы и ребра квадратной грани. Апофема (l) – это высота треугольной грани, то есть расстояние между основанием треугольника и его вершиной. Ребро квадратной грани (s) – это сторона квадрата. Помните, что у квадрата все стороны равны, поэтому измерьте любое ребро квадратной грани, а также измерьте апофему пирамиды.[23]
- Например: l = 3 см
- Например: s = 1 см
-
3
Найдите площадь квадратной грани. Для этого возведите в квадрат ребро этой грани (сторону квадрата), то есть умножьте значение s на себя.[24]
- Например: s2 = s х s = 1 х 1 = 1 см2
-
4
Вычислите общую площадь четырех треугольных граней. Вторая часть формулы включает суммарную площадь четырех треугольных граней. Согласно формуле 2ls, перемножьте 2, s и l. Так вы найдете суммарную площадь 4-х треугольных граней.[25]
- Например: 2 х s х l = 2 х 1 х 3 = 6 см2
-
5
Сложите полученные значения. Сложите площадь квадратной грани и общую площадь четырех треугольных граней, чтобы вычислить площадь поверхности пирамиды.[26]
- Например: s2 + 2sl = 1 + 6 = 7 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности конуса. Конус имеет круглое основание и закругленную боковую поверхность, которая сужается в вершине этой фигуры. Чтобы найти площадь поверхности конуса, нужно вычислить значения площади круглого основания и площади боковой поверхности, а затем сложить эти значения. Формула для вычисления площади поверхности конуса: SA = π*r2 + π*rl, где r – радиус круглого основания, l – образующая (расстояние между вершиной конуса и точкой, которая лежит на окружности круга), π ≈ 3,14.[27]
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте радиус основания и высоту конуса. Радиус – это отрезок, соединяющий центр круга и точку, которая лежит на его окружности. Высота – это расстояние между центром круга и высотой конуса.[28]
- Например: r = 2 см
- Например: h = 4 см
-
3
Найдите значение образующей конуса (l). Образующая конуса является гипотенузой треугольника, поэтому воспользуйтесь теоремой Пифагора, чтобы вычислить образующую: l = √(r2 + h2), где r – радиус круглого основания, h – высота конуса.[29]
- Например: l = √(r2 + h2) = √(2 х 2 + 4 х 4) = √(4 + 16) = √(20) = 4,47 см
-
4
Вычислите площадь круглого основания. Площадь круга вычисляется по формуле S = π*r2. Измерив радиус, возведите его в квадрат (умножьте r на себя), а затем квадрат радиуса умножьте на число Пи.[30]
- Например: π*r2 = 3,14 x 2 x 2 = 12,56 см2
-
5
Вычислите площадь боковой поверхности конуса. Сделайте это по формуле S = π*rl, где r – радиус круга, l – образующая, которая найдена ранее.[31]
- Например: π*rl = 3,14 x 2 x 4,47 = 28,07 см
-
6
Сложите полученные значения, чтобы найти площадь поверхности конуса. Площадь поверхности конуса равна сумме площади круглого основания и площади боковой поверхности конуса.[32]
- Например: π*r2 + π*rl = 12,56 + 28,07 = 40,63 см2
Реклама
Что вам понадобится
- Линейка
- Ручка или карандаш
- Бумага
Об этой статье
Эту страницу просматривали 69 877 раз.
Была ли эта статья полезной?
Площадь поверхности
разделов
от теории до практики
примеров
Примеры решения задач
видео
Примеры решения задач
-
Первая квадратичная форма поверхности.
Начать изучение
-
Площадь простой поверхности.
Начать изучение
-
Площадь почти простой поверхности.
Начать изучение
Первая квадратичная форма поверхности.
Пусть простая поверхность задана векторным уравнением
$$
boldsymbol{r} = boldsymbol{r}(u, v), (u, v) in overline{Omega},label{ref1}
$$
где (Omega) плоская область.
