Как найти площадь многогранника с вписанной окружностью

В данной статье речь пойдёт о том, как выразить площадь многоугольника, в который можно вписать окружность, через радиус этой окружности. Сразу стоит отметить, что не во всякий многоугольник можно вписать окружность. Однако, если это возможно, то формула, по которой вычисляется площадь такого многоугольника, становится очень простой. Дочитайте эту статью до конца или посмотрите прилагающийся видеоурок, и вы узнаете, как же выразить площадь многоугольника через радиус вписанной в него окружности.

Формула площади многоугольника через радиус вписанной окружности

Нарисуем многоугольник A1A2A3A4A5, не обязательно правильный, но такой, в который можно вписать окружность. Напомню, что вписанной называется окружность, которая касается всех сторон многоугольника. На рисунке это зелёная окружность с центром в точке O:

Описанный около окружности многоугольник

Мы взяли здесь для примера 5-угольник. Но на самом деле это не имеет существенного значения, поскольку дальнейшее доказательство справедливо и для 6-угольника и для 8-угольника и вообще для любого сколь угодно «угольника».

Если соединить центр вписанной окружности со всеми вершинами многоугольника, то он разобьётся на столько треугольников, сколько вершин в данном многоугольнике. В нашем случае: на 5 треугольников. Если же соединить точку O со всеми точками касания вписанной окружности со сторонами многоугольника, то получится 5 отрезков (на рисунке снизу это отрезки OH1, OH2, OH3, OH4 и OH5), которые равны радиусу окружности и перпендикулярны сторонам многоугольника, к которым они проведены. Последнее справедливо, поскольку радиус, проведенный в точку касания, перпендикулярен касательной:

Окружность, вписанная в многоугольник, с радиусами, проведёнными в точки касания

Как же найти площадь нашего описанного многоугольника? Ответ прост. Нужно сложить площади всех полученных в результате разбиения треугольников:

    [ S = S_{OA_1A_2}+S_{OA_2A_3}+S_{OA_3A_4}+S_{OA_4A_5}+S_{OA_5A_1}. ]

Рассмотрим, чему равна площадь треугольника S_{OA_1A_2}. На рисунке снизу он выделен жёлтым цветом:

Описанный многоугольник, разрезанный на треугольники

Она равна половине произведения основания A1A2 на высоту OH1, проведённую к этому основанию. Но, как мы уже выяснили, эта высота равна радиусу вписанной окружности. То есть формула площади треугольника принимает вид: S=frac{1}{2}rcdot A_1A_2, где r — радиус вписанной окружности. Аналогично находятся площади всех оставшихся треугольников. В результате искомая площадь многоугольника оказывается равна:

    [ S = frac{1}{2}rcdot A_1A_2 + frac{1}{2}rcdot A_2A_3+ ]

    [ +frac{1}{2}rcdot A_3A_4+frac{1}{2}rcdot A_4A_5+frac{1}{2}rcdot A_5A_1. ]

Видно, что во всех слагаемых этой суммы ест общий множитель frac{1}{2}r, который можно вынести за скобки. В результате получится вот такое выражение:

    [ S = frac{1}{2}rleft(A_1A_2 +A_2A_3 +A_3A_4 +A_4A_5 +A_5A_1right). ]

То есть в скобках осталась просто сумма всех сторон многоугольника, то есть его периметр P. Чаще всего в этой формуле выражение frac{1}{2}P заменяют просто на p и называют эту букву «полупериметром». В результате, окончательная формула принимает вид:

    [ S=pr. ]

То есть площадь многоугольника, в который вписана окружность известного радиуса, равна произведению этого радиуса на полупериметр многоугольника. Это и есть тот результат, в которому мы стремились.

Отметит напоследок, что в треугольник, который является частным случаем многоугольника, всегда можно вписать окружность. Поэтому для треугольника эту формулу можно применять всегда. Для остальных многоугольников, с количеством сторон большим 3, сперва нужно убедиться, что в них можно вписать окружность. Если это так, можно смело использовать эту простую формулу и находить по ней площадь этого многоугольника.

Материал подготовил репетитор по математике и физике в Москве, Сергей Валерьевич

Площадь правильного многоугольника

Онлайн калькулятор – площадь правильного многоугольника

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

Правильный многоугольник так же называют правильным n-угольником, где n – это количество сторон в многоугольнике (пятиугольник, шестиугольник и т.д.).

В любой правильный многоугольник можно вписать окружность. Такая окружность называется вписанной окружностью.

Около любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и описанной около правильного многоугольника окружности совпадают. Эту точку называют центром правильного многоугольника.

Формула площади правильного многоугольника

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

Правильный многоугольник так же называют правильным n-угольником , где n – это количество сторон в многоугольнике (пятиугольник, шестиугольник и т.д.).

В любой правильный многоугольник можно вписать окружность. Такая окружность называется вписанной окружностью .

Около любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и описанной около правильного многоугольника окружности совпадают. Эту точку называют центром правильного многоугольника.

Площади многоугольников

Можно сказать, что площадь многоугольника — это величина, обозначающая часть плоскости, которую занимает данный многоугольник. За единицу измерения площади принимают площадь квадрата со стороной (1) см, (1) мм и т.д. (единичный квадрат). Тогда площадь будет измеряться в см (^2) , мм (^2) соответственно.

Иными словами, можно сказать, что площадь фигуры — это величина, численное значение которой показывает, сколько раз единичный квадрат умещается в данной фигуре.

Свойства площади

1. Площадь любого многоугольника — величина положительная.

2. Равные многоугольники имеют равные площади.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной (a) равна (a^2) .

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами (a) и (b) равна (S=ab) .

