Как найти площадь объем периметр прямоугольного параллелепипеда

Объем, площадь и периметр прямоугольного параллелепипеда – онлайн

Объем, площадь и периметр прямоугольного параллелепипеда.

Прямоугольный параллелепипед  — многогранник с шестью гранями, каждая из которых является в общем случае прямоугольником.

Противолежащие грани параллелепипеда равны. Рёбра параллелепипеда, сходящиеся в одной вершине взаимно перпендикулярны.

Объём прямоугольного параллелепипеда можно найти по формуле:  

V=abc;

Площадь поверхности прямоугольного параллелепипеда равна:  

S=2(ab+bc+ac);

Периметр параллелепипеда рассчитывается по следующей формуле: 

P = 4a + 4b + 4c;

Объем, площадь и периметр прямоугольного параллелепипеда – калькулятор онлайн

Сторона a:


Сторона b:

Сторона c: 

Найти:

V – Объем

S – Площадь

P – Периметр

Итого :

Поделиться в соц сетях:

Популярные сообщения из этого блога

Найти тангенс фи , если известен косинус фи

Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ Калькулятор онлайн – косинус в тангенс cos φ: tg φ: Поделиться в соц сетях: Найти синус φ, если известен тангенс φ Найти косинус φ, если известен тангенс φ

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание  доктора Диксона о “Использование сердечного индекса Руфье в медико-спортивном контроле”. Проба Руфье – представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле:  Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в

Найти косинус фи (cos φ), через тангенс фи (tg φ)

tg фи=…  чему равен cos фи? Как перевести тангенс в косинус формула: cos(a)=(+-)1/sqrt(1+(tg(a))^2) Косинус через тангенс, перевести tg в cos, калькулятор – онлайн tg φ: cos φ: ± Поделиться в соц сетях:

Объем, площадь, периметр. Задачи для начальной школы

Чтобы найти площадь прямоугольника, надо его ширину умножить на длину.

Формула площади

S = a * b

Чтобы найти периметр прямоугольника, надо сложить все его стороны.

Формула периметра

Р = а * 2 + b * 2 или Р = (а + b ) * 2

Формулы площади и периметра для квадрата выглядят так:

S = a * a

Р = а * 4

Чтобы найти объем прямоугольного параллелепипеда, надо умножить его длину на ширину и высоту.

Формула объема

V = a * b * c

Формула объема для куба

V = a * a * a

Задачи

  • Длина прямоугольника равна 5 см, а ширина – 4 см. Найдите площадь и периметр прямоугольника.
  • Сторона квадрата равна 20 см. Найдите площадь и периметр квадрата.
  • Вычислите периметр квадрата со стороной 6 дм.
  • Вычислите площадь прямоугольника, длины сторон которого равны 12 мм и 8 мм.
  • Длина прямоугольника равна 30 см, ширина – на 10 см меньше. Найдите Р и S этого прямоугольника.
  • Длина одной стороны прямоугольника 4 см, а ширина в 2 раза больше. Найдите периметр и площадь прямоугольника.
  • Сторона квадрата равна 10 дм. Чему равен периметр?
  • Ширина прямоугольника 9 дм, а длина в 2 раз больше ширины. Найдите Р и S этого прямоугольника.
  • Площадь прямоугольника 54 см², его длина 9 см. Чему равна ширина прямоугольника?
  • Периметр квадрата равен 20 см. Найдите его площадь.
  • Площадь прямоугольника равна 360 см², его длина 6 см. Найдите периметр этого прямоугольника.
  • Периметр прямоугольника равен 40 дм. Ширина – 5 дм. Найдите его площадь?
  • Сад около дома имеет ширину 20 м, а длину – 30 м. Какой длины надо поставить вокруг сада. Какова площадь сада?
  • Прямоугольный параллелепипед имеет следующие грани – 6 см, 8 см, 10см. Найдите объем параллелепипеда.
  • Высота комнаты 3 м, ширина 6 м, а длина 10 м. Сколько кубических метров воздуха находится в комнате? Найдите площадь пола, потолка, стен?
  • Найдите объем бассейна, если его глубина 3 м, ширина 12м, длина 20 м.
  • Длина аквариума 50 см, ширина – 30 см, высота 40 см. Сколько литров воды можно в него налить (до краев)?
  • Найдите объем книги. Толщина – 2 см, ширина – 15 см, а длина – 20 см.

Также посмотрите дополнительные задания по темам:

Задания на таблицу умножения и деления.

Уравнения простые и составные, 3 класс.

Карточки для развития внимания на каждый день (примеры с несколькими действиями плюс упражнение на внимание).

Единицы времени.

Примеры на порядок действий (примеры с несколькими действиями).

Единицы длины и Единицы веса.

Прямоугольный параллелепипед. Формулы и свойства прямоугольного параллелепипеда

Определение.

Прямоугольный параллелепипед — это многогранная объемная фигура ограничена шестью прямоугольниками.

