Как найти площадь нескольких кругов

Площадь кольца

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²

Расчет площади пересечения окружностей методом Монте-Карло

Эта статья родилась как логическое продолжение пятничного поста о методе Бутстрапа, а особенно, комментариев к нему. Не защищая метод Бутстрапа, стоит уделить внимание методам Монте-Карло. Здесь я хочу поделиться своим опытом применения Монте-Карло в одной из своих практических задач, а также обоснованием законности этого применения.

Итак, моя задача заключалась в необходимости вычисления площади фигуры, являющейся пересечением окружностей, с последующей реализацией на языке JavaScript. Площадь под графиком – это интеграл. Интегрирование методом Монте-Карло достаточно широко известно, но, как многие верно заметят, его применение требует некоторого обоснования. За подробностями прошу под кат.

Обоснование

Задача расчета площади пересечения двух окружностей является тривиальной геометрической задачей (координаты центров окружностей и их радиусы нам известны). Площадь пересечения двух окружностей – это сумма площадей соответствующих сегментов этих окружностей. Есть решения для расчета площади пересечения двух, трех, четырех окружностей в различных частных случаях.

А вот решения общего случая для пересечения даже трех окружностей уже далеко не так тривиальны. В процессе поиска я нашел даже исследования по расчету площади пересечения N окружностей, однако они настолько же интересны, насколько и сложны.

Здесь на сцену выходит метод Монте-Карло. Благодаря современным компьютерным мощностям этот метод позволяет провести большое количество статистических испытаний, на основе результатов которых делается обобщение.

Итак, алгоритм расчета площади любой фигуры методом Монте-Карло сводится к следующему:

  1. Фигура вписывается в прямоугольник. Координаты сторон прямоугольника известны, значит, известна его площадь.
  2. Псевдослучайным образом внутри прямоугольника генерируется большое количество точек. Для каждой точки определяется, попала ли точка внутрь исходной фигуры или нет.
  3. В результате площадь исходной фигуры вычисляется исходя из обычной пропорции: отношение количества точек, попавших в фигуру, к общему количеству сгенерированных точек равно отношению площади фигуры к площади ограничивающего ее прямоугольника.

Последняя проблема, которую надо решить, заключается в том, что каким-то образом необходимо определять, попала ли точка внутрь исходной фигуры. В моем случае данная задача решается достаточно просто, поскольку моя фигура состоит из окружностей, координаты центров и радиусы которых известны.

Реализация задачи на JavaScript

Пара гвоздей в метод Бутстрапа

Если говорить именно о методе Бутстрапа, то мое личное мнение заключается в том, что случайная генерация набора данных по имеющемуся набору в общем случае не может служить для оценки закономерностей, поскольку сгенерированная информация не является достоверной. В общем, это же, только более умными (и нередко более резкими) словами, говорят и многие авторы, например, Орлов в своем учебнике по Эконометрике.

Как найти площадь между двумя окружностями

Позволяет рассчитать площадь пересечения двух окружностей произвольных радиусов.

Используются достаточно простые формулы, которые элементарно доказываются.

Дополнительно есть калькулятор, который высчитывает координаты пересечения двух окружностей

Площадь пересечения двух окружностей состоит из двух сегментов FDG и FBG

Вывести формулу расчета площади пересечения двух окружностей можно из двух общеизвестных формул и знаний решения треугольника:

Формулы сектора окружности

и длина хорды окружности

По известным сторонам треугольника AFС определяем высоту на сторону AC.

Удвоением этой высоты мы получаем длину хорды, после этого узнаем угол альфа по второй формуле.

По известным сторонам треугольника AFG узнаем его площадь. Вычитаем её из площади сектора окружности, ведь угол альфа нам уже известен.

И получаем площадь сегмента FBG

Подобным образом вычисляем FDG

Это лишь один из способов решения задачи вычисления площади пересечения двух окружностей.