Найдем скалярный квадрат вектора
$$
dboldsymbol{r} = boldsymbol{r}_{u}(u, v) du + boldsymbol{r}_{v}(u, v) dv.nonumber
$$
Полагая
$$
E = (boldsymbol{r}_{u}, boldsymbol{r}_{u}),quad F = (boldsymbol{r}_{u}, boldsymbol{r}_{v}),quad G = (boldsymbol{r}_{v}, boldsymbol{r}_{v}),label{ref2}
$$
получаем, что справедлива формула
$$
|dboldsymbol{r}|^{2} = (dboldsymbol{r}, dboldsymbol{r}) = E(u, v) du^{2} + 2F(u, v) du dv + G(u, v) dv^{2}.label{ref3}
$$
Выражение, стоящее в правой части равенства eqref{ref3}, называется первой квадратичной формой поверхности, числа (E), (F) и (G) называются коэффициентами первой квадратичной формы поверхности.
Лемма 1.
Первая квадратичная форма простой поверхности положительно определена, то есть (|dboldsymbol{r}|^{2} > 0), если ((du)^{2} + (dv)^{2} > 0).
Доказательство.
(circ) Так как
$$
(boldsymbol{a}, boldsymbol{b}) = |boldsymbol{a}| cdot |boldsymbol{b}| cos widehat{boldsymbol{ab}},quad |[boldsymbol{a}, boldsymbol{b}]| = |boldsymbol{a}| cdot |boldsymbol{b}| cdot |sin widehat{boldsymbol{ab}}|,nonumber
$$
то справедливо тождество
$$
|[boldsymbol{a}, boldsymbol{b}]|^{2} = |boldsymbol{a}|^{2} cdot |boldsymbol{b}|^{2}-|(boldsymbol{a}, boldsymbol{b})|^{2},nonumber
$$
Подставляя в это тождество (boldsymbol{a} = boldsymbol{r}_{u}), (boldsymbol{b} = boldsymbol{r}_{v}), и пользуясь тем, что в любой точке простой поверхности векторы (boldsymbol{r}_{u}) и (boldsymbol{r}_{v}) неколлинеарны, получаем
$$
|[boldsymbol{r}_{u}, boldsymbol{r}_{v}]|^{2} = EG-F^{2} > 0.nonumber
$$
Условия (E > 0), (G > 0), (EG-F^{2} > 0) достаточны для положительной определенности первой квадратичной формы поверхности. (bullet)
Говорят, что первая квадратичная форма задает на поверхности метрику. Зная коэффициенты первой квадратичной формы поверхности, можно вычислить длины кривых, лежащих на поверхности, определить площадь поверхности. Например, дифференциалы длин дуг координатных кривых, проходящих через точку (A(u, v)) поверхности, равны следующим величинам:
$$
ds_{1} = |boldsymbol{r}_{u}du| = sqrt{E}|du|,quad ds_{2} = |boldsymbol{r}_{v}dv| = sqrt{G}|dv|.label{ref4}
$$
Площадь простой поверхности.
Пусть простая поверхность задана уравнением eqref{ref1}. Рассмотрим на поверхности криволинейный параллелограмм, ограниченный координатными линиями (u), (u + Delta u), (v), (v + Delta v). Векторы (boldsymbol{r}_{u}(u, v)Delta u) и (boldsymbol{r}_{v}(u, v)Delta v) будут касательными к координатным линиям, проходящим через точку (A(u, v)) поверхности (рис. 53.1), а длины этих векторов в силу формул eqref{ref4} будут отличаться от длин сторон криволинейного параллелограмма на (o(Delta u)) и (o(Delta v)) соответственно при (Delta u rightarrow 0), (Delta v rightarrow 0). Поэтому естественно считать, что площадь криволинейного параллелограмма приближенно равна площади (dS) параллелограмма, построенного на векторах (boldsymbol{r}_{u} Delta u) и (boldsymbol{r}_{v} Delta v). Таким образом, при (Delta u > 0), (Delta v > 0).
$$
dS = |[boldsymbol{r}_{u}, boldsymbol{r}_{v}] Delta u Delta v| = sqrt{EG-F^{2}} du dv.label{ref5}
$$
Выражение eqref{ref5} называется элементом площади поверхности.
