Как найти площадь между фигурами

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S(G)=∫abf(x)dx  для непрерывной и неотрицательной функции y=f(x) на отрезке [a;b],

S(G)=-∫abf(x)dx  для непрерывной и неположительной функции y=f(x) на отрезке [a;b].

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y=f(x) или x=g(y).

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Теорема

Пусть функции y=f1(x)  и y=f2(x) определены и непрерывны на отрезке [a;b], причем f1(x)≤f2(x) для любого значения x из [a;b]. Тогда формула для вычисления площади фигуры G, ограниченной линиями x=a, x=b, y=f1(x)  и y=f2(x) будет иметь вид S(G)=∫abf2(x)-f1(x)dx.

Похожая формула будет применима для площади фигуры, ограниченной линиями y=c, y=d, x=g1(y) и x=g2(y): S(G)=∫cd(g2(y)-g1(y)dy.

Доказательство

Разберем три случая, для которых формула будет справедлива.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G1 равна площади фигуры G2. Это значит, что

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Поэтому, S(G)=S(G2)-S(G1)=∫abf2(x)dx-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx.

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S(G)=S(G2)+S(G1)=∫abf2(x)dx+-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx

Графическая иллюстрация будет иметь вид:

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Если обе функции неположительные, получаем: S(G)=S(G2)-S(G1)=-∫abf2(x)dx–∫abf1(x)dx=∫ab(f2(x)-f1(x))dx . Графическая иллюстрация будет иметь вид:

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Перейдем к рассмотрению общего случая, когда  y=f1(x)  и y=f2(x) пересекают ось Ox.

Точки пересечения мы обозначим как  xi, i=1, 2,…, n-1. Эти точки разбивают отрезок [a; b] на n частей xi-1; xi, i=1, 2,…, n, где α=x0<x1<x2<…<xn-1<xn=b. Фигуру G можно представить объединением фигур Gi, i=1, 2,…, n. Очевидно, что на своем интервале Gi попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S(Gi)=∫xi-1xi(f2(x)-f1(x))dx, i=1, 2,…, n

Следовательно, 

S(G)=∑i=1nS(Gi)=∑i=1n∫xixif2(x)-f1(x))dx==∫x0xn(f2(x)-f(x))dx=∫abf2(x)-f1(x)dx

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Формулу S(G)=∫abf2(x)-f1(x)dx можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y=f(x) и x=g(y).

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Пример 1

Необходимо определить площадь фигуры, которая ограничена параболой y=-x2+6x-5 и прямыми линиями y=-13x-12, x=1, x=4.

Решение

Изобразим линии на графике в декартовой системе координат.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

На отрезке [1;4] график параболы y=-x2+6x-5 расположен выше прямой y=-13x-12. В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по  формуле Ньютона-Лейбница:

S(G)=∫14-x2+6x-5–13x-12dx==∫14-x2+193x-92dx=-13×3+196×2-92×14==-13·43+196·42-92·4–13·13+196·12-92·1==-643+1523-18+13-196+92=13

Ответ: S(G)=13

Рассмотрим более сложный пример.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена линиями y=x+2, y=x, x=7.

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x=7. Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y=x и полу параболы y=x+2. Для нахождения абсциссы используем равенства:

y=x+2ОДЗ: x≥-2×2=x+22×2-x-2=0D=(-1)2-4·1·(-2)=9×1=1+92=2∈ОДЗx2=1-92=-1∉ОДЗ

Получается, что абсциссой точки пересечения является x=2.

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y=x+2 , y=x пересекаются в точке (2;2), поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [2;7] график функции y=x расположен выше графика функции y=x+2 . Применим формулу для вычисления площади:

S(G)=∫27(x-x+2)dx=x22-23·(x+2)3227==722-23·(7+2)32-222-23·2+232==492-18-2+163=596

Ответ: S(G)=596

Пример 3

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y=1x и y=-x2+4x-2.

Решение

Нанесем линии на график.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1x  и -x2+4x-2. При условии, что x не равно нулю, равенство 1x=-x2+4x-2становится эквивалентным уравнению третьей степени -x3+4×2-2x-1=0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х=1: -13+4·12-2·1-1=0.

Разделив выражение -x3+4×2-2x-1 на двучлен x-1, получаем: -x3+4×2-2x-1⇔-(x-1)(x2-3x-1)=0

Оставшиеся корни мы можем найти из уравнения x2-3x-1=0:

x2-3x-1=0D=(-3)2-4·1·(-1)=13×1=3+132≈3.3 ; x2=3-132≈-0.3

Мы нашли интервал x∈1; 3+132, на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S(G)=∫13+132-x2+4x-2-1xdx=-x33+2×2-2x-ln x13+132==-3+13233+2·3+1322-2·3+132-ln3+132—133+2·12-2·1-ln 1=7+133-ln3+132

Ответ: S(G)=7+133-ln3+132

Пример 4

Необходимо вычислить площадь фигуры, которая ограничена кривыми y=x3, y=-log2x+1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y=-log2x+1 из графика y=log2x, если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у=0.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y=x3 и y=0 пересекаются в точке (0;0). Так получается потому, что х=0 является единственным действительным корнем уравнения x3=0.