Доказательство

Достроим прямоугольник (ABCD) до квадрата со стороной (a+b) , как показано на рисунке:

Данный квадрат состоит из прямоугольника (ABCD) , еще одного равного ему прямоугольника и двух квадратов со сторонами (a) и (b) . Таким образом,

Определение

Высота параллелограмма — это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота (BK) падает на сторону (AD) , а высота (BH) — на продолжение стороны (CD) :

Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

Доказательство

Проведем перпендикуляры (AB’) и (DC’) , как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма (ABCD) .

Тогда (AB’C’D) – прямоугольник, следовательно, (S_=AB’cdot AD) .

Заметим, что прямоугольные треугольники (ABB’) и (DCC’) равны. Таким образом,

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

Доказательство

Пусть (S) – площадь треугольника (ABC) . Примем сторону (AB) за основание треугольника и проведём высоту (CH) . Докажем, что [S = dfrac<1><2>ABcdot CH.] Достроим треугольник (ABC) до параллелограмма (ABDC) так, как показано на рисунке:

Треугольники (ABC) и (DCB) равны по трем сторонам ( (BC) – их общая сторона, (AB = CD) и (AC = BD) как противоположные стороны параллелограмма (ABDC) ), поэтому их площади равны. Следовательно, площадь (S) треугольника (ABC) равна половине площади параллелограмма (ABDC) , то есть (S = dfrac<1><2>ABcdot CH) .

Теорема

Если два треугольника (triangle ABC) и (triangle A_1B_1C_1) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.

Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

Теорема

Если два треугольника (triangle ABC) и (triangle A_2B_2C_2) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.

Доказательство

Пусть (angle A=angle A_2) . Совместим эти углы так, как показано на рисунке (точка (A) совместилась с точкой (A_2) ):

Проведем высоты (BH) и (C_2K) .

Треугольники (AB_2C_2) и (ABC_2) имеют одинаковую высоту (C_2K) , следовательно: [dfrac>>=dfrac]

Треугольники (ABC_2) и (ABC) имеют одинаковую высоту (BH) , следовательно: [dfrac>>=dfrac]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:

Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

Теорема: формула Герона

Пусть (p) – полупериметр треугольника, (a) , (b) , (c) – длины его сторон, тогда его площадь равна [S_<triangle>=sqrt]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

Доказательство

Рассмотрим четырехугольник (ABCD) . Обозначим (AO=a, CO=b, BO=x, DO=y) :

Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников, следовательно, его площадь равна сумме площадей этих треугольников:

(begin S_=frac12ax+frac12xb+frac12by+frac12ay=frac12(ax+xb+by+ay)=\ frac12((a+b)x+(a+b)y)=frac12(a+b)(x+y)end)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: [S_<text<ромб>>=dfrac12 d_1cdot d_2]

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

Доказательство

Рассмотрим трапецию (ABCD) с основаниями (BC) и (AD) . Проведем (CD’parallel AB) , как показано на рисунке:

Тогда (ABCD’) – параллелограмм.

Проведем также (BH’perp AD, CHperp AD) ( (BH’=CH) – высоты трапеции).

Тогда (S_=BH’cdot AD’=BH’cdot BC, quad S_=dfrac12CHcdot D’D)

Т.к. трапеция состоит из параллелограмма (ABCD’) и треугольника (CDD’) , то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

[S_=S_+S_=BH’cdot BC+dfrac12CHcdot D’D=dfrac12CHleft(2BC+D’Dright)=] [=dfrac12 CHleft(BC+AD’+D’Dright)=dfrac12 CHleft(BC+ADright)]

[spoiler title=”источники:”]

http://calcsbox.com/post/formula-plosadi-pravilnogo-mnogougolnika.html

http://shkolkovo.net/theory/56

[/spoiler]

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Длина окружности и площадь круга
  5. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

Пусть – площадь правильного -угольника, – его сторона, – периметр, а и – радиусы соответственно вписанной и описанной окружностей.

Докажем, что .

Доказательство:

Соединим центр О данного многоугольника с вершинами А1, А2, …, Аn.

Многоугольник разобьется на равных треугольников, т.е. А1ОА2 = А2ОА3 = = А1ОАn по трем сторонам (ОА1 = ОА2 = … = ОАn, как радиусы описанной окружности и А1А2 = А2А3 = АnА1 = , как стороны правильного многоугольника). Равные треугольники имеют равные площади, поэтому площадь каждого из полученных треугольников будет равна . Следовательно, (свойство площадей многоугольников). Что и требовалось доказать.

Выведем формулы:

В прямоугольном А1Н1О:

,

где – угол правильного многоугольника А1А2А3…Аn.

Н1 – середина А1А2 (смотри следствие из теоремы об окружности, вписанной в правильный многоугольник), следовательно, , при этом , откуда (смотри формулы приведения), следовательно, .

В прямоугольном А1Н1О:

, откуда (смотри формулы приведения), следовательно, .

Примечание:

Если в формулу подставить значения = 3, 4 и 6, получим выражения для сторон правильного треугольника, квадрата и правильного шестиугольника:

Советуем посмотреть:

Правильный многоугольник

Окружность, описанная около правильного многоугольника

Окружность, вписанная в правильный многоугольник

Построение правильных многоугольников

Длина окружности

Площадь круга

Площадь кругового сектора

Длина окружности и площадь круга


Правило встречается в следующих упражнениях:

7 класс

Задание 1088,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1095,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 6,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 8,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 11,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1130,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1131,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1133,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1205,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1239,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Найдём площадь правильного многоугольника через радиусы вписанной и описанной окружностей и через его сторону.