– радиус первой окружности

– радиус второй окружности

– расстояние между центрами окружностей

Пример

Хотим узнать площадь пересечения двух окружностей радиусом в 1 и расстоянием между центрами 0.8079455

Пишем okr 1 1 0.8079455

Площадь двух пересекающихся окружностей равна = 1.5707963388681

Первая окружность радиус 4, вторая окружность радиус 2, расстоянием между центрами 3

Пишем okr 4 2 3

Площадь двух пересекающихся окружностей равна = 9.5701994729833

Первая окружность радиус 4, вторая окружность радиус 2, расстоянием между центрами 0

[spoiler title=”источники:”]

http://habr.com/ru/post/192272/

http://abakbot.ru/online-2/73

[/spoiler]

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Формула (формулы) площади круга

Найти площадь круга можно разными способами, в зависимости от известных данных.

По радиусу

Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):

Формула площади круга по радиусу

Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).

Через диаметр

Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d – диаметр, а π – константа, равная 3,1415…):

Формула площади круга по диаметру

К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).

Через длину окружности

Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L – длина окружности, а π – константа, равная 3,1415…):

Формула площади круга по длине окружности

Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202  / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).

Какие термины используются для поиска площади круга?

Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.

Окружность, круг, радиус, диаметр

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.

Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней. 

Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.

Площадь круга и размеры пицц

Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:

Площадь круга и размеры пицц

Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?

Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:

  • 252 + 252 = 625 + 625 = 1250
  • 402 = 1600

Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.

Площади усеченных частей круга

А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:

Хорда, сектор, сегмент и их площади

Хорда — отрезок, соединяющий любые две точки окружности.

Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.

Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:

S = sr/2

где S — площадь сектора, r — радиус круга.

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.

Площадь сегмента можно найти по формулам:

S = r2sinα/ 2

где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.

Часто задаваемые вопросы о площади круга?

И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.

Входит ли окружность (периметр) в площадь круга?

Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.

Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?

Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Кто впервые научился вычислять площадь круга?

Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

назад к списку всех задач


Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.


Рисунок кольца для задачи

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O – общий центр окружностей


Найти площадь кольца: S


Решение

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула разницы площадей

Формула площади внешнего круга.

площадь внешнего круга

Формула площади внутреннего круга.

площадь внутреннего круга

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Формула площади кольца

Вставляем значения.

Полученный результат


Ответ:

ответ



Число пи приблизительноеРезультат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли  π ≈ 3.14



Калькулятор для расчета площади кольца



назад к списку всех задач

Подробности

Опубликовано: 06 сентября 2017

Обновлено: 13 августа 2021

На клетчатой бумаге нарисовано два круга. Площадь внутреннего круга равна 1. Найдите площадь заштрихованной фигуры.

Так как мы можем наблюдать радиус первого от круга равен 3 клеточкам, а большого 6. Это значит, что мы можем высчитать площадь большого кружка, а точнее во сколько раз она больше маленького объекта. Так как радиус двойной, то при возведение его в квадрат получим значение в 4 раз больше. Значит 4 минус 1 равно 3.

система выбрала этот ответ лучшим

Maste­r-Marga­rita
[135K]

5 лет назад 

Решение:

Правило: Площадь двух кругов относятся друг к другу точно также как относятся друг к другу квадраты их радиусов.

Видно, что рисунки сделаны на клетчатой тетрадной бумаге, и можно определить, что:

R = радиус внешнего круга = 6 сантиметров

r = радиус внутреннего круга = 3 сантиметра

Радиус внешнего круга больше радиуса внутреннего в 2 раза.

Значит, площадь большого круга в 4 раза больше площади малого (смотри правило).

Разница между площадями составит: 4 – 1 = 3

Ответ: 3.

Татья­на Ьегло­ва
[169K]

5 лет назад 

Площадь заштрихованной фигуры равна разности площадей большого и малого круга.

