Вспомним кратко основные определения функции в математике.
Функция — это зависимость переменной « y » от
независимой переменной « x ».
Функцию можно задать через формулу (аналитически). Например:
у = 2x
- « x » называют независимым аргументом функции;
- « y » зависимой переменной или значением функции.
Вместо « x » (аргумента функции) в формулу «у = 2x» подставляем произвольные числовые значения
и по заданной формуле вычисляем
значение « y ».
Подставим несколько числовых значений вместо « x » в формулу «у = 2x» и запишем результаты в таблицу.
x | y = 2x | ||||||
---|---|---|---|---|---|---|---|
x = −2 | у = 2 · (−2) = −4 | ||||||
x = 0 | y = 2 · 0 = 0 | ||||||
x =
|
y = 2 ·
= 1 |
||||||
x = 3 | y = 2 · 3 = 6 |
Запомните!
Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).
Обозначают область определения функции как:
D(y)
Вернемся к нашей функции «у = 2x» и найдем её область определения.
Посмотрим ещё раз на таблицу функции «y = 2x», где
мы подставляли произвольные числа вместо « x », чтобы найти « y ».
x | y = 2x | ||
---|---|---|---|
−2 | −4 | ||
0 | 0 | ||
|
1 | ||
3 | 6 |
Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать,
что вместо « x » мы могли подставлять любое действительное число.
Другими словами, вместо « x » можно подставить любые числа, например:
- −2
- 0
- 10
- 30,5
- 1 000 000
- и так далее…
Запомните!
Областью определения функции называют множество чисел,
которые можно подставить вместо « x ».
В нашей функции «у = 2x» вместо « x »
можно подставить любое число, поэтому область определения функции «у = 2x» — это любые действительные числа.
Запишем область определения функции «у = 2x» через математические обозначения.
у = 2x
D(y): x — любое действительное число
Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на
математические символы.
Для этого вспомним понятие числовой оси.
Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции «у = 2x».
Так как в функции
«у = 2x» нет ограничений для « x »,
заштрихуем всю числовую ось от минус бесконечности «−∞» до плюс бесконечности
«+∞».
Запишем результат по правилам записи неравенств.
D(y): x ∈ (−∞ ; +∞)
Запись выше читается как: « x » принадлежит промежутку от минус бесконечности
до плюс бесконечности.
Запишем окончательный ответ для области определения функции.
Ответ:
D(y): x ∈ (−∞ ; +∞)
По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как
«x ∈ R».
Читается «x ∈ R» как: « x » принадлежит всем действительным числам».
Записи « x ∈ (−∞ ; +∞) » и
«x ∈ R» одинаковы по своей сути.
Область определения функции с дробью
Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.
Разбор примера
Найдите область определения функции:
Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x »
в функции
« f(x) = ».
По законам математики из школьного курса мы помним, что на ноль делить нельзя.
Иначе говоря,
знаменатель (нижняя часть дроби) не может быть равен нулю.
Переменная « x » находится в знаменателе функции «f(x) = ».
Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.
x + 5 ≠ 0
Решим полученное линейное уравнение.
Получается, что « x » может принимать любые числовые значения кроме «−5».
На числовой оси заштрихуем все доступные значения для « x ».
Число «−5» отмечено
«пустой»
точкой на числовой оси, так как не входит в область допустимых значений.
Запишем заштрихованную область на числовой оси через знаки неравенства.
Запишем промежутки через математические символы. Так как число «−5» не входит
в область определения функции, при записи ответа рядом с ним будет стоять
круглая скобка.
Вспомнить запись ответа через математические символы можно в уроке
«Как записать ответ неравенства».
x ∈ (−∞ ; −5) ∪ (−5 ; +∞)
Запишем окончательный ответ для области определения функции
«f(x) = ».
Ответ:
D(y): x ∈ (−∞ ; −5) ∪ (−5 ; +∞)
Область определения функции с корнем
Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.
Разбор примера
Найти область определения функции:
y = √6 − x
Из урока «Квадратный корень» мы помним,
что подкоренное выражение корня чётной степени должно быть больше или равно нулю.
Найдём, какие значения может принимать « x » в функции
«у = √6 − x».
Подкоренное выражение
«6 − x» должно быть больше или равно нулю.
6 − x ≥ 0
Решим линейное неравенство по правилам урока «Решение линейных неравенств».
6 − x ≥ 0
−x ≥ −6 | ·(−1)
x ≤ 6
Запишем полученный ответ, используя числовую ось и математические символы. Число «6» отмечено
«заполненной»
точкой на числовой оси, так как входит в область допустимых значений.
x ∈ (−∞ ; 6]
Запишем окончательный ответ для области определения функции
«y = √6 − x» .
Так как число «6» входит
в область определения функции, при записи ответа рядом с ним будет стоять
квадратная скобка.
Ответ:
D(y): x ∈ (−∞ ; 6]
Правило для определения области определения функции
Запомните!
Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:
- на ноль делить нельзя (другими словами, знаменатели дробей с « x » не должны быть равны нулю);
- подкоренные выражения корней чётной степени должны быть больше или равны нулю.
При нахождении области определения функции необходимо всегда задавать себе два вопроса:
- есть ли в функции дроби со знаменателем, в котором есть « x »?
- есть ли корни четной
степени с « x »?
Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.
Рассмотрим пример поиска области определения функции с корнем и дробью.
Разбор примера
Найдите область определения функции:
Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.
В функции «
f(x) = √x + 3 +
»
есть дробь «
»,
где « x » расположен в знаменателе. Запишем условие, что знаменатель
« x 2 − 9 »
не может быть равен нулю.