Любой правильный многоугольник вписан в окружность и описан около окружности. Центры вписанной и описанной окружностей совпадают и называются центром правильного многоугольника.

ploshchad-pravilnogo-mnogougolnikaСоединив центр правильного n-угольника

    [{A_1}{A_2}{A_3}{A_4}...{A_{n - 1}}{A_n}]

со всеми его вершинами, получим n равнобедренных треугольников.

Основание каждого такого треугольника равно стороне многоугольника, боковые стороны равны радиусу описанной около многоугольника окружности угол при вершине — центральному углу правильного многоугольника

    [{A_1}{A_2} = a,]

    [O{A_1} = O{A_2} = R,]

    [angle {A_1}O{A_2} = frac{{{{360}^o}}}{n}]

Так как площадь треугольника равна половине произведения его сторон на синус угла между ними, 

    [{S_{Delta {A_1}O{A_2}}} = frac{1}{2} cdot {A_1}O cdot {A_2}O cdot sin angle {A_1}O{A_2}.]

Отсюда

    [{S_{Delta {A_1}O{A_2}}} = frac{1}{2} cdot {R^2} cdot sin frac{{{{360}^o}}}{n}.]

Поскольку многоугольник состоит из n таких треугольников, формула площади правильного многоугольника через радиус описанной окружности:

    [S = frac{1}{2} cdot {R^2} cdot n cdot sin frac{{{{360}^o}}}{n}.]

ploshchad-pravilnogo-mnogougolnika-formulaПроведём в треугольнике A1OA2 высоту OF. Её длина равна радиусу вписанной в правильный n-угольник окружности:

    [OF = r.]

По свойству равнобедренного треугольника OF является также его биссектрисой и медианой:

    [angle {A_1}OF = frac{1}{2}angle {A_1}O{A_2} = frac{1}{2} cdot frac{{{{360}^o}}}{n} = frac{{{{180}^o}}}{n},]

    [{A_1}F = frac{1}{2}{A_1}{A_2}.]

Из прямоугольного треугольника A1OF по определению тангенса

    [tgangle {A_1}OF = frac{{{A_1}F}}{{OF}},]

откуда

    [{A_1}F = OF cdot tgangle {A_1}OF = r cdot tgfrac{{{{180}^o}}}{n}.]

Так как площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне,

    [{S_{Delta {A_1}O{A_2}}} = frac{1}{2} cdot {A_1}{A_2} cdot OF = {A_1}Fcdot OF,]

    [{S_{Delta {A_1}O{A_2}}} = r cdot tgfrac{{{{180}^o}}}{n} cdot r = {r^2} cdot tgfrac{{{{180}^o}}}{n}.]

Площадь

    [{A_1}{A_2}{A_3}{A_4}...{A_{n - 1}}{A_n}]

равна сумме n таких площадей.

Таким образом, формула площади правильного многоугольника через радиус вписанной окружности:

    [S = {r^2} cdot n cdot tgfrac{{{{180}^o}}}{n}.]

Из треугольника A1OF

    [OF = frac{{{A_1}F}}{{tgangle {A_1}OF}} = frac{{frac{1}{2}{A_1}{A_2}}}{{tgangle {A_1}OF}} = frac{a}{{2tgfrac{{{{180}^o}}}{n}}}.]

Следовательно,

    [{S_{Delta {A_1}O{A_2}}} = {A_1}F cdot OF = frac{1}{2}a cdot frac{a}{{2tgfrac{{{{180}^o}}}{n}}} = frac{{{a^2}}}{{4tgfrac{{{{180}^o}}}{n}}}.]

Поскольку многоугольник состоит из n равных треугольников, формула площади правильного многоугольника через его сторону:

    [S = frac{{{a^2} cdot n}}{{4tgfrac{{{{180}^o}}}{n}}}.]

Содержание:

Площади поверхностей геометрических тел:

Под площадью поверхности многогранника мы понимаем сумму площадей всех его граней. Как же определить площадь поверхности тела, не являющегося многогранником? На практике это делают так. Разбивают поверхность на такие части, которые уже мало отличаются от плоских. Тогда находят площади этих частей, как будто они являются плоскими. Сумма полученных площадей является приближенной площадью поверхности. Например, площадь крыши здания определяется как сумма площадей кусков листового металла. Еще лучше это видно на примере Земли. Приблизительно она имеет форму шара. Но площади небольших ее участков измеряют так, как будто эти участки являются плоскими. Более того, под площадью поверхности тела будем понимать предел площадей полных поверхностей описанных около него многогранников. При этом должно выполняться условие, при котором все точки поверхности этих многогранников становятся сколь угодно близкими к поверхности данного тела. Для конкретных тел вращения понятие описанного многогранника будет уточнено.

Понятие площади поверхности

Рассмотрим периметры Площади поверхностей геометрических тел - определение и примеры с решением

Применим данные соотношения к обоснованию формулы для площади боковой поверхности цилиндра.

При вычислении объема цилиндра были использованы правильные вписанные в него призмы. Найдем при помощи в чем-то аналогичных рассуждений площадь боковой поверхности цилиндра.

Опишем около данного цилиндра радиуса R и высоты h правильную n-угольную призму (рис. 220).

Площади поверхностей геометрических тел - определение и примеры с решением

Площадь боковой поверхности призмы равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания призмы.

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований призмы стремятся к длине окружности основания цилиндра, то есть к Площади поверхностей геометрических тел - определение и примеры с решением

Учитывая, что сумма площадей двух оснований призмы стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Но сумма площадей двух оснований цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности цилиндра.

Итак, площадь боковой поверхности цилиндра вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус цилиндра, h — его высота.