Радиус большего круга в два раза больше радиуса малого круга. Примем радиус малого круга за 1, а большого за 2, поскольку на чертеже он в два раза больше. Тогда площадь малого круга будет πr² = π. Площадь большого круга, соответственно будет . По условиям задачи площадь малого круга равна 1 (единице). Тогда площадь большого равна 4.

Разница площадей равна 4 – 1 = 3. Ответ: 3

dusel­ldorf
[4.3K]

5 лет назад 

Площадь заштрихованной фигуры S равна разности площадей большого ( S2 ) и малого ( S1 ) кругов.

Из рисунка видно, что диаметр маленького круга d равен 6 клеткам, а диаметр большого круга D равен 12 клеткам.

Коэффициент подобия двух кругов К = D / d = 12 / 6 = 2

Значит, S2 = 2^2 * S1 = 4 * S1

S = S2 – S1 = 4 * S1 – S1 = 3 * S1

Так как по условию задачи S1 = 1, то

S = 3 * 1 = 3

Ответ: площадь заштрихованной фигуры равна 3.

Павел 60
[7.6K]

5 лет назад 

Видно, что радиус большей окружности в два раза больше внутренней окружности. Тогда, зная что площадь внутреннего круга равен 1, составим два уравнения.

1=πR² – площадь внутреннего круга

S=π(2R)² – площадь наружного круга.

S=4.

Тогда площадь заштрихованной фигуры равна: 4-1=3.

Ответ:3

Знаете ответ?

Как найти площадь круга и его частей

Вычисление площади круга и его частей относится к задачам по геометрии 9-го класса. Умение их решать вам может потребоваться не только для того, чтобы помочь вашему ребенку с геометрией, но и для выполнения технических задач на работе или в быту. Применяя формулу вычисления площади круга, можно, например, рассчитать расход материалов по чертежам при строительстве круглого бассейна или вычислить площадь сечения электрического кабеля при выполнении электромонтажных работ.

Как найти площадь круга и его частей

Вам понадобится

  • Для нахождения площади круга:
  • – геометрическая формула нахождения площади круга S = Пхr2, где:
  • – S – площадь круга;
  • – П – число «пи», оно постоянно и равно значению 3,14;
  • – r – радиус круга.
  • Для нахождения площади сектора круга:
  • – геометрическая формула S=П х r2 / 360° х n°, где:
  • – S – площадь сектора круга;
  • – П – число «пи», оно постоянно и равно значению 3,14;
  • – r – радиус круга;
  • – n – значение центрального угла сектора в градусах.

Инструкция

Измерьте радиус окружности с помощью линейки. Вычислите значение площади круга по геометрической формуле нахождения площади круга (площадь круга равна произведению числа «пи» и квадрата радиуса круга).

Возведите для нахождения площади круга значение длины радиуса круга в квадрат, умножьте полученное число на число «пи» (его значение постоянно и равно 3,14). Так, воспользовавшись формулой, вы найдете площадь круга.

Измерьте угол сектора в градусах с помощью транспортира. Площадь круга вы уже знаете. Вычислите значение площади сектора круга по геометрической формуле (площадь сектора круга равна произведению площади круга с радиусом r на отношение угла сектора n° к углу полной окружности, т.е. 360°).

Поделите значение площади круга на 360 и умножьте на величину угла сектора в градусах. Так вы найдете величину площади сектора круга по градусной мере его угла.

Обратите внимание

Радиус – это отрезок, соединяющий центр с любой точкой на окружности(круге). Диаметр – это отрезок, соединяющий две точки на окружности (круге) и проходящий через ее центр.

Сектор круга – это часть круга, ограниченная дугой и двумя радиусами.

Центральный угол сектора – угол, образованный двумя радиусами.

Полезный совет

Вычислить радиус круга, зная его диаметр, можно, разделив значение диаметра круга на число 2.

Источники:

  • Формулы онлайн

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий