На странице собраны калькуляторы и формулы, которые помогут найти и рассчитать площадь правильного многоугольника по стороне и количеству сторон, а также зная радиус вписанной и описанной окружностей.
Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.
Содержание:
- калькулятор площади правильного многоугольника
- формула площади правильного многоугольника через длину стороны
- формула площади правильного многоугольника радиус вписанной окружности
- формула площади правильного многоугольника радиус описанной окружности
- пример задачи
Формула площади правильного многоугольника через длину стороны и число сторон
S = dfrac{na^2}{4} cdot ctg dfrac{180°}{n}
a – длина стороны многоугольника
n – число сторон многоугольника
Формула площади правильного многоугольника через радиус вписанной окружности
S = nr^2 tg dfrac{180°}{n}
r – радиус вписанной в многоугольник окружности
n – число сторон многоугольника
Формула площади правильного многоугольника через радиус описанной окружности
S = dfrac{nR^2}{2} cdot sin dfrac{360°}{n}
R – радиус описанной в многоугольник окружности
n – число сторон многоугольника
Пример задачи на нахождение площади правильного многоугольника
Задача 1
Найдите площадь правильного n-угольника, если n = 6, r = 9 см, где r – радиус вписанной окружности.
Решение
Чтобы решить эту задачу мы используем вторую формулу.
S = nr^2 tg dfrac{180°}{n} = 6 cdot 9^2 cdot tg dfrac{180°}{6} = 6 cdot 81 cdot tg 30° = 486 cdot tg 30° = 486 cdot 0.57735027 approx 280.59223 : см^2
Ответ: 486 cdot tg 30° approx 280.59223 : см^2
Чтобы проверить ответ воспользуемся калькулятором .
Найдём площадь правильного многоугольника через радиусы вписанной и описанной окружностей и через его сторону.
Любой правильный многоугольник вписан в окружность и описан около окружности. Центры вписанной и описанной окружностей совпадают и называются центром правильного многоугольника.
Соединив центр правильного n-угольника
со всеми его вершинами, получим n равнобедренных треугольников.
Основание каждого такого треугольника равно стороне многоугольника, боковые стороны равны радиусу описанной около многоугольника окружности угол при вершине — центральному углу правильного многоугольника
Так как площадь треугольника равна половине произведения его сторон на синус угла между ними,
Отсюда
Поскольку многоугольник состоит из n таких треугольников, формула площади правильного многоугольника через радиус описанной окружности:
Проведём в треугольнике A1OA2 высоту OF. Её длина равна радиусу вписанной в правильный n-угольник окружности:
По свойству равнобедренного треугольника OF является также его биссектрисой и медианой:
Из прямоугольного треугольника A1OF по определению тангенса
откуда
Так как площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне,
Площадь
равна сумме n таких площадей.
Таким образом, формула площади правильного многоугольника через радиус вписанной окружности:
Из треугольника A1OF
Следовательно,
Поскольку многоугольник состоит из n равных треугольников, формула площади правильного многоугольника через его сторону:
Правильный многоугольник
- формулы, признаки и свойства правильного многоугольника
- формулы правильного n-угольника
- правильный треугольник
- правильный четырехугольник
- правильный шестиугольник
- правильный восьмиугольник
Формулы, признаки и свойства правильного многоугольника
Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.
Многоугольники отличаются между собой количеством сторон и углов.
Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.
Признаки правильного многоугольника
Многоугольник будет правильным, если выполняется следующее условие: все стороны и углы одинаковы.
a1=a2=a3=…=an-1=an
,
α1=α2=α3=…=αn-1=αn
где a1…an — длины сторон правильного многоугольника,
α1…αn — внутренние углы между стронами правильного многоугольника.
Основные свойства правильного многоугольника
- Все стороны равны:
a1=a2=a3=…=an-1=an - Все углы равны:
α1=α2=α3=…=αn-1=αn - Центр вписанной окружности Oв совпадает с центром описанной окружности Oо, что и образуют центр многоугольника O.