Заметим, что эта формула аналогична соответствующей формуле площади боковой поверхности прямой призмы Площади поверхностей геометрических тел - определение и примеры с решением

За площадь полной поверхности цилиндра принимается сумма площадей боковой поверхности и двух оснований:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность цилиндра радиуса R и высоты h разрезать по образующей АВ и развернуть на плоскость, то в результате получим прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности цилиндра (рис. 221).

Очевидно, что сторона Площади поверхностей геометрических тел - определение и примеры с решением этого прямоугольника есть развертка окружности основания цилиндра, следовательно, Площади поверхностей геометрических тел - определение и примеры с решением. Сторона АВ равна образующей цилиндра, то есть АВ = h. Значит, площадь развертки боковой поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, площадь боковой поверхности цилиндра равна площади ее развертки.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Параллельно оси цилиндра на расстоянии d от нее проведена плоскость, отсекающая от основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Диагональ полученного сечения наклонена к плоскости основания под углом а. Определите площадь боковой поверхности цилиндра.

Решение:

Пусть дан цилиндр, в основаниях которого лежат равные круги с центрами Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением — ось цилиндра. Рассмотрим плоскость, параллельную Площади поверхностей геометрических тел - определение и примеры с решением. Сечение цилиндра данной плоскостью представляет собой прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением (рис. 222).

Пусть хорда АВ отсекает от окружности основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Тогда, по определению, Площади поверхностей геометрических тел - определение и примеры с решением. Так как образующие цилиндра перпендикулярны основаниям, Площади поверхностей геометрических тел - определение и примеры с решением. Значит, АВ — проекция Площади поверхностей геометрических тел - определение и примеры с решением на плоскость АОВ, тогда угол между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью АОВ равен углу Площади поверхностей геометрических тел - определение и примеры с решением. По условию Площади поверхностей геометрических тел - определение и примеры с решением.

В равнобедренном треугольнике Площади поверхностей геометрических тел - определение и примеры с решением проведем медиану ОК. Тогда OПлощади поверхностей геометрических тел - определение и примеры с решением Площади поверхностей геометрических тел - определение и примеры с решениемТак как Площади поверхностей геометрических тел - определение и примеры с решением то Площади поверхностей геометрических тел - определение и примеры с решением по признаку перпендикулярных плоскостей. Но тогда Площади поверхностей геометрических тел - определение и примеры с решением по свойству перпендикулярных плоскостей. Значит, ОК — расстояние между точкой О и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что Площади поверхностей геометрических тел - определение и примеры с решением, по определению расстояния между параллельными прямой и плоскостью получаем, что ОК равно расстоянию между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. По условию OK = d. Из прямоугольного треугольника АКО

Площади поверхностей геометрических тел - определение и примеры с решением имеем: Площади поверхностей геометрических тел - определение и примеры с решением

откуда Площади поверхностей геометрических тел - определение и примеры с решением Из прямоугольного треугольника Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Итак, Площади поверхностей геометрических тел - определение и примеры с решением

В случае, когда Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Аналогично предыдущему, и в этом случае получаем тот же результат для площади боковой поверхности.

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Площадь поверхности конуса и усеченного конуса

Связь между цилиндрами и призмами полностью аналогична связи между конусами и пирамидами. В частности, это касается формул для площадей их боковых поверхностей.

Опишем около данного конуса с радиусом основания R и образующей I правильную л-угольную пирамиду (рис. 223). Площадь ее боковой поверхности равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания пирамиды, Площади поверхностей геометрических тел - определение и примеры с решением — апофема.

Площади поверхностей геометрических тел - определение и примеры с решением

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований пирамиды стремятся к длине окружности основания конуса, а апофемы Площади поверхностей геометрических тел - определение и примеры с решением равны I.

Учитывая, что площадь основания пирамиды стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Но площадь основания конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности конуса. Итак, площадь боковой поверхности конуса вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус основания, I — образующая.

За площадь полной поверхности конуса принимается сумма площадей его основания и боковой поверхности:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность конуса разрезать по образующей РА и развернуть на плоскость, то в результате получим круговой сектор Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности конуса (рис. 224).

Площади поверхностей геометрических тел - определение и примеры с решением

Очевидно, что радиус сектора развертки равен образующей конуса I, а длина дуги Площади поверхностей геометрических тел - определение и примеры с решением — длине окружности основания конуса, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что площадь соответствующего круга равна Площади поверхностей геометрических тел - определение и примеры с решением, получаем: Площади поверхностей геометрических тел - определение и примеры с решением, значит, Площади поверхностей геометрических тел - определение и примеры с решением Таким образом, площадь боковой поверхности конуса равна площади ее развертки.

Учитывая формулу для площади боковой поверхности конуса, нетрудно найти площадь боковой поверхности усеченного конуса.

Рассмотрим усеченный конус, полученный при пересечении конуса с вершиной Р некоторой секущей плоскостью (рис. 225).

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — образующая усеченного конуса Площади поверхностей геометрических тел - определение и примеры с решением точки Площади поверхностей геометрических тел - определение и примеры с решением — центры большего и меньшего оснований с радиусами R и г соответственно. Тогда площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей двух конусов:

Площади поверхностей геометрических тел - определение и примеры с решением

Из подобия треугольников Площади поверхностей геометрических тел - определение и примеры с решением

следует, что Площади поверхностей геометрических тел - определение и примеры с решением

Тогда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением

Итак, мы получили формулу для вычисления площади боковой поверхности усеченного конуса: Площади поверхностей геометрических тел - определение и примеры с решением, где R и г — радиусы оснований усеченного конуса, I — его образующая.

Отсюда ясно, что площадь полной поверхности усеченного конуса равна Площади поверхностей геометрических тел - определение и примеры с решением

Такой же результат можно было бы получить, если найти площадь развертки боковой поверхности усеченного конуса или использовать правильные усеченные пирамиды, описанные около него. Попробуйте дать соответствующие определения и провести необходимые рассуждения самостоятельно.

Связь между площадями поверхностей и объемами

При рассмотрении объемов и площадей поверхностей цилиндра и конуса мы видели, что существует тесная взаимосвязь между этими фигурами и призмами и пирамидами соответственно. Оказывается, что и сфера (шар), вписанная в многогранник, связана с величиной его объема.

Определение:

Сфера (шар) называется вписанной в выпуклый многогранник, если она касается каждой его грани.

При этом многогранник называется описанным около данной сферы (рис. 226).

Рассмотрим, например, сферу, вписанную в тетраэдр (рис. 227).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Плоскости, содержащие грани тетраэдра, являются касательными к вписанной сфере, а точки касания лежат в гранях тетраэдра. Заметим, что по доказанному в п. 14.2 радиусы вписанной сферы, проведенные в точку касания с поверхностью многогранника, перпендикулярны плоскостям граней этого многогранника.

Для описанных многоугольников на плоскости было доказано, что их площадь равна произведению полупериметра на радиус вписанной окружности. Аналогичное свойство связывает объем описанного многогранника и площадь его поверхности.

Теорема (о связи площади поверхности и объема описанного многогранника)

Объем описанного многогранника вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — площадь полной поверхности многогранника, г — радиус вписанной сферы.

Доказательство:

Соединим центр вписанной сферы О со всеми вершинами многогранника Площади поверхностей геометрических тел - определение и примеры с решением(рис. 228). Получим n пирамид, основаниями которых являются грани многогранника, вершины совпадают с точкой О, высоты равны г. Тогда объем многогранника, по аксиоме, равен сумме объемов этих пирамид. Используя формулу объема пирамиды, найдем объем данного многогранника:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением – площади граней многогранника.

Теорема доказана.

Оказывается, что в любой тетраэдр можно вписать сферу, и только одну. Но не каждый выпуклый многогранник обладает этим свойством.

Рассматривают также сферы, описанные около многогранника.

Определение:

Сфера называется описанной около многогранника, если все его вершины лежат на сфере.

При этом многогранник называется вписанным в сферу (рис. 229).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Также считается, что соответствующий шар описан около многогранника.

Около любого тетраэдра можно описать единственную сферу, но не каждый многогранник обладает соответствующим свойством.

Площадь сферы

Применим полученную связь для объемов и площадей поверхностей описанных многогранников к выводу формулы площади сферы.

Опишем около сферы радиуса R выпуклый многогранник (рис. 230).

Пусть S’ — площадь полной поверхности данного многогранника, а любые две точки одной грани удалены друг от друга меньше чем на е. Тогда объем многогранника равенПлощади поверхностей геометрических тел - определение и примеры с решением. Рассмотрим расстояние от центра сферы О до любой вершины многогранника, например А1 (рис. 231).

По неравенству треугольника Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением где О’ — точка касания. Отсюда следует, что все вершины данного многогранника лежат внутри шара с центром О и радиусом Площади поверхностей геометрических тел - определение и примеры с решением.

Итак, объем V данного многогранника больше объема шара радиуса R и меньше объема шара радиуса Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Если неограниченно уменьшать размеры граней многогранника, то есть при е, стремящемся к нулю, левая и правая части последнего неравенства будут стремиться к Площади поверхностей геометрических тел - определение и примеры с решением, а многогранник все плотнее примыкать к сфере. Поэтому полученную величину для предела S’ принимают за площадь сферы.

Итак, площадь сферы радиуса R вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Доказанная формула означает, что площадь сферы равна четырем площадям ее большого круга (рис. 232).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Исходя из аналогичных рассуждений, можно получить формулу для площади сферической части шарового сегмента с высотой Н:

Площади поверхностей геометрических тел - определение и примеры с решением

Оказывается, что эта формула справедлива и для площади сферической поверхности шарового слоя (пояса):

Площади поверхностей геометрических тел - определение и примеры с решением

где Н — высота слоя (пояса).

Справочный материал

Формулы объемов и площадей поверхностей геометрических тел

Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Историческая справка

Многие формулы для вычисления объемов многогранников были известны уже в Древнем Египте. В так называемом Московском папирусе, созданном около 4000 лет назад, вероятно, впервые в истории вычисляется объем усеченной пирамиды. Но четкие доказательства большинства формул для объемов появились позднее, в работах древнегреческих ученых.

Так, доказательства формул для объемов конуса и пирамиды связаны с именами Демокрита из Абдеры (ок. 460-370 гг. до н. э.) и Евдокса Книдского (ок. 408-355 гг. до н. э.). На основании их идей выдающийся математик и механик Архимед (287-212 гг. до н. э.) вычислил объем шара, нашел формулы для площадей поверхностей цилиндра, конуса, сферьГг

Дальнейшее развитие методы, предложенные Архимедом, получили благодаря трудам средневекового итальянского монаха и математика Бонавентуры Кавальери (1598-1647). В своей книге «Геометрия неделимых» он сформулировал принцип сравнения объемов, при котором используются площади сечений. Его рассуждения стали основой интегральных методов вычисления объемов, разработанных Исааком Ньютоном (1642 (1643)-1727) и Готфридом Вильгельмом фон Лейбницем (1646-1716). Во многих учебниках по геометрии объем пирамиды находится с помощью * чертовой лестницы» — варианта древнегреческого метода вычерпывания, предложенного французским математиком А. М. Лежандром (1752-1833).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

На II Международном конгрессе математиков, который состоялся в 1900 году в Париже, Давид Гильберт сформулировал, в частности, такую проблему: верно ли, что любые два равновеликих многогранника являются равносоставленными? Уже через год отрицательный ответ на этот вопрос был обоснован учеником Гильберта Максом Деном (1878-1952). Другое доказательство этого факта предложил в 1903 году известный геометр В. Ф. Каган, который в начале XX века вел плодотворную научную и просветительскую деятельность в Одессе. В частности, из работ Дена и Кагана следует, что доказательство формулы объема пирамиды невозможно без применения пределов.

Весомый вклад в развитие теории площадей поверхностей внесли немецкие математики XIX века. Так, в 1890 году Карл Герман Аман-дус Шварц (1843-1921) построил пример последовательности многогранных поверхностей, вписанных в боковую поверхность цилиндра («сапог Шварца»). Уменьшение их граней не приводит к приближению суммы площадей этих граней к площади боковой поверхности цилиндра. Это стало толчком к созданию выдающимся немецким математиком и физиком Германом Минков-ским (1864-1909) современной теории площадей поверхностей, в которой последние связаны с объемом слоя около данной поверхности.

Учитывая огромный вклад Архимеда в развитие математики, в частности теории объемов и площадей поверхностей, именно его изобразили на Филдсовской медали — самой почетной в мире награде для молодых математиков. В 1990 году ею был награжден Владимир Дрин-фельд (род. в 1954 г.), который учился и некоторое время работал в Харькове. Вот так юные таланты, успешно изучающие геометрию в школе, становятся в дальнейшем всемирно известными учеными.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Уравнения фигур в пространстве

Напомним, что уравнением фигуры F на плоскости называется уравнение, которому удовлетворяют координаты любой точки фигуры F и не удовлетворяют координаты ни одной точки, не принадлежащей фигуре F. Так же определяют и уравнение фигуры в пространстве; но, в отличие от плоскости, где уравнение фигуры содержит две переменные х и у, в пространстве уравнение фигуры является уравнением с тремя переменными х, у и z.

Выведем уравнение плоскости, прямой и сферы в пространстве. Для получения уравнения плоскости рассмотрим в прямоугольной системе координат плоскость а (рис. 233) и определим свойство, с помощью которого можно описать принадлежность произвольной точки данной плоскости. Пусть ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен а (то есть принадлежит прямой, перпендикулярной данной плоскости,— такой вектор называют вектором нормали или нормалью к плоскости а), а точка Площади поверхностей геометрических тел - определение и примеры с решением принадлежит данной плоскости.

Так как Площади поверхностей геометрических тел - определение и примеры с решением, то вектор га перпендикулярен любому вектору плоскости а. Поэтому если Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка плоскости а, то Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Более того, если векторы Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярны, то, поскольку плоскость, проходящая через точку М0 перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением, единственна, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением — критерий принадлежности точки М плоскости а. На основании этого векторного критерия выведем уравнение плоскости в пространстве.

Теорема (уравнение плоскости в пространстве)

В прямоугольной системе координат уравнение плоскости имеет вид Площади поверхностей геометрических тел - определение и примеры с решением, где А, В, С и D — некоторые числа, причем числа А, В и С одновременно не равны нулю.

Доказательство:

Запишем в координатной форме векторное равенство Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости, Площади поверхностей геометрических тел - определение и примеры с решением — фиксированная точка плоскости, M(x;y;z) — произвольная точка плоскости. Имеем Площади поверхностей геометрических тел - определение и примеры с решением

Следовательно, Площади поверхностей геометрических тел - определение и примеры с решением

После раскрытия скобок и приведения подобных членов это уравнение примет вид: Площади поверхностей геометрических тел - определение и примеры с решением

Обозначив числовое выражение в скобках через D, получим искомое уравнение, в котором числа А, В и С одновременно не равны нулю, так как Площади поверхностей геометрических тел - определение и примеры с решением.

Покажем теперь, что любое уравнение вида Ах + Ву +Cz+D = 0 задает в пространстве плоскость. Действительно, пусть Площади поверхностей геометрических тел - определение и примеры с решением — одно из решений данного уравнения. Тогда Площади поверхностей геометрических тел - определение и примеры с решением. Вычитая это равенство из данного, получим Площади поверхностей геометрических тел - определение и примеры с решением Так как это уравнение является координатной записью векторного равенства Площади поверхностей геометрических тел - определение и примеры с решением, то оно является уравнением плоскости, проходящей через точку Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением.

Обратим внимание на то, что в доказательстве теоремы приведен способ составления уравнения плоскости по данным координатам произвольной точки плоскости и вектора нормали.

Пример:

Напишите уравнение плоскости, которая перпендикулярна отрезку MN и проходит через его середину, если М{-1;2;3), N(5;-4;-1).

Решение:

Найдем координаты точки О — середины отрезка MN:

Площади поверхностей геометрических тел - определение и примеры с решением

Значит, О (2; -1; l). Так как данная плоскость перпендикулярна отрезку MN, то вектор Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости. Поэтому искомое уравнение имеет вид: Площади поверхностей геометрических тел - определение и примеры с решением.

И наконец, так как данная плоскость проходит через точку О(2;-l;l), то, подставив координаты этой точки в уравнение, получим: Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением искомое.

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что правильным ответом в данной задаче является также любое уравнение, полученное из приведенного умножением обеих частей на число, отличное от нуля.

Значения коэффициентов А, В, С и D в уравнении плоскости определяют особенности расположения плоскости в системе координат. В частности:

  • если Площади поверхностей геометрических тел - определение и примеры с решением, уравнение плоскости примет вид Ax+By+Cz = 0; очевидно, что такая плоскость проходит через начало координат (рис. 234, а);
  • если один из коэффициентов А, В и С равен нулю, a Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных осей: например, при условии А = 0 вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен оси Ох, а плоскость By + Cz + D = Q параллельна оси Ох (рис. 234, б)
  • если два из коэффициентов А, В и С равны нулю, а Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных плоскостей: например, при условиях А = 0 и В-О вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен плоскости Оху, а плоскость Cz+D = 0 параллельна плоскости Оху (рис. 234, в);
  • если два из коэффициентов А, В и С равны нулю и D = 0, плоскость совпадает с одной из координатных плоскостей: например, при условиях Площади поверхностей геометрических тел - определение и примеры с решением и В = С = D = 0 уравнение плоскости имеет вид Ах = О, или х= 0, то есть является уравнением плоскости Оуz (рис. 234, г).

Предлагаем вам самостоятельно составить полную таблицу частных случаев расположения плоскости Ax + By+Cz+D = 0 в прямоугольной системе координат в зависимости от значений коэффициентов А, В, С и D.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример: (о расстоянии от точки до плоскости)

Расстояние от точки Площади поверхностей геометрических тел - определение и примеры с решением до плоскости а, заданной уравнением Ax + By + Cz+D = О, вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением Докажите.

Решение:

Если Площади поверхностей геометрических тел - определение и примеры с решением, то по уравнению плоскости Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением = 0.

Если Площади поверхностей геометрических тел - определение и примеры с решением, то проведем перпендикуляр КМ к плоскости a, Площади поверхностей геометрических тел - определение и примеры с решением.

Тогда Площади поверхностей геометрических тел - определение и примеры с решением, поэтому Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Так как Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Рассмотрим теперь возможность описания прямой в пространстве с помощью уравнений.

Пусть в пространстве дана прямая k (рис. 235). Выберем ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением, параллельный данной прямой или принадлежащий ей (такой вектор называют направляющим вектором прямой k), и зафиксируем точку Площади поверхностей геометрических тел - определение и примеры с решением, принадлежащую данной прямой. Тогда произвольная точка пространства М (х; у; z) будет принадлежать прямой k в том и только в том случае, когда векторы Площади поверхностей геометрических тел - определение и примеры с решением коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением

Представим это векторное равенство в координатной форме. Если ни одна из координат направляющего вектора не равна нулю, из данного равенства можно выразить t и приравнять полученные результаты:

Площади поверхностей геометрических тел - определение и примеры с решением

Эти равенства называют каноническими уравнениями прямой в пространстве.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Напишите уравнение прямой, проходящей через точки А(1;-3;2) и В(-l;0;l).

Решение:

Так как точки А и В принадлежат данной прямой, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой АВ. Таким образом, подставив вместо Площади поверхностей геометрических тел - определение и примеры с решением координаты точки А, получим уравнение прямой АВ:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что ответ в этой задаче может иметь и другой вид: так, в числителях дробей можно использовать координаты точки В, а как направляющий вектор рассматривать любой ненулевой вектор, коллинеарный Площади поверхностей геометрических тел - определение и примеры с решением (например, вектор Площади поверхностей геометрических тел - определение и примеры с решением).

Вообще, если прямая в пространстве задана двумя точками Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой, а в случае, если соответствующие координаты данных точек не совпадают, канонические уравнения прямой Площади поверхностей геометрических тел - определение и примеры с решением имеют вид Площади поверхностей геометрических тел - определение и примеры с решением

С помощью уравнений удобно исследовать взаимное расположение прямых и плоскостей в пространстве. Рассмотрим прямые Площади поверхностей геометрических тел - определение и примеры с решением направляющими векторами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Определение угла между данными прямыми связано с определением угла между их направляющими векторами. Действительно, пусть ф — угол между прямыми Площади поверхностей геометрических тел - определение и примеры с решением. Так как по определению Площади поверхностей геометрических тел - определение и примеры с решением, а угол между векторами может быть больше 90°, то Площади поверхностей геометрических тел - определение и примеры с решением либо равен углу ср (рис. 236, а), либо дополняет его до 180° (рис. 236, б).

Площади поверхностей геометрических тел - определение и примеры с решением

Так как cos(l80°-ф) = -coscp, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть

Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда, в частности, следует необходимое и достаточное условие перпендикулярности прямых Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

Кроме того, прямые Площади поверхностей геометрических тел - определение и примеры с решением параллельны тогда и только тогда, когда их направляющие векторы коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением, или, при условии отсутствия у векторов р и q нулевых координат,

Площади поверхностей геометрических тел - определение и примеры с решением

Проанализируем теперь отдельные случаи взаимного расположения двух плоскостей в пространстве. Очевидно, что если Площади поверхностей геометрических тел - определение и примеры с решением —вектор нормали к плоскости а, то все ненулевые векторы, коллинеарные л, также являются векторами нормали к плоскости а. Из этого следует, что две плоскости, заданные уравнениями Площади поверхностей геометрических тел - определение и примеры с решением:

  • совпадают, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если числа Площади поверхностей геометрических тел - определение и примеры с решением ненулевые Площади поверхностей геометрических тел - определение и примеры с решением
  • параллельны, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если координаты Площади поверхностей геометрических тел - определение и примеры с решением ненулевые, Площади поверхностей геометрических тел - определение и примеры с решением (на практике это означает, что уравнения данных плоскостей можно привести к виду Ax+By+Cz+D1= 0 и Ax+By+Cz+D2=0, где Площади поверхностей геометрических тел - определение и примеры с решением).