Решаем квадратное уравнение через
формулу квадратного уравнения.
x1;2 =
x2 − 9 ≠ 0
x1;2 =
−0 ± √02 − 4 · 1 · (−9) |
2 · 1 |
x1;2 ≠
x1;2 ≠
x1;2 ≠
x1;2 ≠ ±3
Запомним полученный результат. Задаем себе
второй
вопрос.
Проверяем, есть ли в формуле функции
«
f(x) = √x + 3 +
»
корень четной степени.
В формуле есть квадратный корень «
√x + 3
».
Подкоренное выражение «x + 3»
должно быть больше или равно нулю.
x + 3 ≥ 0
Решим линейное неравенство.
x + 3 ≥ 0
x ≥ −3
Объединим полученные ответы по обоим вопросам:
- знаменатель дроби
«
» не равен нулю ; - подкоренное выражение «
√x + 3
» должно быть больше или равно нулю.
Объединим все полученные результаты на числовых осях.
Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.
Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях.
Обратим внимание, что числа «−3» и «3» отмечены «пустыми» точками и не входят в итоговое решение.
Получаем два числовых
промежутка «−3 < x < 3» и «x > 3», которые являются областью определения функции
«f(x) = √x + 3 + ».
Запишем окончательный ответ.
Ответ:
D(y): x ∈ (−3 ; 3) ∪ (3 ; +∞)
Примеры определения области определения функции
Разбор примера
Найти область определения функции:
y = 6√x +
5√1 + x
Для поиска области определения функций задаем себе
первый вопрос.
Есть ли знаменатель, в котором содержится « x »?
Ответ: в формуле функции
«y = 6√x +
5√1 + x»
нет дробей.
Задаем
второй вопрос.
Есть ли в функции корни четной степени?
Ответ: в функции есть корень шестой степени:
«6√x».
Степень корня — число «6». Число «6» — чётное,
поэтому подкоренное выражение корня «6√x»
должно быть больше или равно нулю.
x ≥ 0
В формуле функции «y = 6√x +
5√1 + x»
также есть корень пятой степени
«5√1 + x
».
Степень корня «5» — нечётное число, значит, никаких ограничений на подкоренное выражение
«1 + x»
не накладывается.
Получается, что единственное ограничение области определения функции
«y = 6√x +
5√1 + x»
— это ограничение подкоренного выражения
«6√x».
x ≥ 0
Нарисуем область определения функции на числовой оси и запишем ответ.
Ответ:
D(y): x ∈ [0 ; +∞)
Разбор примера
Найдите область определения функции:
Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два.
Выделим знаменатели с « x » красным цветом.
Запишем условие, что каждый из знаменателей не должен быть равен нулю.
√x + 2 ≠ 0 | |
x2 − 7x + 6 ≠ 0 |
Обозначим их номерами «1» и
«2» и решим каждое уравнение отдельно.
√x + 2 ≠ 0 (1) | |
x2 − 7x + 6 ≠ 0 (2) |
Решаем первое уравнение.
√x + 2 ≠ 0 (1)
Если значение квадратного корня
«√x + 2 ≠ 0» не должно быть равно нулю,
значит, подкоренное выражение
«x + 2 ≠ 0»
также не должно быть равно нулю.
√x + 2 ≠ 0 (1)
x + 2 ≠ 0
x ≠ −2
Теперь решим уравнение под номером «2», используя
формулу квадратного уравнения.
x1;2 =
x2 − 7x + 6 ≠ 0 (2)
x1;2 =
−(−7) ± √(−7)2 − 4 · 1 · 6 |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.
Знаменатели с « x »
мы проверили. Настала очередь
проверить
формулу функции
на
наличие корней четной степени .
В формуле функции
«f(x) =
+
»
есть два корня
«√x − 4» и
«√x + 2». Их подкоренные
выражения должны быть больше или равны нулю.
Решим полученную
систему неравенств.
Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.
Выпишем результат решения системы неравенств.
x ≥ 4
Объединим в таблицу ниже полученные ответы по обеим
проверкам:
- проверка, что знаменатели
дробей
с « x »
не равны нулю; - проверка, что
подкоренные выражения корней четной степени должно быть больше или равны нулю.
Условие проверки | Результат |
Результат проверки, что знаменатели дробей с « x » не равны нулю |
|
Результат проверки, что подкоренные выражения должно быть больше или равны нулю |
x ≥ 4 |
Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет
всем полученным условиям.
Запишем окончательный ответ для области определения функции
«f(x) =
+
»
с использованием математических символов.
Ответ:
D(y): x ∈ [4 ; 6) ∪ (6; +∞)
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
17 декабря 2016 в 18:02
Татьяна Цыганова
Профиль
Благодарили: 0
Сообщений: 1
Татьяна Цыганова
Профиль
Благодарили: 0
Сообщений: 1
Найти ОДЗ функции у=?(р1+р2х+x2)
Я не могу понять за какое число воспринимать p1, p2
0
Спасибо
Ответить
17 декабря 2016 в 19:10
Ответ для Татьяна Цыганова
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
x2 + p2x + p1 ? 0.
0
Спасибо
Ответить
24 февраля 2016 в 20:29
Влад Алексеев
Профиль
Благодарили: 0
Сообщений: 1
Влад Алексеев
Профиль
Благодарили: 0
Сообщений: 1
Постройте график функции y=-
. Укажите область определения функции
0
Спасибо
Ответить
25 февраля 2016 в 8:10
Ответ для Влад Алексеев
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Область определения функции: знаменатель не равен 0.
x+1?0
x?-1
Графиком является гипербола, смещеная влево относительно оси Y.
