Загрузить PDF
Загрузить PDF
Очень легко вычислить площадь правильного треугольника (это многоугольник!) и очень непросто сделать это в случае неправильного одиннадцатиугольника (это тоже многоугольник!). Данная статья расскажет вам, как вычислять площадь различных многоугольников.
-
1
Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.
- Периметр – сумма сторон многоугольника.
- Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
-
2
Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.
-
3
Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.
- Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
- В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
- «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
-
4
Подставьте значения апофемы и периметра в формулу. В нашем примере:
- площадь = 1/2 х 120 х 10√3
- площадь = 60 х 10√3
- площадь = 600√3
-
5
Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.
Реклама
-
1
Найдите площадь треугольника. Формула: Площадь = 1/2 х основание х высота.
- Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
-
2
Найдите площадь квадрата. Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.
- Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
-
3
-
4
Найдите площадь трапеции. Формула: Площадь = [(основание1 + основание2) х высота] / 2.
- Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8)•10]/2 = (14 х 10)/2 = 140/2 = 70.
Реклама
-
1
Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.
-
2
Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.
-
3
Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).
-
4
Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).
-
5
Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) – (-38) = 120.
-
6
Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).
Реклама
Советы
- Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
- Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.
Реклама
Похожие статьи
Об этой статье
Эту страницу просматривали 439 417 раз.
Была ли эта статья полезной?
Как перевести длину периметра в площадь — математический — 2022
Периметр фигуры — это общее расстояние вокруг нее, а площадь — это количество поверхности, которую фигура использует или покрывает. Методы расчета периметра и площади отличаются для каждого вида фигуры. Например, хотя вы можете найти площадь прямоугольника, просто умножив его длину на ширину, круг требует более сложных вычислений. Научитесь преобразовывать периметры самых основных фигур в области, и в дальнейшем вы сможете переходить к составным фигурам.
Квадратные Периметры
Разделите периметр на четыре
Разделите периметр на четыре, чтобы получить длину каждой стороны, так как все четыре стороны квадрата равны. Например, квадрат с периметром 36 дюймов будет иметь стороны размером 9 дюймов каждая, потому что 36 ÷ 4 = 9.
Квадрат длина стороны
Квадрат длины одной стороны. Для квадрата с 9-дюймовыми сторонами, получится 9 х 9 = 81.
Добавить единицу измерения
Добавьте правильную единицу измерения к области. Квадрат с периметром 36 дюймов имеет площадь 81 квадратный дюйм.
Периметры прямоугольника
Отработка длины основания и высоты
Определите длину как основания, так и высоты. Это стороны, которые не параллельны друг другу. Например, скажем, у вас есть прямоугольник с основанием 6 см и высотой 7 см.
Умножить базу на высоту
Умножьте базу на высоту. Тренируйся 6 х 7 = 42.
Добавить единицу измерения
Добавьте правильную единицу измерения. В этом примере площадь прямоугольника составляет 42 см квадратных сантиметров.
Периметры треугольника
Отработать длину базы
Определите длину основания треугольника. Например, скажем, у вас есть треугольник с основанием 3 фута.
Высота тренировки
Рассчитайте высоту треугольника. Скажем, у вас есть треугольник с высотой 12 футов.
Умножить базу на высоту
Умножьте длину основания на длину высоты. Тренируй 3 х 12 = 36.
Разделить на два
Разделите на два. Отработать 36 ÷ 2 = 18.
Добавить единицу измерения
Добавьте правильную единицу измерения. Площадь треугольника составляет 18 квадратных футов.
Окружность окружности
Разделить периметр на пи
Разделите периметр круга, также известный как окружность, на pi (3.14159265), чтобы получить диаметр круга. Например, скажем, у вас есть круг с окружностью 40 дюймов. Отработка 40 ÷ 3.14159265 = 12.732.
Разделите диаметр на два
Разделите диаметр на два, чтобы получить длину радиуса. Отработать 12, 732 ÷ 2 = 6, 366.
Умножить радиус
Умножьте радиус на себя. В этом примере получится 6, 366 х 6, 366 = 40, 526.
Умножить на пи
Умножьте на pi (3.14159265). Отработка 40, 526 х 3, 14159265 = 127, 316.
Добавить единицу измерения
Добавьте правильную единицу измерения. Площадь круга составляет 127, 316 квадратных дюймов.