- Сумма всех углов n-угольника равна:180°·n-2
- Сумма всех внешних углов n-угольника равна 360°: β1+β2+β3+…+βn-1+βn=360°
- Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины: Dn = n·n-32
- В любой многоугольник можно вписать окружность и описать круг; при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника: S = π4·a2
- Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O.
Формулы правильного n-угольника
Формулы длины стороны правильного n-угольника
Формула стороны правильного n-угольника через радиус вписанной окружности
a = 2·r·tg180°n
(через градусы),
a = 2·r·tgπn
(через радианы)
Формула стороны правильного n-угольника через радиус описанной окружности
a = 2·R·sin180°n
(через градусы),
a = 2·R·sinπn
(через радианы)
Формулы радиуса вписанной окружности правильного n-угольника
Формула радиуса вписанной окружности n-угольника через длину стороны
r = a:2·tg180°n
(через градусы),
r = a:2·tgπn
(через радианы)
Формула радиуса описанной окружности правильного n-угольника
Формула радиуса описанной окружности n-угольника через длину стороны
R = a:2·sin180°n
(через градусы),
R = a:2·sinπn
(через радианы)
Формулы площади правильного n-угольника
Формула площади n-угольника через длину стороны
S = n·a24·ctg180°n
Формула площади n-угольника через радиус вписанной окружности
S = n·r2·tg180°n
Формула площади n-угольника через радиус описанной окружности
S = n·R22·sin360°n
Формула периметра правильного многоугольника
Формула периметра правильного n-угольника
Периметр правильного n-угольника равен произведению длины одной стороны правильного n-угольника на количество его сторон.
P = n·a
Формула определения угла между сторонами правильного многоугольника
Формула угла между сторонами правильного n-угольника
αn = n-2n·180°
Правильный треугольник
Правильный треугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°.
Формулы правильного треугольника
Формула стороны правильного треугольника через радиус вписанной окружности
Сторона правильного треугольника равна удвоенному произведению радиуса вписанной окружности на корень из трёх.
a = 2·r·3
Формула стороны правильного треугольника через радиус описанной окружности
Сторона правильного треугольника равна произведению радиуса описанной окружности на корень из трёх.
a = R·3
r = a·36
R = a·33
Формула площади правильного треугольника через длину стороны
S = a2·34
Формула площади правильного треугольника через радиус вписанной окружности
S = r2·3·3
Формула площади правильного треугольника через радиус описанной окружности
S = R2·3·34
Углы между сторонами правильного треугольника
α1=α2=α3=60°
Правильный четырехугольник
Правильный четырехугольник — это квадрат.
Формулы правильного четырехугольника
Формула стороны правильного четырехугольника через радиус вписанной окружности
Сторона правильного четырехугольника равна двум радиусам вписанной окружности.
a = 2·r
Формула стороны правильного четырехугольника через радиус описанной окружности
Сторона правильного четырехугольника равна произведению радиуса описанной окружности на корень из двух.
a = R·2
Формула радиуса вписанной окружности правильного четырехугольника через длину стороны
Радиус вписанной окружности правильного четырехугольника равен половине стороны четырехугольника.
r = a2
Формула радиуса описанной окружности правильного четырехугольника через длину стороны
Радиус описанной окружности правильного четырехугольника равен половине произведения стороны четырехугольника на корень из двух.
R = a·22
Формула площади правильного четырехугольника через длину стороны
Площадь правильного четырехугольника равна квадрату стороны четырехугольника.
S = a2
Формула площади правильного четырехугольника через радиус вписанной окружности
Площадь правильного четырехугольника равна четырем радиусам вписанной окружности четырехугольника.
S = 4·r2
Формула площади правильного четырехугольника через радиус описанной окружности
Площадь правильного четырехугольника равна двум квадратам радиуса описанной окружности.