0
Спасибо
Ответить
5 февраля 2018 в 14:30
Ответ для Влад Алексеев
Кирилл Косован
Профиль
Благодарили: 0
Сообщений: 1
Кирилл Косован
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
11 февраля 2018 в 15:44
Ответ для Влад Алексеев
Татьяна Мирная
Профиль
Благодарили: 0
Сообщений: 1
Татьяна Мирная
Профиль
Благодарили: 0
Сообщений: 1
у=-
0
Спасибо
Ответить
7 октября 2015 в 21:21
Катерина Яроцкая
Профиль
Благодарили: 0
Сообщений: 1
Катерина Яроцкая
Профиль
Благодарили: 0
Сообщений: 1
Помогите найти область определения функции
0
Спасибо
Ответить
12 сентября 2016 в 15:59
Ответ для Катерина Яроцкая
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
К сожалению, картинка не отражается.
0
Спасибо
Ответить
Содержание:
- Область определения функции
- Примеры с решением
Функции являются одним из наиболее важных математических понятий. Напомним, что функции вызывают такие зависимости переменных от переменной при которой каждому значению переменной соответствует единственное значение переменной
Переменную называют независимой переменной или аргументом. Переменную называют зависимой переменной. Говорят также, что переменная является функцией от переменной Значения зависимой переменной называют значениями функции.
Если зависимость переменной от переменной является функцией, то коротко это записывают так: (Читают: равно от ) Символом обозначают значение функции, соответствующее значению аргумента, равному
Пусть, например, функция задается формулой Тогда можно записать, что Найдем значения функции для значений равных, например, т. е. найдем
Заметим, что в записи вида вместо употребляют и другие буквы: и т. п.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Все значения независимой переменной образуют область определения функции. Все значения которые принимает зависимая переменная, образуют область значений функции.
Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл. Например, областью определения функции является множество всех чисел; областью определения функции служит множество всех чисел, кроме
Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины железного стержня от температуры нагревания выражается формулой где — начальная длина стержня, а — коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях
Однако областью определения функции является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.
Напомним, что график функции – это множество всех точек в координатной плоскости, абсцисса равна значению аргумента, а ордината – это соответствующее значение функции.
На рисунке 1 изображен график функции областью определения которой является промежуток С помощью графика можно найти, например, что Наименьшее значение функции равно а наибольшее равно при этом любое число от до является значением данной функции. Таким образом, областью значений функции служит промежуток
Мы изучили некоторые важные виды функций: линейную функцию, т. е. функцию, задаваемую формулой где и — некоторые числа; прямую пропорциональность — это частный случай линейной функции, она задается формулой обратную пропорциональность — функцию
Возможно вам будут полезны данные страницы:
Область определения функции
Областью определения функции называется совокупность значений независимой переменной, при которых эта функция определена, т. е. область изменения независимой переменной (п. 1.5). Обычно эта переменная является непрерывной, и тогда, как было указано в п. 1.5, эта область определения состоит из одного или нескольких интервалов.
В некоторых случаях область определения функции выясняется из физического или геометрического смысла этой функции. Например, если рассматривать зависимость площади круга от длины его радиуса, то областью определения этой функции будет интервал так как по геометрическому смыслу может принимать именно такие значения.
Если рассматривается зависимость плотности р атмосферы надданной точкой земной поверхности от высоты над уровнем моря, то областью определения этой функции будет интервал где — высота земной поверхности, а — условная высота, принимаемая за границу атмосферы, и т. д. Если функция задана просто формулой, то областью определения служит совокупность значений аргумента, при которых формула дает определенное вещественное (действительное) значение функции. (Мы пока будем рассматривать только вещественные функции от вещественного аргумента, т. е. функции, у которых зависимая и независимая переменные принимают лишь вещественные значения.)
Например, если то может принимать любые значения, т. е. областью определения служит вся числовая ось Если то при вычислении у встретится препятствие в извлечении корня, если окажется, что значит, должно быть а это справедливо при или т. е. область определения в данном случае состоит из двух интервалов: (на рис. 1.10 эта область заштрихована).
При нахождении области определения в аналогичных случаях надо выяснить, что может препятствовать получению значения функции, после чего выписывать неравенства (как в последнем примере ), гарантирующие возможность этого получения. Тогда задача сведется к решению этих неравенств.
Если независимая переменная дискретна, то область определения функции состоит из дискретных (отдельных)точек. Например, если то может принимать только значения 1,2, 3,… Если, как в этом примере, дискретный аргумент принимает лишь целые значения, то обычно его обозначают не а буквами и т. п., а вместо пишут и говорят, что дана последовательность; например, последовательностью служит геометрическая прогрессия и т. п. График функции от дискретного аргумента не является линией, а состоит из дискретных точек (рис. 1.11).
Область изменения самой функции называется иначе множеством значений этой функции. Например, для функции областью определения служит интервал а множеством значений — интервал так как в данном случае принимает только такие значения.Выяснение области определения функции важно для построения ее графика, так как эта область — это та часть оси абсцисс, над или под которой пройдет график; точнее говоря, это — проекция графика на ось абсцисс. На рис. 1.12 показаны три простых графика; области определения этих функций заштрихованы. Ясно, что если область определения состоит из нескольких частей, то и график состоит из нескольких кусков.
Если функция задана аналитическим выражением (формулой) без каких-либо дополнительных условий, то под ее областью определения понимают область существования аналитического выражения, т. е. совокупность всех точек, в которых данное аналитическое выражение определено и принимает только действительные значения. Область называется замкнутой, если она включает в себя все свои границы.
Область определения функции 3 переменных представляет собой некоторую пространственную область, в частности некоторый объем. Площадь равна определенным интеграл от функции чьи пределы интеграции являются перехватами.
Если функция положительна на интервале и график функции выше осей, то площадь от функции может быть определена.
Примеры с решением
Пример 1.