Как рассчитать площадь от периметра
Недвижимость разбита на лоты. Эти участки чаще всего имеют прямоугольную форму. Из распространенных форм только площадь прямоугольника рассчитывается путем измерения только периметра партии. Определение площади участка также называется определением площади участка. Люди используют площадь .
Как перевести площадь круга в квадратные футы
Хотя может показаться странным сказать, круги измеряются в квадратных единицах. Область круга требует возведения в квадрат своего радиуса, который является прямой линией от ее начала или координат центра до ее края или окружности. Умножение единицы измерения на себя приводит к тому, что эта единица становится квадратной; при умножении .
Как перевести площадь в квадратные футы
Международная система единиц — иначе известная как метрическая система — определяет квадратный метр как единицу площади. В противоположность этому в США обычно используются такие единицы, как квадратные футы или квадратные ярды. С помощью простых математических уравнений вы можете преобразовать измерения площади в квадратные футы.
Через периметр и одну из сторон
Формула расчёта площади прямоугольника и квадрата через периметр и одну из сторон Вам необходимо указать сторону прямоугольника или квадрата (a или b) и периметр, который рассчитывается по формуле P=2*a+2*b. Расчёт происходит по формуле .
Калькулятор расчёта площади прямоугольника и квадрата через периметр и одну из сторон, онлайн
Другой способ
Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!
Калькулятор вычисления периметра и площади геометрических фигур
Определение периметра и площади геометрических фигур — важная задача, которая возникает при решении многих практических или бытовых задач. Если вам требуется поклеить обои, установить забор, рассчитать расход краски или кафеля, то вам обязательно придется иметь дело с геометрическими расчетами.
Для решения перечисленных бытовых вопросов вам потребуется работать с самыми разными геометрическими фигурами. Мы представляем вам каталог онлайн-калькуляторов, которые позволяют вычислить параметры наиболее популярных плоских фигур. Рассмотрим их.
Окружность — это множество точек на плоскости, которые равноудалены от центра на некоторое расстояние, называемое радиусом. Многие считают круг и окружность синонимами, однако это не так. Круг — это часть плоскости, ограниченная окружностью. Вы можете отыскать периметр и площадь круга, но у окружности найти можно только длину, так как она представляет собой кривую, не имеющую площади. Длина окружности или периметр круга находятся по простой формуле:
где R – радиус фигуры.
Площадь круга рассчитывается согласно следующему выражению:
Круги часто встречаются в реальной жизни. В основном это основания цилиндрических и конических деталей, а также просто круглые поверхности, например, круглые столики, диски, грампластинки или катушки. Вид окружности имеют колеса, обручи или кольца. В трехмерной реальности окружность превращается в сферу, а круг — в шар. Форму этих геометрических тел имеют многие реальные и природные объекты. Благодаря своей эффективности круг охватывает максимальную площадь при минимальном периметре. Именно поэтому форму шара имеют капли, снежные комья, метеориты или планеты.
Треугольник
Треугольник — первая гармоничная фигура на плоскости, ограниченная тремя отрезками. Свойства треугольника известны людям с античных времен: изучение фигуры стартовало в Древнем Египте и не завершено до сих пор. Огромный вклад в изучение свойств фигуры внесли Евклид, Эйлер и Лобачевский, но даже сегодня продолжается работа над поиском замечательных точек треугольника, которых на данный момент найдено более 6 тысяч. Для определения периметра фигуры достаточно сложить длины всех сторон треугольника по формуле:
где a, b, c – стороны.
Для вычисления площади треугольника используется 5 различных формул плюс нахождение площади через определенный интеграл. Самое простое выражение для вычисления площади:
где a — сторона треугольника, h — его высота.
Наш калькулятор позволяет отыскать площадь или периметр треугольника, зная разные комбинации нескольких параметров, таких как углы, стороны или радиусы связанных окружностей.
Треугольники не слишком распространены в реальной повседневности. В природе они практически не встречаются, за исключением кристаллических решеток некоторых молекул или формы ушей у рыси. А вот в технике, геометрии и прикладных науках треугольник — царь и бог. Наибольшее применение находит следующий тип фигуры.
Прямоугольный треугольник
Прямоугольный треугольник — особая вариация фигуры, у которой две стороны обязательно образуют прямой угол. Эти стороны называются катетами, а противолежащая им сторона — гипотенузой. Соотношение катетов и гипотенузы лежит в основе евклидовой геометрии — эти соотношения определяются теоремой Пифагора. Изучение свойств прямоугольного треугольника положило начало одному из важных разделов математики — тригонометрии, которая используется в самых разных прикладных сферах от компьютерных игр до океанографии.
Формулы для вычисления периметра и площади прямоугольного треугольника ничем не отличаются от формул для обычных вариаций данной фигуры или вытекают из них.
Трапеция
Трапеция, как и слово трапеза, по-гречески означают «стол». Это плоская фигура, ограниченная четырьмя прямыми, две из которых параллельны, а две — нет. По сути, это выпуклый четырехугольник, поэтому параллелограмм и прямоугольник считаются частными случаями трапеции. В общем случае все стороны трапеции имеют разную длину, и для вычисления периметра используется формула:
a, b, c и d – стороны четырехугольника.
Площадь фигуры определяется как:
где a и b – параллельные стороны трапеции, h – высота.
Трапеция очень часто встречается в рукотворном мире. Грани многих предметов имеют вид этого четырехугольника, а буквально трапецеидальную форму имеют такие объекты как автомобильные окна, паруса, скаты крыш или юбки.
Параллелограмм
Параллелограмм — это элегантный четырехугольник, пары сторон которого параллельны друг другу. Любой четырехугольник становится параллелограммом, если его противолежащие стороны параллельны, диагонали в точке пересечения разделяются пополам, а противоположные углы равны. Для вычисления периметра параллелограмма используется простая формула, которая иллюстрирует сумму попарно равных сторон:
Площадь параллелограмма не зависит от величины его углов, и находится по следующей формуле:
Параллелограммы часто встречаются в реальной жизни: это грани многих призматических объектов, очертания полей, спортивных площадок или клумб. Форму параллелограммов имеют практически все отделочные материалы: плитка, кафель, гипсокартон, паркет. Такое разнообразие обусловлено тем, что частными случаями параллелограмма являются прямоугольник, ромб и квадрат, формулы для определения периметров и площадей которых аналогичны или выводятся из теоремы Пифагора.
Частные случаи
Ромб — четырехугольник с одинаковыми сторонами. Параллелограмм становится ромбом в случаях, если его диагонали пересекаются под углом 90 градусов и являются биссектрисами своих углов.
Прямоугольник — это параллелограмм с прямыми углами. Кроме того, параллелограмм считается прямоугольником, если его стороны и диагонали отвечают условиям теоремы Пифагора.
Квадрат — это параллелограмм, у которого все стороны равны и все углы равны. Диагонали квадрата полностью повторяют свойства диагоналей прямоугольника и ромба, что делает квадрат уникальной фигурой, которая характеризуется максимальной симметрией.
Многоугольник
Правильный полигон — это выпуклая фигура на плоскости, которая имеет равные стороны и равные углы. В зависимости от количества сторон многоугольники имеют собственные названия:
- — пентагон; — гексагон;
- восемь — октагон;
- двенадцать — додекагон.
И так далее. Геометры шутят, что круг — это многоугольник с бесконечным количеством углов. Наш калькулятор запрограммирован на определение периметров и площадей только правильных многоугольников. Он использует общие формулы для всех правильных полигонов. Для вычисления периметра используется формула:
где n – количество сторон многоугольника, a – длина стороны.
Для определения площади используется выражение:
S = n/4 × a 2 × ctg(pi/n).
Подставляя соответствующее n, мы можем подобрать формулу для любого правильного многоугольника, к которым также относятся равносторонний треугольник и квадрат.
Многоугольники имеют большое распространение в реальной жизни. Так форму пятиугольника имеет здание министерства обороны США — Пентагон, гексагона — пчелиные соты или кристаллы снежинки, октагона — дорожные знаки. Кроме того, многие простейшие, например радиолярии, имеют форму правильных полигонов.
Примеры из реальной жизни
Давайте рассмотрим пару примеров использования нашего калькулятора в реальных расчетах.
Покраска забора
Покраска поверхностей и расчет краски — это одни из самых очевидных бытовых задач, в которых требуются минимальные математические расчеты. Если нам нужно покрасить забор, высота которого составляет 1,5 метра, а длина 20 метров, то сколько потребуется банок краски? Для этого нужно узнать суммарную площадь забора и расход лакокрасочных материалов на 1 квадратный метр. Мы знаем, что расход эмали составляет 130 грамм на метр. Теперь определим площадь забора, используя калькулятор для вычисления площади прямоугольника. Она составит S = 30 квадратных метров. Естественно, что забор мы будем красить с обеих сторон, поэтому площадь для покраски увеличится до 60 квадратов. Тогда нам понадобится 60 × 0,13 = 7,8 килограмм краски или три стандартных банки по 2,8 килограмма.
Отделка бахромой
Пошив одежды — еще одна отрасль, в которой необходимы обширные геометрические познания. Пусть нам надо отделать бахромой платок, который представляет собой равнобедренную трапецию со сторонами 150, 100, 75 и 75 см. Для вычисления расхода бахромы нам потребуется узнать периметр трапеции. В этом нам и пригодится онлайн-калькулятор. Введем эти данные ячейки и получим ответ:
Таким образом, нам понадобится 4 м бахромы для отделки платка.
Заключение
Плоские фигуры составляют реальный мир вокруг. Мы часто задавались в школе вопросом, пригодится ли нам геометрия в будущем? Выше приведенные примеры показывают, что математика постоянно используется в повседневной жизни. И если площадь прямоугольника для нас привычна, то вычислить площадь додекагона может оказаться трудной задачей. Используйте наш каталог калькуляторов для решения школьных заданий или бытовых вопросов.
Как найти площадь, зная периметр
Площадь и периметр фигуры являются основными ее геометрическими параметрами. Их нахождение и описание с учетом известных величин составляет значительную долю в обучающем процессе. В общем смысле периметр – это длина всех границ фигуры. Для прямоугольника он равен сумме длин его сторон. А площадь представляет собой всю внутреннюю часть фигуры, измеренной в определенных единицах. Согласно свойствам фигур, а также формулам площади и периметра, можно найти соотношения между этими параметрами фигуры и выразить одно значение из другого. Для определения площади прямоугольника с известным периметром необходимо дополнительно знать одну его сторону.
Инструкция
Запишите известные параметры прямоугольной фигуры. Помимо периметра, для нахождения площади должна быть известна еще одна величина – любая сторона прямоугольника.
Согласно формуле, периметр прямоугольника находится, как сумма всех его сторон. Так как в прямоугольнике противолежащие стороны равны, можно записать формулу периметра: Р = (d+c)*2, где d и c являются прилегающими сторонами фигуры.
Площадь прямоугольной фигуры определяется произведением двух ее прилегающих сторон: S = d*c. Таким образом, зная одну из сторон можно легко найти площадь фигуры.
Подставьте в формулу периметра известные величины: одну из сторон и периметр. Выразите из полученного уравнения вторую неизвестную сторону и вычислите ее. Подставьте полученное значение в формулу площади. Вычислите искомое значение S – площади фигуры.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Contrary to all other answers, I say yes you can find the area $a$ of a known shape (clover leaf) from the length of its perimeter $p$.
Taking a similar model of the clover leaf, measure its area $A$ and perimeter $P$, using a curvimeter and a planimeter. You can also do that from a digital image (photoscan), but I don’t know of ready-made tools for that.
Then, for any clover leaf (of the same shape), this proportionality rule holds:
$$frac aA=left(frac pPright)^2,$$
so that
$$a=Aleft(frac pPright)^2=F_{clover}p^2.$$
For any shape there is a corresponding conversion factor that you can compute once for all.
For instance, with the picture below, you can estimate an area of $19852$ pixels and a perimeter of $750$ pixels (this is an inaccurate measurement).
Then $F_{clover3hearts}approx0.0353$, and your leaf has an area of $325$ square units.
Затеяв ремонт, необходимо в первую очередь иметь план действий и рассчитать свой бюджет. Только при грамотной планировке можно добиться качественной работы в короткие сроки. Если вы собираетесь сделать ремонт своего потолка, то необходимо сделать необходимые замеры. Зная площадь потолка можно примерно рассчитать, сколько материалов нужно будет купить и сколько будет стоимость услуги мастеров, если собираетесь обратиться к ним. Но площадь прямоугольника – это еще не все. Иногда бывает так, что нужно знать периметр прямоугольника . встает вопрос можно ли узнать периметр, зная при этом площадь? Рассмотрим этот вопрос повнимательнее, и постараемся найти периметр прямоугольника.