Определим формально площадь простой поверхности (Sigma) как следующий двойной интеграл (область (Omega) предполагается измеримой по Жордану):
$$
S(Sigma) = iintlimits_{Omega} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| du dv = iintlimits_{Omega} sqrt{EG-F^{2}} du dv.label{ref6}
$$
Это определение оправдано приведенными выше эвристическими рассуждениями, а также перечисленными ниже свойствами площади поверхности.
Свойство 1.
Число (S(Sigma)) не зависит от способа параметризации поверхности.
Доказательство.
(circ) Пусть переход от параметрического уравнения eqref{ref1} к параметрическому уравнению
$$
boldsymbol{rho} = boldsymbol{rho}(u’, v’), (u’, v’) in Omega’,nonumber
$$
совершается при помощи взаимно однозначного и непрерывно дифференцируемого отображения области (Omega’) на область (Omega) с якобианом, не равным нулю. Тогда, воспользовавшись формулой отсюда и формулой замены переменных в двойном интеграле, получаем
$$
S(Sigma) = iintlimits_{Omega’} |[boldsymbol{rho}_{u’}, boldsymbol{rho}_{v’}]| du’ dv’ = iintlimits_{Omega’} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| cdot left|frac{partial(u, v)}{partial(u’, v’)}right| du’ dv’ = iintlimits_{Omega} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| du dv. bulletnonumber
$$
Свойство 2.
Если поверхность (Sigma) есть плоская измеримая по Жордану область (Omega), заданная уравнениями
$$
x = u, y = v, z = 0, (u, v) in Omega,nonumber
$$
то ее площадь, вычисленная при помощи формулы eqref{ref6}, совпадает с плоской мерой Жордана области (Omega).
Доказательство.
(circ) Так как
$$
boldsymbol{r} = (u, v, 0), boldsymbol{r}_{u} = (1, 0, 0), boldsymbol{r}_{v} = (0, 1, 0), E = G = 1,nonumber F = 0,
$$
то
$$
S(Sigma) = iintlimits_{Omega} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| du dv = iintlimits_{Omega} du dv = m(Omega). bulletnonumber
$$
Свойство 3.
Выражение (S(Sigma)) аддитивно зависит от поверхности.
Доказательство.
(circ) Если область (Omega) гладкой перегородкой разбита на области (Omega_{1}) и (Omega_{2}), то и поверхность (Sigma) разобьется на простые поверхности (Sigma_{1}) и (Sigma_{2}). Из аддитивности двойного интеграла по области интегрирования следует, что
$$
S(Sigma) = S(Sigma_{1}) + S(Sigma_{2}). bulletnonumber
$$
Свойство 4.
Для поверхности, являющейся графиком непрерывно дифференцируемой функции на замыкании измеримой по Жордану области (Omega), формула eqref{ref6} для площади поверхности имеет следующий вид:
$$
S(Sigma) = iintlimits_{Omega} sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy.label{ref7}
$$
Доказательство.
(circ) Действительно, так как
$$
boldsymbol{r} = (x, y, f(x, y)), boldsymbol{r}_{x} = (1, 0, f_{x}(x, y)), boldsymbol{r}_{y} = (0, 1, f_{y}(x, y)),nonumber
$$
то
$$
E = boldsymbol{r}_{x}^{2} = 1 + f_{x}^{2}, F = (boldsymbol{r}_{x}, boldsymbol{r}_{y}) = f_{x}f_{y}, G = boldsymbol{r}_{y}^{2} = 1 + f_{y}^{2},nonumber
$$
$$
EG-F^{2} = (1 + f_{x}^{2})(1 + f_{y}^{2})-f_{x}^{2}f_{y}^{2} = 1 + f_{x}^{2} + f_{y}^{2}. bulletnonumber
$$
Пример 1.