Указать область определения функции, выражающей объем кругового конуса через образующую и радиус основания
Решение:
Функция, найденная в примере 1 (п. 3.1), выглядит так: По смыслу задачи переменные и могут принимать только положительные значения, и при этом всегда так как гипотенуза больше катета (рис. 3.2). Следовательно, область определения задается неравенствами т. е. состоит из всех тех точек первой четверти на плоскости которые лежат ниже биссектрисы (рис. 3.3). Границами области служат прямые
которые сами в область не входят, так что эта область незамкнутая.
Пример 2.
Найти область определения функции
Решение:
Поскольку никаких дополнительных ограничений на аргументы и не наложено, область определения будет состоять из всех тех точек плоскости, для которых данное аналитическое выражение принимает действительные значения.
Для этого подкоренное выражение должно быть неотрицательным, т.е. или
Если оставить здесь только знак равенства, то получится уравнение границы области или Эта граница состоит из двух биссектрис координатных углов. Для внутренних точек области должно соблюдаться неравенство или Следовательно, эти точки расположены между биссектрисами ближе к оси так как — расстояние точки до оси и оно меньше расстояния точки до оси Таким образом, область состоит из всех точек 2 углов между биссектрисами заключающими внутри себя ось (рис. 3.4).
Область замкнутая, так как включает в себя обе свои границы.
Замечание.
Хотя аналитические выражения функции в примерах 1 и 2 одинаковые, их области определения разные. Па переменные и в примере 1 были наложены дополнительные условия вытекающие из их геометрического смысла.
Пример 3.
Найти область определения функции
Решение:
Выражение, стоящее справа, теряет смысл при тех значениях и при которых знаменатель обращается в нуль. Отсюда областью определения нашей функции является вся плоскость, из которой выброшена прямая (рис. 3.5).
Пример 4.
Найти область опреде-ления функции
Решение:
Для того чтобы квадратный корень имел вещественные значения, его подкоренное выражение должно быть неотрицательным. Решая неравенство находим, что либо либо
Решением первой системы неравенств является Чтобы получить изображение искомой области на координатной плоскости, достаточно провести две прямые и Область состоит из 2 квадрантов с общей вершиной в точке (1, —2) (рис. З.б).
Пример 5.
Найти область определения функции
Решение:
Логарифм определен только при положительном значении его аргумента, поэтому или Чтобы изобразить геометрически область найдем сначала ее границу или Полученное уравнение определяет параболу, вершина которой расположена в точке а ось направлена в положительную сторону оси Точки пересечения параболы с осью получаются из условия откуда т.е. (рис.3.7).
Парабола делит всю плоскость на две части — внутреннюю и внешнюю по отношению к параболе. Для точек одной из этих частей выполняется неравенство а для другой (на самой параболе Чтобы установить, какая из этих 2 частей является областью определения данной функции, т.е. удовлетворяет условию достаточно проверить это условие для какой-нибудь одной точки, не лежащей на параболе.
Например, начало координат лежит внутри параболы и удовлетворяет нужному условию Следовательно, рассматриваемая область состоит из внутренних точек параболы. Сама парабола в область входить не может, так как для точек параболы и логарифм не определен.
Лекции:
- Неопределенный интеграл
- Тригонометрические функции углов прямоугольного треугольника
- Решение треугольников
- Комплексные числа
- Производная сложной функции
- Каноническое уравнение параболы
- Линейные (векторные) n – мерные пространства
- Исследовать ряд на абсолютную сходимость
- Комплексные числа: примеры решения
- Уравнение окружности и прямой
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика
Не обязательно делать чертеж на целый тетрадный лист, можно выбрать удобный для вас масштаб, который отразит суть задания.
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Как решаем:
Упростим формулу функции:
Задача 2. Построим график функции
Как решаем:
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Как решаем:
Вспомним, как параметры a, b и c определяют положение параболы.
-
Ветви вниз, следовательно, a < 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины
-
Ветви вверх, следовательно, a > 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
-
Ветви вниз, следовательно, a < 0.
Точка пересечения с осью Oy — c > 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b < 0.
Задача 4. Построить графики функций:
а) y = 3x — 1
б) y = -x + 2
в) y = 2x
г) y = -1
Как решаем:
Воспользуемся методом построения линейных функций «по точкам».
а) y = 3x — 1
Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.
б) y = -x + 2
k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.
в) y = 2x
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
г) y = -1
k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.
Задача 5. Построить график функции
Как решаем:
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
а) y = x² + 1
б)
в) y = (x — 1)² + 2
г)
д)
Как решаем:
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
y = x²
Сдвигаем график вверх на 1:
y = x² + 1
б)
Преобразование в одно действие типа f(x — a).
y = √x
Сдвигаем график вправо на 1:
y = √x — 1
в) y = (x — 1)² + 2
В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.
y = x²
Сдвигаем график вправо на 1:
y = (x — 1)²
Сдвигаем график вверх на 2:
y = (x — 1)² + 2
г)
Преобразование в одно действие типа
y = cos(x)
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Мы видим три преобразования вида f(ax), f (x + a), -f(x).
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс:
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ — наглядно.
- Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Исследование функции
Важные точки графика функции y = f(x):
- стационарные и критические точки;
- точки экстремума;
- нули функции;
- точки разрыва функции.
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
- Найти область определения функции.
- Найти область допустимых значений функции.
- Проверить не является ли функция четной или нечетной.
- Проверить не является ли функция периодической.
- Найти нули функции.
- Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
- Найти асимптоты графика функции.
- Найти производную функции.
- Найти критические точки в промежутках возрастания и убывания функции.
- На основании проведенного исследования построить график функции.
У нас есть отличные онлайн занятия по математике для учеников с 1 по 11 классы! Приходи на пробное занятие с нашими лучшими преподавателями!
Область существования функции
Данный сервис используется для нахождения области определения функции в онлайн режиме.
Например, найти область определения функции ln(x2-1)
.