В остальных случаях данные плоскости Площади поверхностей геометрических тел - определение и примеры с решением пересекаются, причем угол между ними связан с углом между векторами нормалей Площади поверхностей геометрических тел - определение и примеры с решением и Площади поверхностей геометрических тел - определение и примеры с решением. Предлагаем вам самостоятельно обосновать формулу для определения угла между плоскостями Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

В частности, необходимое и достаточное условие перпендикулярности плоскостей Площади поверхностей геометрических тел - определение и примеры с решением выражается равенством Площади поверхностей геометрических тел - определение и примеры с решением.

Заметим также, что прямая в пространстве может быть описана как линия пересечения двух плоскостей, то есть системой уравнений

Площади поверхностей геометрических тел - определение и примеры с решением

где векторы Площади поверхностей геометрических тел - определение и примеры с решением не коллинеарны.

Пример:

Напишите уравнение плоскости, которая проходит через точку М(4;2;3) и параллельна плоскости x-y + 2z-S = 0.

Решение:

Так как искомая плоскость параллельна данной, то вектор нормали к данной плоскости Площади поверхностей геометрических тел - определение и примеры с решением является также вектором нормали к искомой плоскости. Значит, искомое уравнение имеет вид Площади поверхностей геометрических тел - определение и примеры с решением. Так как точка М принадлежит искомой плоскости, ее координаты удовлетворяют уравнению плоскости, то есть 4-2 + 2-3 + 2) = 0, D = -8. Следовательно, уравнение x-y+2z-8=0 искомое.

Ответ: x-y+2z-8 = 0.

Аналогично уравнению окружности на плоскости, в пространственной декартовой системе координат можно вывести уравнение сферы с заданным центром и радиусом.

Теорема (уравнение сферы)

В прямоугольной системе координат уравнение сферы радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением имеет вид Площади поверхностей геометрических тел - определение и примеры с решением Доказательство

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка сферы радиуса R с центром Площади поверхностей геометрических тел - определение и примеры с решением (рис. 237). Расстояние между точками О и М вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Так как OM=R, то есть ОМ2 = R2, то координаты точки М удовлетворяют уравнению Площади поверхностей геометрических тел - определение и примеры с решением. Если же точка М не является точкой сферы, то Площади поверхностей геометрических тел - определение и примеры с решением, значит, координаты точки М не удовлетворяют данному уравнению.

Следствие

Сфера радиуса R с центром в начале координат задается уравнением вида

Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что фигуры в пространстве, как и на плоскости, могут задаваться не только уравнениями, но и неравенствами. Например, шар радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением задается неравенством Площади поверхностей геометрических тел - определение и примеры с решением (убедитесь в этом самостоятельно).

Пример:

Напишите уравнение сферы с центром А (2;-8; 16), которая проходит через начало координат.

Решение:

Так как данная сфера проходит через точку 0(0;0;0), то отрезок АО является ее радиусом. Значит,

Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, искомое уравнение имеет вид:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Доказательство формулы объема прямоугольного параллелепипеда

Теорема (формула объема прямоугольного параллелепипеда)

Объем прямоугольного параллелепипеда равен произведению трех его измерений:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением— измерения параллелепипеда.

Доказательство:

Докажем сначала, что объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — два прямоугольных параллелепипеда с равными основаниями и объемами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Совместим данные параллелепипеды. Для этого достаточно совместить их основания. Теперь рассмотрим объемы параллелепипедов Площади поверхностей геометрических тел - определение и примеры с решением (рис. 238). Для определенности будем считать, что Площади поверхностей геометрических тел - определение и примеры с решением. Разобьем ребро Площади поверхностей геометрических тел - определение и примеры с решением на n равных отрезков. Пусть на отрезке Площади поверхностей геометрических тел - определение и примеры с решением лежит m точек деления. Тогда:

Площади поверхностей геометрических тел - определение и примеры с решением

проведем через точки деления параллельные основанию ABCD (рис. 239). Они разобьют параллелепипед Площади поверхностей геометрических тел - определение и примеры с решением на n равных параллелепипедов. Каждый из них имеет объем Площади поверхностей геометрических тел - определение и примеры с решением. Очевидно, что параллелепиппед Площади поверхностей геометрических тел - определение и примеры с решением содержит в себе объединение m параллелепипедов и сам содержится в объединении Площади поверхностей геометрических тел - определение и примеры с решением параллелепипедов.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением откуда Площади поверхностей геометрических тел - определение и примеры с решением или Площади поверхностей геометрических тел - определение и примеры с решением

Сравнивая выражения (1) и (2), видим, что оба отношения Площади поверхностей геометрических тел - определение и примеры с решением находятся между Площади поверхностей геометрических тел - определение и примеры с решением, то есть отличаются не больше чем на Площади поверхностей геометрических тел - определение и примеры с решениемДокажем методом от противного, что эти отношения равны.

Допустим, что это не так, то есть Площади поверхностей геометрических тел - определение и примеры с решением Тогда найдется такое натуральное число n, что Площади поверхностей геометрических тел - определение и примеры с решением Отсюда Площади поверхностей геометрических тел - определение и примеры с решением Из полученного противоречия следует, что Площади поверхностей геометрических тел - определение и примеры с решением то есть объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Рассмотрим теперь прямоугольные параллелепипеды с измерениями Площади поверхностей геометрических тел - определение и примеры с решением объемы которых равны V, Площади поверхностей геометрических тел - определение и примеры с решением соответственно (рис. 240).

Площади поверхностей геометрических тел - определение и примеры с решением

По аксиоме объема V3 =1. По доказанному Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением Перемножив эти отношения, получим: V = abc.

Теорема доказана.

* Выберем Площади поверхностей геометрических тел - определение и примеры с решением, например, Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — целая часть дроби Площади поверхностей геометрических тел - определение и примеры с решением.

  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Многоугольник
  • Площадь многоугольника
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Площади фигур в геометрии

Добавить комментарий