Данные необходимые для того чтобы найти периметр
Сумма всех сторон прямоугольника называется периметром – это еще мы уяснили из курса арифметики начальных классов. Как видно из условия необходимо знать длину сторон. Площадь же – результат умножения двух сторон, в этом случае так же необходимо знать длину сторон. И в первом и во втором случае обязательным условием является знание длин сторон А и В.
Как же через показатель площади найти у прямоугольника периметр? Тут может быть два варианта: первый, если наш прямоугольник с равными сторонами, то есть квадрат, а второй, если длина сторон разная.
При условии, что потолок квадратный то найти периметр очень просто. Зная формулу нахождения площади квадрата, можно выяснить найти длину всех сторон, ведь они у квадрата одинаковые.
- Площадь = длина стороны во второй степени. Чтобы найти длину стороны нам нужно переделать данную формулу следующим образом:
- Длина стороны = корень квадратный от площади
- Так длина стороны при площади 4 квадратных метров, будет 2 метра, а при 16 квадратных метров 4 метра.
- Периметр = длина квадрата умноженная на 4. При длине стороны 2 метра, то периметр будет 8 метров. Тут все просто.
Довольно простой способ, который позволит посчитать периметр квадратного потолка. Квадратный потолок будет отличаться тем что, при большом показателе периметра будет относительно не большие площади. Однако квадратные потолки – это довольно редкий случай. Как правило, такие помещения не очень смотрятся, поэтому наиболее распространенные являются прямоугольные потолки.
Можно ли также найти периметр не квадратного прямоугольника?
Данный способ для прямоугольника с разными сторонами не подходит. Ведь вариантов разности сторон может быть до бесконечности много. И тут для определения периметра обязательным условием является знание хотя бы одной из сторон и площади.
Площадь = длина первой стороны умножается на длину второй стороны
Исходя из этой формулы, зная площадь найти две неизвестные стороны прямоугольника невозможно, но возможно выяснить длину одной стороны, если есть длина первой. Так если площадь прямоугольника 10 квадратных метров, а длина одной из сторон 2 метра, то можно посчитать
10 = 2 умножить на длину неизвестной стороны, следовательно, неизвестная сторона = 10 разделить на 2. Получаем ответ 5 метров.
Периметр = ( 5 + 2 ) * 2. Периметр такого прямоугольника будет 14 метров.
Таким образом, с подсчетом не возникнет проблем, если вы хорошо учили арифметику. Однако для того чтобы упростить себе жизнь, можно обратиться в фирмы по ремонту квартир. Мастера подобных организаций берут на себя весь процесс расчетов и монтажных работ, вам только необходимо будет подписать с ними соответствующие документы и все. Использование подобных услуг – это очень простой способ решения нудной проблемы ремонта потолков. Вы получаете компетентную помощь от высококвалифицированной бригады мастеров, которые имеют большой опыт работы. А подписывая с ними контракт, вы страхуете себя от ненужных проблем, которые порою бывают из-за недопонимания. Договоры о сотрудничестве содержат все нюансы работы, и выполняются в соответствии с законом.
При планировании бюджета на ремонт потолка, после проведенных расчетов необходимо закупить расходные материалы. Рекомендуется покупать немного больше требуемого объема материалов, так как бывают случаи с неожиданным результатом. Так хорошо будет брать запас в 15 процентов – это оптимальный объем. Но еще более приемлемым будет заказать ремонт потолков под ключ, ведь в этом случае нет надобности беспокоиться о закупках. Мастера сами предложат выбрать материалы для ремонта, после того как выбор был сделан они привезут и сделают ремонт. Как правило, у них налажена система логистики, поэтому с доставкой не возникает проблем. Если вы цените свое время и нервы, рекомендуется обратиться к подобным компаниям по ремонту потолков под ключ. Вы получите качественный сервис в короткие сроки, и ваш потолок будет радовать вас как никогда прежде. В любом случае решение остается за вами!