Примечание: число “пи” (π) записывается как pi; корень квадратный как sqrt, например, sqrt(3); arcsin ≡ asin
В таблице приведены области существования наиболее распространенных функций.
ln(x) | x > 0 | |
x ≥ 0 | ||
tgx | ||
ctgx | 0 < x< π | |
arcsinx | -1 ≤ x ≤ 1 | |
arccosx | -1 ≤ x ≤ 1 |
Пример. Требуется найти область определения функции, для этого нужно знать области определения элементарных функций.
Найдем область определения . Функция определена при тех значениях x, для которых . Это неравенство будет выполнено, если , т.е. x2–5x+4≤0
. Решая это неравенство методом интервалов, находим область определения – промежуток [1;4]. Зная f(x), можно найти и т.д.
Как найти область определения функции?
Для того, чтобы понять, что такое область определения функции, необходимо знать области определения основных элементарных функций. Для этого нужно углубить знания данной статьей. Будут рассмотрены различные сложнейшие комбинации функций вида y = x + x – 2 или y = 5 · x 2 + 1 · x 3 , y = x x – 5 или y = x – 1 5 – 3 . Рассмотрим теорию и решим несколько примеров с подобными заданиями.
Что значит найти область определения
После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y = f ( x ) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.
Ограничение области определения
Область определения рассматривается еще в школьной курсе. у действительных чисел она может быть ( 0 , + ∞ ) или такой [ − 3 , 1 ) ∪ [ 5 , 7 ) . Еще по виду функции можно визуально определить ее ОДЗ. Рассмотрим, на что может указывать наличие области определения:
- при имеющемся знаменателе необходимо производить деление такого типа функции как y = x + 2 · x x 4 – 1 ;
- при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа y = x + 1 или y = 2 3 · x + 3 x ;
- при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как y = 5 · ( x + 1 ) – 3 , y = – 1 + x 1 1 3 , y = ( x 3 – x + 1 ) 2 , которые определены не для всех чисел;
- при наличии переменной под знаком логарифма или в основании вида y = ln x 2 + x 4 или y = 1 + log x – 1 ( x + 1 ) причем основание является числом положительным, как и число под знаком логарифма;
- при наличии переменной, находящейся под знаком тангенса и котангенса вида y = x 3 + t g 2 · x + 5 или y = c t g ( 3 · x 3 – 1 ) , так как они существуют не для любого числа;
- при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида y = a r c sin ( x + 2 ) + 2 · x 2 , y = a r c cos x – 1 + x , область определения которых определяется ни интервале от – 1 до 1 .
При отсутствии хотя бы одного признака, область определения приходится искать другим образом. Рассмотрим пример функции вида y = x 4 + 2 · x 2 – x + 1 2 + 2 2 3 · x . Видно, что никаких ограничений она не имеет, так как в знаменателе нет переменной.
Правила нахождения области определения
Для примера рассмотрим функцию типа y = 2 · x + 1 . Для вычисления ее значения можем определить x . Из выражения 2 · x + 1 видно, что функция определена на множестве всех действительных чисел. Рассмотрим еще один пример для подробного определения.
Если задана функция типа y = 3 x – 1 , а необходимо найти область определения, тогда понятно, что следует обратить внимание на знаменатель. Известно, что на ноль делить нельзя. Отсюда получаем, что 3 x – 1 знаменатель равняется нулю при х = 1 , поэтому искомая область определения данной функции примет вид ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) и считается числовым множеством.
На рассмотрении примера y = x 2 – 5 · x + 6 видно, что имеется подкоренное выражение, которое всегда больше или равно нулю. Значит запись примет вид x 2 − 5 · x + 6 ≥ 0 . После решения неравенства получим, что имеются две точки, которые делят область определения на отрезки, которые записываются как ( − ∞ , 2 ] ∪ [ 3 , + ∞ ) .
При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.
Область определения суммы, разности и произведения функций
Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:
Когда функция f f считается суммой n функций f 1 , f 2 , … , f n , иначе говоря, эта функция задается при помощи формулы y = f 1 ( x ) + f 2 ( x ) + … + f n ( x ) , тогда ее область определения считается пересечением областей определения функций f 1 , f 2 , … , f n . Данное утверждение можно записать как:
D ( f ) = D ( f 1 ) D ( f 2 ) . . . D ( f n )
Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом для понимания перечисления числовых множеств.
Найти область определения функции вида y = x 7 + x + 5 + t g x .
Заданная функция представляется как сумма четырех: степенной с показателем 7 ,степенной с показателем 1 , постоянной, функции тангенса.
По таблице определения видим, что D ( f 1 ) = ( − ∞ , + ∞ ) , D ( f 2 ) = ( − ∞ , + ∞ ) , D ( f 3 ) = ( − ∞ , + ∞ ) , причем область определения тангенса включает в себя все действительные числа, кроме π 2 + π · k , k ∈ Z .
Областью определения заданной функции f является пересечение областей определения f 1 , f 2 , f 3 и f 4 . То есть для функции существует такое количество действительных чисел, куда не входит π 2 + π · k , k ∈ Z .
Ответ: все действительные числа кроме π 2 + π · k , k ∈ Z .
Для нахождения области определения произведения функций необходимо применять правило:
Когда функция f считается произведением n функций f 1 , f 2 , f 3 и f n , тогда существует такая функция f , которую можно задать при помощи формулы y = f 1 ( x ) · f 2 ( x ) · … · f n ( x ) , тогда ее область определения считается областью определения для всех функций.
Запишется D ( f ) = D ( f 1 ) D ( f 2 ) . . . D ( f n )
Найти область определения функции y = 3 · a r c t g x · ln x .