Найти площадь части сферы (x^{2} + y^{2} + z^{2} = a^{2}), вырезаемой из нее цилиндром (x^{2}-ax + y^{2} = 0) (см. рис. 48.10).
Решение.
(triangle) В силу симметрии достаточно ограничиться рассмотрением той части сферы, которая лежит в первом октанте. Цилиндр будет вырезать из нее множество точек, определяемое следующими неравенствами и равенствами:
$$
x^{2} + y^{2} + z^{2} = a^{2}, x^{2}-ax + y^{2} leq 0, x geq 0, y geq 0, z geq 0.label{ref8}
$$
Если перейти к сферическим координатам, полагая
$$
x = a cos psi cos varphi, y = a cos psi sin varphi, z =a sin psi,label{ref9}
$$
то система равенств и неравенств eqref{ref8} эквивалентна равенствам eqref{ref9} и неравенствам
$$
0 leq varphi leq psi leq frac{pi}{2},label{ref10}
$$
определяющим в плоскости параметров (varphi, psi) треугольную область (Omega) (рис. 53.2). Интересующая нас простая поверхность есть образ треугольной области (Omega) при отображении eqref{ref9}.
Вычислим коэффициенты первой квадратичной формы. Получаем
$$
boldsymbol{r} = (a cos psi cos varphi, a cos psi sin varphi, a sin psi),nonumber
$$
$$
boldsymbol{r}_{psi} = (-a sin psi cos varphi, -a sin psi sin varphi, a cos psi),nonumber
$$
$$
boldsymbol{r}_{varphi} = (-a cos psi sin varphi, a cos psi cos varphi, 0),nonumber
$$
$$
E = boldsymbol{r}_{psi}^{2} = a^{2}, F = (boldsymbol{r}_{varphi}, boldsymbol{r}_{psi}) = 0, G = boldsymbol{r}_{varphi}^{2} = a^{2} cos^{2} psi.nonumber
$$
Площадь части сферы (x^{2} + y^{2} + z^{2} = a^{2}), вырезаемой из нее цилиндром (x^{2}-ax + y^{2} = 0), равна
$$
S(Sigma) = 4 iintlimits_{Omega} sqrt{EG-F^{2}} dvarphi dpsi = 4 intlimits_{0}^{pi/2} dvarphi intlimits_{varphi}^{pi/2} a^{2} cos psi dpsi = 4a^{2} left(frac{pi}{2}-1right). blacktrianglenonumber
$$
Площадь почти простой поверхности.
Почти простая поверхность задается уравнением (boldsymbol{r} = boldsymbol{r}(u, v)), ((u, v) in overline{Omega}), где (Omega) — плоская область. По определению найдется последовательность ограниченных областей ({Omega_{n}}) такая, что (overline{Omega}_{n} subset Omega_{n + 1}), (displaystyleOmega = bigcup_{n=1}^{infty}Omega_{n}) а поверхности (Sigma_{n}), определяемые уравнениями (boldsymbol{r} = boldsymbol{r}(u, v)), ((u, v) in overline{Omega}), являются простыми. Предположим дополнительно, что области (Omega_{n}) измеримы по Жордану. Тогда под площадью (S(Sigma)) почти простой поверхности будем понимать (displaystylelim_{n rightarrow infty} S(Sigma_{n})).
Так как числовая последовательность (S(Sigma_{n})) монотонно возрастает, то она всегда имеет конечный или бесконечный предел
$$
S(Sigma) = lim_{n rightarrow infty} S(Sigma_{n}) = lim_{n rightarrow infty} iintlimits_{Omega_{n}} sqrt{EG-F^{2}} du dv = iintlimits_{Omega} sqrt{EG-F^{2}} du dv.label{ref11}
$$
Интеграл в формуле eqref{ref11} нужно понимать как несобственный. Если область (Omega) измерима по Жордану, а функция (sqrt{EG-F^{2}}) ограничена на (Omega), то интеграл в формуле eqref{ref11} будет двойным интегралом Римана.
Пример 2.
Найти площадь части боковой поверхности конуса (z^{2} = x^{2} + y^{2}), (z geq 0), вырезаемой из нее цилиндром (x^{2}-ax + y^{2} = 0).
Решение.
(triangle) Обозначим часть боковой поверхности конуса, вырезаемую из нее цилиндром, через (Sigma). Если перейти к цилиндрическим координатам, то (Sigma) будет почти простой поверхностью, определяемой параметрическими уравнениями
$$
x = r cos varphi, y = r sin varphi, z = r, (r, varphi) in Omega,nonumber
$$
$$
Omega = left{(r, varphi): r leq a cos varphi, -frac{pi}{2} leq varphi leq frac{pi}{2}right}.nonumber
$$
Найдем коэффициенты первой квадратичной формы этой поверхности:
$$
boldsymbol{r} = (r cos varphi, r sin varphi, r), boldsymbol{r}_{varphi} = (-r sin varphi, r cos varphi, 0),nonumber
$$
$$
boldsymbol{r}_{r} = (cos varphi, sin varphi, 1), E = boldsymbol{r}_{varphi}^{2} = r^{2}, F = 0, G = boldsymbol{r}_{r}^{2} = 2,nonumber
$$
$$
sqrt{EG-F^{2}} dr dvarphi = rsqrt{2} dr dvarphi.nonumber
$$
Применяя формулу eqref{ref11}, получаем
$$
S(Sigma) = iintlimits_{Omega} sqrt{2}r dr dvarphi = sqrt{2} intlimits_{-pi/2}^{pi/2} dvarphi intlimits_{0}^{a cos varphi} r dr = frac{pi a^{2} sqrt{2}}{4}. blacktrianglenonumber
$$
Если поверхность (Sigma) не является простой или почти простой, но может быть разрезана на конечное число простых кусков, то ее площадью называют сумму площадей всех простых кусков.
Что такое квадрат и понятие его площади
Квадрат — простейшая плоская геометрическая фигура. Является одновременно правильным четырёхугольником и прямоугольником, все стороны которого равны.
Состоит соответственно из четырёх равных сторон, четырёх вершин ABCD и прямых углов 90°.
Под площадью квадрата подразумевается пространство, ограниченное его сторонами (та часть плоскости, что внутри). Способов расчёта существует немного, а формулы для вычисления площади весьма простые.
Как найти площадь квадрата через сторону
Данный способ и калькулятор позволит найти площадь квадрата через значение длины его сторон — введите его в соответствующее поле. В зелёном поле автоматически выведется результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через периметр
Данный способ и калькулятор позволит найти площадь квадрата через значение его периметра — введите его в соответствующее поле. В зелёном поле выведется результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через диагональ
Данный способ и калькулятор позволит найти площадь квадрата через значение длины его диагонали — введите его в соответствующее поле. В зелёном поле получите результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через радиус вписанной окружности
Данный способ и калькулятор позволит найти площадь квадрата через значение радиуса вписанной окружности — введите его в соответствующее поле. В зелёном поле выведется результат.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Как найти площадь квадрата через радиус описанной окружности
Данный способ и калькулятор позволит найти площадь квадрата через значение радиуса описанной окружности — введите его в соответствующее поле. В зелёном поле выведется результат автоматически.
Важно: если ваши единицы измерения — миллиметры, тогда площадь будет выражаться в мм²; если сантиметры — тогда в см² и так далее …
Ваша оценка?