Куб является частным случаем прямоугольного параллелепипеда.

Изображение прямоугольного параллелепипеда с обозначениями
Рис.1

Основные свойства правильного прямоугольного параллелепипеда

Противоположные грани прямоугольного параллелепипеда параллельны и равны.

Ребра прямоугольного параллелепипеда, которые сходятся в одной вершине взаимно перпендикулярны.

Не параллельные грани прямоугольного параллелепипеда пересекаются под прямым углом.

У прямоугольного параллелепипеда четыре диагонали.

Диагонали прямоугольного параллелепипеда равны между собой и пересекаются в одной точке.

Объем прямоугольного параллелепипеда

Формула. Объем прямоугольного параллелепипеда равна произведению длин его сторон:

V = a · b · c

Площадь поверхности прямоугольного параллелепипеда

Определение. Поверхность прямоугольного параллелепипеда состоит из суммы площадей прямоугольников, ограничивающие его.

Формула. Площадь поверхности прямоугольного параллелепипеда через длины его сторон:

S = 2a·b + 2a·c + 2b·c

Диагональ прямоугольного параллелепипеда

Определение. Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две не соседние вершины, лежащие на разных гранях.

Формула. Длина диагонали прямоугольного параллелепипеда через длины его сторон:

d = √a2 + b2 + c2

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$а$ – длина;

$b$ – ширина;

$с$ – высота(она же боковое ребро);

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$V$ – объем.

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_{бок}=P_{осн}·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

$S_{п.п}=2(ab+bc+ac).$

Дополнительные сведения, которые пригодятся для решения задач:

Куб

$а$ – длина стороны.

$V=a^3;$

$S_{бок}=4а^2;$

$S_{п.п}=6а^2;$

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) – треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

$V={1}/{3}S_{осн}·h$

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

Площадь треугольника.

  • $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$.
  • $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  • Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$.
  • $S=p·r$, где $r$ – радиус вписанной окружности.
  • $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности.
  • Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны. 

В основании лежит четырехугольник.

  1. Прямоугольник.
    $S=a·b$, где $а$ и $b$ – смежные стороны.
  2. Ромб.
    $S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба.
    $S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.
  3. Трапеция.
    $S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.
  4. Квадрат.
    $S=a^2$, где $а$ – сторона квадрата.

Пример:

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Решение:

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

$V={S_{прямоугольника}·h}/{3}={a·b·h}/{3}$, где $a$ и $b$ – стороны прямоугольника.

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

$СС_1=АА_1=4$

$V={А_1В_1·A_1D_1·СС_1}/{3}={8·12·4}/{3}=128$

Ответ: $128$

Теорема Пифагора.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Математика

Тема 4: Площади и объемы

Урок 2: Прямоугольный параллелепипед

  • Видео
  • Тренажер
  • Теория

Заметили ошибку?

Прямоугольный параллелепипед

Мы часто встречаем предметы, имеющие похожую форму. Они могут быть сделаны из разного материала и окрашены в разные цвета. Например, коробок, шкаф, колонки, кирпич – похожи, но отличаются мелкими деталями: у колонок есть кнопки, у шкафа – двери. Все они напоминают по форме изображенный на рисунке предмет, не имеющий никаких второстепенных деталей. Это тело называется прямоугольный параллелепипед.

Поверхность прямоугольного параллелепипеда состоит из 6 прямоугольников, каждый из которых называют гранью прямоугольного параллелепипеда. Противоположные грани прямоугольного параллелепипеда равны.

Стороны прямоугольников, которые являются гранями прямоугольного параллелепипеда, называются ребрами этого прямоугольного параллелепипеда, а вершины граней – вершины параллелепипеда.

У прямоугольного параллелепипеда 6 граней, 12 ребер и 8 вершин. Прямоугольный параллелепипед имеет три измерения – длину, ширину и высоту.

Куб – это прямоугольный параллелепипед, у которого все измерения одинаковы. Поэтому поверхность куба состоит из 6 равных квадратов.

Названия всех ребер параллелепипеда: АВ, ВС, CD, DA, А1В1, В1С1, C1D1, D1A1, АА1, DD1, СС1, ВВ1.

Вершины параллелепипеда: А, В, С, D, А1, В1, С1, D1.

У параллелепипеда 6 граней, каждая грань повторяется 2 раза. Тогда можно записать формулу для площади поверхности прямоугольного параллелепипеда:

где abc – длина, ширина и высота.

У прямоугольного параллелепипеда 12 ребер, причём длина a=DA=BC= D1A1= В1С1, ширина b=AB=CD=А1В1=C1D1, высота c=АА1=DD1=СС1=ВВ1. Тогда периметр (сумма всех сторон) прямоугольного параллелепипеда будет равен:

Заметили ошибку?

Расскажите нам об ошибке, и мы ее исправим.

Добавить комментарий