Правая часть формулы рассматривается как f 1 ( x ) · f 2 ( x ) · f 3 ( x ) , где за f 1 является постоянной функцией, f 2 является арктангенсом, f 3 – логарифмической функцией с основанием e . По условию имеем, что D ( f 1 ) = ( − ∞ , + ∞ ) , D ( f 2 ) = ( − ∞ , + ∞ ) и D ( f 3 ) = ( 0 , + ∞ ) . Мы получаем, что
D ( f ) = D ( f 1 ) D ( f 2 ) D ( f n ) = ( – ∞ , + ∞ ) ( – ∞ , + ∞ ) D ( 0 , + ∞ ) = ( 0 , + ∞ )
Ответ: область определения y = 3 · a r c t g x · ln x – множество всех действительных чисел.
Необходимо остановиться на нахождении области определения y = C · f ( x ) , где С является действительным числом. Отсюда видно, что ее областью определения и областью определения f совпадающими.
Функция y = C · f ( x ) – произведение постоянной функции и f . Область определения – это все действительные числа области определения D ( f ) . Отсюда видим, что область определения функции y = C · f ( x ) является – ∞ , + ∞ D ( f ) = D ( f ) .
Получили, что область определения y = f ( x ) и y = C · f ( x ) , где C является некоторое действительное число, совпадают. Это видно на примере определения корня y = x считается [ 0 , + ∞ ) , потому как область определения функции y = – 5 · x – [ 0 , + ∞ ) .
Области определения y = f ( x ) и y = − f ( x ) совпадают , что говорит о том, что его область определения разности функции такая же, как и область определения их суммы.
Найти область определения функции y = log 3 x − 3 · 2 x .
Необходимо рассмотреть как разность двух функций f 1 и f 2 .
f 1 ( x ) = log 3 x и f 2 ( x ) = 3 · 2 x . Тогда получим, что D ( f ) = D ( f 1 ) D ( f 2 ) .
Область определения записывается как D ( f 1 ) = ( 0 , + ∞ ) . Приступим к области определения f 2 . в данном случае она совпадает с областью определения показательной, тогда получаем, что D ( f 2 ) = ( − ∞ , + ∞ ) .
Для нахождения области определения функции y = log 3 x − 3 · 2 x получим, что
D ( f ) = D ( f 1 ) D ( f 2 ) = ( 0 , + ∞ ) – ∞ , + ∞
Необходимо озвучить утверждение о том, что областью определения y = a n x n + a n – 1 x n – 1 + . . . + a 1 x + a 0 является множество действительных чисел.
Рассмотрим y = a n x n + a n – 1 x n – 1 + . . . + a 1 x + a 0 , где в правой части имеется многочлен с одной переменной стандартного вида в виде степени n с действительными коэффициентами. Допускается рассматривать ее в качестве суммы ( n + 1 ) -ой функции. Область определения для каждой из таких функций включается множество действительных чисел, которое называется R .
Найти область определения f 1 ( x ) = x 5 + 7 x 3 – 2 x 2 + 1 2 .
Примем обозначение f за разность двух функций, тогда получим, что f 1 ( x ) = x 5 + 7 x 3 – 2 x 2 + 1 2 и f 2 ( x ) = 3 · x – ln 5 . Выше было показано, что D ( f 1 ) = R . Область определения для f 2 является совпадающей со степенной при показателе – ln 5 , иначе говоря, что D ( f 2 ) = ( 0 , + ∞ ) .
Получаем, что D ( f ) = D ( f 1 ) D ( f 2 ) = – ∞ , + ∞ ( 0 , + ∞ ) = ( 0 , + ∞ ) .
Область определения сложной функции
Для решения данного вопроса необходимо рассмотреть сложную функцию вида y = f 1 ( f 2 ( x ) ) . Известно, что D ( f ) является множеством всех x из определения функции f 2 , где область определения f 2 ( x ) принадлежит области определения f 1 .
Видно, что область определения сложной функции вида y = f 1 ( f 2 ( x ) ) находится на пересечении двух множеств таких, где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . В стандартном обозначении это примет вид
x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 )
Рассмотрим решение нескольких примеров.
Найти область определения y = ln x 2 .
Данную функцию представляем в виде y = f 1 ( f 2 ( x ) ) , где имеем, что f 1 является логарифмом с основанием e , а f 2 – степенная функция с показателем 2 .
Для решения необходимо использовать известные области определения D ( f 1 ) = ( 0 , + ∞ ) и D ( f 2 ) = ( − ∞ , + ∞ ) .
Тогда получим систему неравенств вида
x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 ) ⇔ x ∈ – ∞ , + ∞ x 2 ∈ ( 0 , + ∞ ) ⇔ ⇔ x ∈ ( – ∞ , + ∞ ) x 2 > 0 ⇔ x ∈ ( – ∞ , + ∞ ) x ∈ ( – ∞ , 0 ) ∪ ( 0 , + ∞ ) ⇔ ⇔ x ∈ ( – ∞ , 0 ) ∪ ( 0 , + ∞ )
Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.
Найти область определения функции y = ( a r c sin x ) – 1 2 .
Так как дана сложная функция, необходимо рассматривать ее как y = f 1 ( f 2 ( x ) ) , где f 1 является степенной функцией с показателем – 1 2 , а f 2 функция арксинуса, теперь необходимо искать ее область определения. Необходимо рассмотреть D ( f 1 ) = ( 0 , + ∞ ) и D ( f 2 ) = [ − 1 , 1 ] . Теперь найдем все множества значений x , где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . Получаем систему неравенств вида
x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 ) ⇔ x ∈ – 1 , 1 a r c sin x ∈ ( 0 , + ∞ ) ⇔ ⇔ x ∈ – 1 , 1 a r c sin x > 0
Для решения a r c sin x > 0 необходимо прибегнуть к свойствам функции арксинуса. Его возрастание происходит на области определения [ − 1 , 1 ] , причем обращается в ноль при х = 0 , значит, что a r c sin x > 0 из определения x принадлежит промежутку ( 0 , 1 ] .