S = 2·R2
Углы между сторонами правильного четырехугольника
α1=α2=α3=α4=90°
Правильный шестиугольник
Правильный шестиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного шестиугольника равны между собой, все углы также равны и составляют 120°.
Формулы правильного шестиугольник
Формула стороны правильного шестиугольника через радиус вписанной окружности
a = 2·r·33
Формула стороны правильного шестиугольника через радиус описанной окружности
Длина стороны правильного шестиугольника равна радиусу описанной окружности.
a = R
Формула радиуса вписанной окружности правильного шестиугольника через длину стороны
r = a·32
Формула радиуса описанной окружности правильного шестиугольника через длину стороны
R = a
Формула площади правильного шестиугольника через длину стороны
S = a2·3·32
Формула площади правильного шестиугольника через радиус вписанной окружности
S = r2·2·3
Формула площади правильного шестиугольника через радиус описанной окружности
S = R2·3·32
Углы между сторонами правильного шестиугольника
α1=α2=α3=α4=α5=α6=120°
Правильный восьмиугольник
Правильный восьмиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного восьмиугольник равны между собой, все углы также равны и составляют 135°.
Формулы правильного восьмиугольника
Формула стороны правильного восьмиугольника через радиус вписанной окружности
a = 2·r·2-1
Формула стороны правильного восьмиугольника через радиус описанной окружности
a = R·2-2
Формула радиуса вписанной окружности правильного восьмиугольника через длину стороны
r = a·2+12
Формула радиуса описанной окружности правильного восьмиугольника через длину стороны
R = a·4+222
Формула площади правильного восьмиугольника через длину стороны
S = a2·2·2+1
Формула площади правильного восьмиугольника через радиус вписанной окружности
S = r2·8·2-1
Формула площади правильного восьмиугольника через радиус описанной окружности
S = R2·2·2
Углы между сторонами правильного восьмиугольника
α1=α2=α3=α4=α5=α6=α7=α8=135°
- Коротко о важном
- Таблицы
- Формулы
- Формулы по геометрии
- Теория по математике
Правильный многоугольник. Формулы, признаки и свойства правильного многоугольника
Определение. Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.
Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.
Многоугольники отличаются между собой количеством сторон и углов.
Признаки правильного многоугольника
Многоугольник будет правильным, если выполняется следующее условие:
Все стороны и углы одинаковы:
a1 = a2 = a3 = … = an-1 = an
α1 = α2 = α3 = … = αn-1 = αn
Основные свойства правильного многоугольника
1. Все стороны равны:
a1 = a2 = a3 = … = an-1 = an
2. Все углы равны:
α1 = α2 = α3 = … = αn-1 = αn
3. Центр вписанной окружности Oв совпадает з центром описанной окружности Oо, что и образуют центр многоугольника O
4. Сумма всех углов n-угольника равна:
180° · (n – 2)
5. Сумма всех внешних углов n-угольника равна 360°:
β1 + β2 + β3 + … + βn-1 + βn = 360°
6. Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины:
7. В любой многоугольник можно вписать окружность и описать круг при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника:
8. Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O
Правильный n-угольник – формулы
Формулы длины стороны правильного n-угольника
1. Формула стороны правильного n-угольника через радиус вписанной окружности:
2. Формула стороны правильного n-угольника через радиус описанной окружности:
Формула радиуса вписанной окружности правильного n-угольника
Формула радиуса вписанной окружности n-угольника через длину стороны:
Формула радиуса описанной окружности правильного n-угольника
Формула радиуса описанной окружности n-угольника через длину стороны:
Формулы площади правильного n-угольника
1. Формула площади n-угольника через длину стороны:
2. Формула площади n-угольника через радиус вписанной окружности:
3. Формула площади n-угольника через радиус описанной окружности:
Формула периметра правильного многоугольника:
Формула периметра правильного n-угольника:
P = na
Формула определения угла между сторонами правильного многоугольника:
Формула угла между сторонами правильного n-угольника:
Рис.3 |
Правильный треугольник
Формулы правильного треугольника:
1. Формула стороны правильного треугольника через радиус вписанной окружности:
a = 2r √3
2. Формула стороны правильного треугольника через радиус описанной окружности:
a = R√3
3. Формула радиуса вписанной окружности правильного треугольника через длину стороны:
4. Формула радиуса описанной окружности правильного треугольника через длину стороны:
5. Формула площади правильного треугольника через длину стороны:
6. Формула площади правильного треугольника через радиус вписанной окружности:
S = r2 3√3
7. Формула площади правильного треугольника через радиус описанной окружности:
8. Угол между сторонами правильного треугольника:
α = 60°
Рис.4 |
Правильный четырехугольник
Правильный четырехугольнику – квадрат.
Формулы правильного четырехугольника:
1. Формула стороны правильного четырехугольника через радиус вписанной окружности:
a = 2r
2. Формула стороны правильного четырехугольника через радиус описанной окружности:
a = R√2
3. Формула радиуса вписанной окружности правильного четырехугольника через длину стороны:
4. Формула радиуса описанной окружности правильного четырехугольника через длину стороны:
5. Формула площади правильного четырехугольника через длину стороны:
S = a2
6. Формула площади правильного четырехугольника через радиус вписанной окружности:
S = 4 r2
7. Формула площади правильного четырехугольника через радиус описанной окружности:
S = 2 R2
8. Угол между сторонами правильного четырехугольника:
α = 90°
Правильный шестиугольник
Формулы правильного шестиугольника:
1. Формула стороны правильного шестиугольника через радиус вписанной окружности:
2. Формула стороны правильного шестиугольника через радиус описанной окружности:
a = R
3. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:
4. Формула радиуса описанной окружности правильного шестиугольника через длину стороны:
R = a
5. Формула площади правильного шестиугольника через длину стороны:
6. Формула площади правильного шестиугольника через радиус вписанной окружности:
S = r2 2√3
7. Формула площади правильного шестиугольника через радиус описанной окружности:
8. Угол между сторонами правильного шестиугольника:
α = 120°
Правильный восьмиугольник
Формулы правильного восьмиугольника:
1. Формула стороны правильного восьмиугольника через радиус вписанной окружности:
a = 2r · (√2 – 1)
2. Формула стороны правильного восьмиугольника через радиус описанной окружности:
a = R√2 – √2
3. Формула радиуса вписанной окружности правильного восьмиугольника через длину стороны:
4. Формула радиуса описанной окружности правильного восьмиугольника через длину стороны:
5. Формула площади правильного восьмиугольника через длину стороны:
S = a2 2(√2 + 1)
6. Формула площади правильного восьмиугольника через радиус вписанной окружности:
S = r2 8(√2 – 1)
7. Формула площади правильного восьмиугольника через радиус описанной окружности:
S = R2 2√2
8. Угол между сторонами правильного восьмиугольника:
α = 135°
Площадь правильного многоугольника по радиусу описанной окружности и количеству сторон
Калькулятор рассчитывает площадь правильного многоугольника по радиусу описанной около многоугольника окружности и количеству сторон.
Введите радиус описанной окружности R
Введите количество сторон многоугольника n
Формула площади правильного многоугольника по радиусу описанной около многоугольника окружности и количеству сторон
Где R – радиус описанной около правильного многоугольника окружности,
n – количество сторон правильного многоугольника
Вывод формулы площади правильного многоугольника по радиусу описанной около многоугольника окружности и количеству сторон
Треугольники AOB и COB равны и являются прямоугольными.
AO=OC=R.
Угол α будет равен 360 градусов/(количество сторон * 2)
Площадь треугольника ACO будет равно произведению половины основания AC=2×AB на высоту BO
Затем умножим площадь треугольника ACO на количество сторон правильного многоугольника и получим площадь правильного многоугольника
Заменим sin(2α)=2sin(α)cos(α) и подставим вместо α ранее выведенную формулу
Похожие калькуляторы