x=2 является единственным корнем уравнения -log2x+1=0, поэтому графики функций y=-log2x+1  и y=0 пересекаются в точке (2;0).

x=1 является единственным корнем уравнения x3=-log2x+1. В связи с этим графики функций y=x3 и y=-log2x+1 пересекаются в точке (1;1). Последнее утверждение может быть неочевидным, но уравнение x3=-log2x+1 не может иметь более одного корня, так как функция y=x3 является строго возрастающей, а функция y=-log2x+1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x∈0; 1, а вторая ниже красной линии на отрезке x∈1;2. Это значит, что площадь будет равна S(G)=∫01x3dx+∫12(-log2x+1)dx.

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x∈0; 2, а вторая между красной и синей линиями на отрезке x∈1; 2. Это позволяет нам найти площадь следующим образом:

S(G)=∫02x3dx-∫12×3-(-log2x+1)dx

В этом случае для нахождения площади придется использовать формулу вида S(G)=∫cd(g2(y)-g1(y))dy.  Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y.

Разрешим уравнения y=x3 и -log2x+1 относительно x: 

y=x3⇒x=y3y=-log2x+1⇒log2x=1-y⇒x=21-y

Получим искомую площадь:

S(G)=∫01(21-y-y3)dy=-21-yln 2-y4401==-21-1ln 2-144–21-0ln 2-044=-1ln 2-14+2ln 2=1ln 2-14

Ответ: S(G)=1ln 2-14

Пример 5

Необходимо вычислить площадь фигуры, которая ограничена линиями y=x, y=23x-3, y=-12x+4.

Решение

Красной линией нанесем на график линию, заданную функцией y=x. Синим цветом нанесем линию y=-12x+4, черным цветом обозначим линию y=23x-3.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Отметим точки пересечения.

Найдем точки пересечения графиков функций y=x и y=-12x+4 :

x=-12x+4ОДЗ: x≥0x=-12x+42⇒x=14×2-4x+16⇔x2-20x+64=0D=(-20)2-4·1·64=144×1=20+1442=16; x2=20-1442=4Проверка:x1=16=4, -12×1+4=-12·16+4=-4⇒x1=16 не является решением уравненияx2=4=2, -12×2+4=-12·4+4=2⇒x2=4 является решением уравниния ⇒(4; 2) точка пересечения y=x и y=-12x+4

Найдем точку пересечения графиков функций y=x  и y=23x-3:

x=23x-3ОДЗ: x≥0x=23x-32⇔x=49×2-4x+9⇔4×2-45x+81=0D=(-45)2-4·4·81=729×1=45+7298=9, x245-7298=94Проверка:x1=9=3, 23×1-3=23·9-3=3⇒x1=9 является решением уравнения ⇒(9; 3) точка пересечания y=x и y=23x-3×2=94=32, 23×1-3=23·94-3=-32⇒x2=94 не является решением уравнения

Найдем точку пересечения линий y=-12x+4  и y=23x-3:

-12x+4=23x-3⇔-3x+24=4x-18⇔7x=42⇔x=6-12·6+4=23·6-3=1⇒(6; 1) точка пересечения y=-12x+4 и y=23x-3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Тогда площадь фигуры равна:

S(G)=∫46x–12x+4dx+∫69x-23x-3dx==23×32+x24-4×46+23×32-x23+3×69==23·632+624-4·6-23·432+424-4·4++23·932-923+3·9-23·632-623+3·6==-253+46+-46+12=113

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Тогда решим уравнение линии относительно x, а только после этого применим формулу вычисления площади фигуры.

y=x⇒x=y2 красная линияy=23x-3⇒x=32y+92 черная линияy=-12x+4⇒x=-2y+8 синяя линия

Таким образом, площадь равна:

S(G)=∫1232y+92–2y+8dy+∫2332y+92-y2dy==∫1272y-72dy+∫2332y+92-y2dy==74y2-74y12+-y33+3y24+92y23=74·22-74·2-74·12-74·1++-333+3·324+92·3–233+3·224+92·2==74+2312=113

Как видите, значения совпадают.

Ответ: S(G)=113

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Вычислить площадь фигуры, ограниченной линиями

Данный калькулятор поможет найти площадь фигуры, ограниченной линиями.
Для того чтобы вычислить площадь фигуры, ограниченной линиями, применяется одно из свойств интеграла. Это свойство аддитивности площадей, интегрируемых на одном и том же отрезке функции.

Аддитивность означает, что площадь замкнутой области, составленных из нескольких фигур, не имеющих общих внутренних точек, равна сумме площадей этих фигур. Интеграл равен площади криволинейной трапеции, ограниченной графиками функций. Вычисление интеграла производится по закону Ньютона-Лейбница, согласно которому результат равен разности первообразной функции от граничных значений интервала.
Калькулятор поможет вычислить площадь фигуры ограниченной линиями онлайн.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Площадь фигуры ограниченной линиями

Что умеет?