Преобразуем систему вида
x ∈ – 1 , 1 a r c sin x > 0 ⇔ x ∈ – 1 , 1 x ∈ ( 0 , 1 ] ⇔ x ∈ ( 0 , 1 ]
Область определения искомой функции имеет интервал равный ( 0 , 1 ] .
Ответ: ( 0 , 1 ] .
Постепенно подошли к тому, что будем работать со сложными функциями общего вида y = f 1 ( f 2 ( … f n ( x ) ) ) ) . Область определения такой функции ищется из x ∈ D ( f n ) f n ( x ) ∈ D ( f n – 1 ) f n – 1 ( f n ( x ) ) ∈ D ( f n – 2 ) . . . f 2 ( f 3 ( . . . ( f n ( x ) ) ) ∈ D ( f 1 ) .
Найти область определения y = sin ( l g x 4 ) .
Заданная функция может быть расписана, как y = f 1 ( f 2 ( f 3 ( x ) ) ) , где имеем f 1 – функция синуса, f 2 – функция с корнем 4 степени, f 3 – логарифмическая функция.
Имеем, что по условию D ( f 1 ) = ( − ∞ , + ∞ ) , D ( f 2 ) = [ 0 , + ∞ ) , D ( f 3 ) = ( 0 , + ∞ ) . Тогда областью определения функции – это пересечение множеств таких значений, где x ∈ D ( f 3 ) , f 3 ( x ) ∈ D ( f 2 ) , f 2 ( f 3 ( x ) ) ∈ D ( f 1 ) . Получаем, что
x ∈ D ( f 3 ) f 3 ( x ) ∈ D ( f 2 ) f 2 ( f 3 ( x ) ) ∈ D ( f 1 ) ⇔ x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) lg x 4 ∈ – ∞ , + ∞
Условие lg x 4 ∈ – ∞ , + ∞ аналогично условию l g x ∈ [ 0 , + ∞ ) , значит
x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) lg x 4 ∈ – ∞ , + ∞ ⇔ x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) ⇔ ⇔ x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) ⇔ x ∈ ( 0 , + ∞ ) lg x ≥ 0 ⇔ ⇔ x ∈ ( 0 , + ∞ ) lg x ≥ lg 1 ⇔ x ∈ ( 0 , + ∞ ) x ≥ 1 ⇔ ⇔ x ∈ [ 1 , + ∞ )
При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.
Область определения дроби
Рассмотрим функцию вида f 1 ( x ) f 2 ( x ) . Стоит обратить внимание на то, что данная дробь определяется из множества обеих функций, причем f 2 ( х ) не должна обращаться в ноль. Тогда получаем, что область определения f для всех x записывается в виде x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 .
Запишем функцию y = f 1 ( x ) f 2 ( x ) в виде y = f 1 ( x ) · ( f 2 ( x ) ) – 1 . Тогда получим произведение функций вида y = f 1 ( x ) с y = ( f 2 ( x ) ) – 1 . Областью определения функции y = f 1 ( x ) является множество D ( f 1 ) , а для сложной y = ( f 2 ( x ) ) – 1 определим из системы вида x ∈ D ( f 2 ) f 2 ( x ) ∈ ( – ∞ , 0 ) ∪ ( 0 , + ∞ ) ⇔ x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 .
Значит, x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ∈ ( – ∞ , 0 ) ∪ ( 0 , + ∞ ) ⇔ x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 .
Найти область определения y = t g ( 2 · x + 1 ) x 2 – x – 6 .
Заданная функция дробная, поэтому f 1 – сложная функция, где y = t g ( 2 · x + 1 ) и f 2 – целая рациональная функция, где y = x 2 − x − 6 , а область определения считается множеством всех чисел. Можно записать это в виде
x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0
Представление сложной функции y = f 3 ( f 4 ( x ) ) , где f 3 –это функция тангенс, где в область определения включены все числа, кроме π 2 + π · k , k ∈ Z , а f 4 – это целая рациональная функция y = 2 · x + 1 с областью определения D ( f 4 ) = ( − ∞ , + ∞ ) . После чего приступаем к нахождению области определения f 1 :
x ∈ D ( f 4 ) 2 · x + 1 ∈ D ( f 3 ) ⇔ x ∈ ( – ∞ , + ∞ ) 2 x + 1 ≠ π 2 + π · k , k ∈ Z ⇔ x ≠ π 4 – 1 2 + π 2 · k , k ∈ Z
Еще необходимо рассмотреть нижнюю область определения y = t g ( 2 · x + 1 ) x 2 – x – 6 . Тогда получаем, что
x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 ⇔ x ≠ π 4 – 1 2 + π 2 · k , k ∈ Z x ∈ – ∞ , + ∞ x 2 – x – 6 ≠ 0 ⇔ ⇔ x ≠ π 4 – 1 2 + π 2 · k , k ∈ Z x ≠ – 2 x ≠ 3
Ответ: множество действительных чисел, кроме – 2 , 3 и π 4 – 1 2 + π 2 · k , k ∈ Z .
Область определения логарифма с переменной в основании
Определение логарифма существует для положительных оснований не равных 1 . Отсюда видно, что функция y = log f 2 ( x ) f 1 ( x ) имеет область определения, которая выглядит так:
x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1
А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:
y = log a f 1 ( x ) log a f 2 ( x ) , a > 0 , a ≠ 1 . После чего можно приступать к области определения дробной функции.