[Оценок: 5 / Средняя: 4.6]
Все формулы для площадей полной и боковой поверхности тел
1. Площадь полной поверхности куба
a – сторона куба
Формула площади поверхности куба,(S):
2. Найти площадь поверхности прямоугольного параллелепипеда
a, b, c – стороны параллелепипеда
Формула площади поверхности параллелепипеда, (S):
3. Найти площадь поверхности шара, сферы
R – радиус сферы
π ≈ 3.14
Формула площади поверхности шара (S):
4. Найти площадь боковой и полной поверхности цилиндра
r – радиус основания
h – высота цилиндра
π ≈ 3.14
Формула площади боковой поверхности цилиндра, (Sбок):
Формула площади всей поверхности цилиндра, (S):
5. Площадь поверхности прямого, кругового конуса
R – радиус основания конуса
H – высота
L – образующая конуса
π ≈ 3.14
Формула площади боковой поверхности конуса, через радиус (R) и образующую (L), (Sбок):
Формула площади боковой поверхности конуса, через радиус (R) и высоту (H), (Sбок):
Формула площади полной поверхности конуса, через радиус (R) и образующую (L), (S):
Формула площади полной поверхности конуса, через радиус (R) и высоту (H), (S):
6. Формулы площади поверхности усеченного конуса
R – радиус нижнего основания
r – радиус верхнего основания
L – образующая усеченного конуса
π ≈ 3.14
Формула площади боковой поверхности усеченного конуса, (Sбок):
Формула площади полной поверхности усеченного конуса, (S):
7. Площадь поверхности правильной пирамиды через апофему
L – апофема (опущенный перпендикуляр OC из вершины С, на ребро основания АВ)
P – периметр основания
Sосн – площадь основания
Формула площади боковой поверхности правильной пирамиды (Sбок):
Формула площади полной поверхности правильной пирамиды (S):
8. Площадь боковой поверхности правильной усеченной пирамиды
m – апофема пирамиды, отрезок OK
P – периметр нижнего основания, ABCDE
p – периметр верхнего основания, abcde
Формула площади боковой поверхности правильной усеченной пирамиды, (S):
9. Площадь поверхности шарового сегмента
R – радиус самого шара
h – высота сегмента
π ≈ 3.14
Формула площади поверхности шарового сегмента, (S):
10. Площадь поверхности шарового слоя
h – высота шарового слоя, отрезок KN
R – радиус самого шара
O – центр шара
π ≈ 3.14
Формула площади боковой поверхности шарового слоя, (S):
11. Площадь поверхности шарового сектора
R – радиус шара
r – радиус основания конуса = радиус сегмента
π ≈ 3.14
Формула площади поверхности шарового сектора, (S):
{S = a ^2}
На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.
Квадрат – четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.
Содержание:
- калькулятор площади квадрата
- формула площади квадрата через сторону
- формула площади квадрата через диагональ
- формула площади квадрата через радиус вписанной окружности
- формула площади квадрата через радиус описанной окружности
- формула площади квадрата через периметр
- примеры задач
Формула площади квадрата через сторону
S = a ^2
a – сторона квадрата
Формула площади квадрата через диагональ
S=dfrac{d^2}{2}
d – диагональ квадрата
Формула площади квадрата через радиус вписанной окружности
S = 4r^2
r – радиус вписанной окружности
Формула площади квадрата через радиус описанной окружности
S = 2R^2
R – радиус описанной окружности
Формула площади квадрата через периметр
S = dfrac{P^2}{16}
P – периметр квадрата
Примеры задач на нахождение площади квадрата
Задача 1
Найдите площадь квадрата если его диагональ равна 1.
Решение
Для решения задачи воспользуемся формулой.
S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2
Ответ: 0.5 см²
Проверим ответ на калькуляторе .
Задача 2
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Решение
Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.
S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2
Ответ: 13778 см²
Проверим ответ с помощью калькулятора .
Задача 3
Найдите площадь квадрата если его сторона равна 8 см.
Решение
Используем первую формулу.
S = a ^2 = 8 ^2 = 64 : см^2
Ответ: 64 см²
Проверим результат на калькуляторе .
Задача 4
Найдите площадь квадрата периметр которого равен 456 см.
Решение
Используем формулу для площади квадрата через периметр.
S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2
Ответ: 12996 см²
Проверка .
Задача 5
Найдите площадь квадрата со стороной 15 см.
Решение
Воспользуемся формулой площади квадрата через сторону.
S = a ^2 = 15 ^2 = 225 : см^2
Ответ: 225 см²
Проверка .