  • Находит точки пересечения указанных кривых линий
  • Робот определяет области, где лежат фигуры, чтобы вычислить их площади. Она делает это, находя точки, где графики пересекаются.
  • Помогает находить площади под графиками, вычисляя интегралы.

Примеры кривых

  • С осями ординат x и y
  • y = x^2 + 1
    y = 0
    x = -1
    x = 2
  • Графики, заданные неявным образом
  • y = 3
    xy = 2
    y^2 - x^2 = 3
  • Две окружности
  • x^2 + y^2 = 4
    x^2 + y^2 = 9
  • В полярных координатах
  • r = 2(1 - cos(p))
    r = 2
  • Парабола и прямая линия
  • y = (x + 2)^2
    y = 4
  • y = (x + 2)^2
    y = 1 - x
  • y = x^2
    x + y = 2
  • Корень квадратный
  • y = x^2
    y = sqrt(x)
  • С экспонентой и численным решением
  • y = (2x+3)*e^(-x)
    x^2 = y
  • Параметрически-заданная функция
  • x = 2(t - sint)
    y = 3(1 - cost)

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности
bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • площадь:x,:x^{2},:0,:2

  • площадь:sin(x),:-sin(x),:[0,:2pi]

  • площадь:x^{2},:1

  • площадь:-1,:1,:-1,:1

  • Показать больше

Описание

Шаг за шагом найти область между функциями

area-between-curves-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • My Notebook, the Symbolab way

    Math notebooks have been around for hundreds of years. You write down problems, solutions and notes to go back…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

    Определение.

    Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).Вычисление площадей фигур, ограниченных заданными линиями

    Определенный интеграл ʃаb f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

    То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл  ʃаb f(x)dx.

    Таким образом, S(G) = ʃаb f(x)dx.

    В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃаb f(x)dx.

    Пример 1.

    Вычислить площадь фигуры, ограниченной линиями у = х3; у = 1; х = 2.

    Решение.

    Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

    Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

    Используя формулу S = ʃаb f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

    {у = х3,
    {у = 1.

    Таким образом, имеем х1 = 1 – нижний предел и х = 2 – верхний предел.

    Итак, S = SDACE – SDABE = ʃ12 x3 dx – 1 = x4/4|12 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

    Ответ: 11/4 кв. ед.Вычисление площадей фигур, ограниченных заданными линиями

    Пример 2.

    Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

    Решение.

    Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

    у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

    Искомая площадь равна S = ʃаb(√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

    {у = √х,
    {у = 2.

    Таким образом, имеем, что х = 4 = а – это нижний предел.

    Итак, S = ∫49 (√x – 2)dx = ∫4√x dx –∫49 2dx = 2/3 x√х|4– 2х|4= (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

    Ответ: S = 2 2/3 кв. ед.

    Пример 3.

    Вычислить площадь фигуры, ограниченной линиями у = х3 – 4х; у = 0; х ≥ 0.

    Решение.

    Построим график функции у = х3 – 4х при х ≥ 0. Для этого найдем производную у’:

    y’ = 3x2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

    Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции уmin = -16/(3√3) ≈ -3.

    Определим точки пересечения графика с осями координат:

    если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

    если у = 0, то х3 – 4х = 0 или х(х2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х1 = 0, х2 = 2, х3 = -2 (не подходит, т.к. х ≥ 0).

    Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

    Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

    Так как функция у = х3 – 4х принимает на (0; 2) отрицательное значение, то

    S = |ʃ02 (x3 – 4x)dx|.

    Имеем: ʃ02 (x3 – 4х)dx =(x4/4 – 4х2/2)|02= -4, откуда S = 4 кв. ед.

    Ответ: S = 4 кв. ед.Вычисление площадей фигур, ограниченных заданными линиями

    Пример 4.

    Найти площадь фигуры, ограниченной параболой у = 2х2 – 2х + 1, прямыми  х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х0 = 2.

    Решение.

    Сначала составим уравнение касательной к параболе у = 2х2 – 2х + 1 в точке с абсциссой х₀ = 2.

    Так как производная y’ = 4x – 2, то при х0 = 2 получим k = y’(2) = 6.

    Найдем ординату точки касания: у0 = 2 · 22 – 2 · 2 + 1 = 5.

    Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

    Построим фигуру, ограниченную линиями:

    у = 2х2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

    Гу =  2х2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение  2х2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

    xb = -b/2a;

    xb = 2/4 = 1/2;

    yb = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

    Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

    Имеем: SОAВD = SOABC – SADBC.

    Найдем координаты точки D из условия:

    6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

    Площадь треугольника DBC найдем по формуле SADBC = 1/2 · DC · BC. Таким образом,

    SADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

    Далее:

    SOABC = ʃ02(2x2 – 2х + 1)dx = (2x3/3 – 2х2/2 + х)|02 = 10/3 (кв. ед.).

    Окончательно получим: SОAВD = SOABC – SADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

    Ответ: S = 1 1/4 кв. ед.

    Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями. Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

    © blog.tutoronline.ru,
    при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Добавить комментарий