Область определения логарифмической функции – это множество действительных положительных чисел, тогда области определения сложных функций типа y = log a f 1 ( x ) и y = log a f 2 ( x ) можно определить из получившейся системы вида x ∈ D ( f 1 ) f 1 ( x ) > 0 и x ∈ D ( f 2 ) f 2 ( x ) > 0 . Иначе эту область можно записать в виде y = log a f 1 ( x ) log a f 2 ( x ) , a > 0 , a ≠ 1 , что означает нахождение y = log f 2 ( x ) f 1 ( x ) из самой системы вида
x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 log a f 2 ( x ) ≠ 0 = x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1
Обозначить область определения функции y = log 2 · x ( x 2 – 6 x + 5 ) .
Следует принять обозначения f 1 ( x ) = x 2 − 6 · x + 5 и f 2 ( x ) = 2 · x , отсюда D ( f 1 ) = ( − ∞ , + ∞ ) и D ( f 2 ) = ( − ∞ , + ∞ ) . Необходимо приступить к поиску множества x , где выполняется условие x ∈ D ( f 1 ) , f 1 ( x ) > 0 , x ∈ D ( f 2 ) , f 2 ( x ) > 0 , f 2 ( x ) ≠ 1 . Тогда получаем систему вида
x ∈ ( – ∞ , + ∞ ) x 2 – 6 x + 5 > 0 x ∈ ( – ∞ , + ∞ ) 2 · x > 0 2 · x ≠ 1 ⇔ x ∈ ( – ∞ , + ∞ ) x ∈ ( – ∞ , 1 ) ∪ ( 5 , + ∞ ) x ∈ ( – ∞ , + ∞ ) x > 0 x ≠ 1 2 ⇔ ⇔ x ∈ 0 , 1 2 ∪ 1 2 , 1 ∪ ( 5 , + ∞ )
Отсюда видим, что искомой областью функции y = log 2 · x ( x 2 – 6 x + 5 ) считается множнство, удовлетворяющее условию 0 , 1 2 ∪ 1 2 , 1 ∪ ( 5 , + ∞ ) .
Ответ: 0 , 1 2 ∪ 1 2 , 1 ∪ ( 5 , + ∞ ) .
Область определения показательно-степенной функции
Показательно-степенная функция задается формулой вида y = ( f 1 ( x ) ) f 2 ( x ) . Ее область определения включает в себя такие значения x , которые удовлетворяют системе x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 1 ( x ) > 0 .
Эта область позволяет переходить от показательно-степенной к сложной вида y = a log a ( f 1 ( x ) ) f 2 ( x ) = a f 2 ( x ) · log a f 1 ( x ) , где где a > 0 , a ≠ 1 .
Найти область определения показательно-степенной функции y = ( x 2 – 1 ) x 3 – 9 · x .
Примем за обозначение f 1 ( x ) = x 2 − 1 и f 2 ( x ) = x 3 – 9 · x .
Функция f 1 определена на множестве действительных чисел, тогда получаем область определения вида D ( f 1 ) = ( − ∞ , + ∞ ) . Функция f 2 является сложной, поэтому ее представление примет вид y = f 3 ( f 4 ( x ) ) , а f 3 – квадратным корнем с областью определения D ( f 3 ) = [ 0 , + ∞ ) , а функция f 4 – целой рациональной, D ( f 4 ) = ( − ∞ , + ∞ ) . Получаем систему вида
x ∈ D ( f 4 ) f 4 ( x ) ∈ D ( f 3 ) ⇔ x ∈ ( – ∞ , + ∞ ) x 3 – 9 · x ≥ 0 ⇔ ⇔ x ∈ ( – ∞ , + ∞ ) x ∈ – 3 , 0 ∪ [ 3 , + ∞ ) ⇔ x ∈ – 3 , 0 ∪ [ 3 , + ∞ )
Значит, область определения для функции f 2 имеет вид D ( f 2 ) = [ − 3 , 0 ] ∪ [ 3 , + ∞ ) . После чего необходимо найти область определения показательно-степенной функции по условию x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 1 ( x ) > 0 .
Получаем систему вида x ∈ – ∞ , + ∞ x ∈ – 3 , 0 ∪ [ 3 , + ∞ ) x 2 – 1 > 0 ⇔ x ∈ – ∞ , + ∞ x ∈ – 3 , 0 ∪ [ 3 , + ∞ ) x ∈ ( – ∞ , – 1 ) ∪ ( 1 , + ∞ ) ⇔ ⇔ x ∈ – 3 , – 1 ∪ [ 3 , + ∞ )
Ответ: [ − 3 , − 1 ) ∪ [ 3 , + ∞ )
В общем случае
Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.
Таблицы основных результатов
Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф
Сумма, разность, произведение функций
f 1 , f 2 , . . . , f n
D ( f 1 ) , D ( f 2 ) , . . . , D ( f n )
y = f 1 ( f 2 ( f 3 ( . . . f n ( x ) ) ) )
Множество всех x , одновременно удовлетворяющих условиям
x ∈ D ( f n ) , f n ( x ) ∈ D ( f n – 1 ) , f n – 1 ( f n ( x ) ) ∈ D ( f n – 2 ) , . . . , f 2 ( f 3 ( . . . f n ( x ) ) ) ∈ D ( f 1 )
x ∈ D ( f 2 ) , f 2 ( x ) ∈ D ( f 1 )
Расположим функции и их области определения.
Функция | Ее область определения |
Прямая пропорциональность y = k · x
Обратная пропорциональность y = k x
Дробная y = f 1 ( x ) f 2 ( x )
В частности, если f 1 ( x ) , f 2 ( x ) – многочлены
Множество всех x , которые одновременно удовлетворяют условиям
x ∈ D ( f 1 ) , x ∈ D ( f 2 ) , f 2 ( x ) ≠ 0
y = log f 2 ( x ) f 1 ( x )
В частности, y = log a f 1 ( x )
В частности, y = log f 2 ( x ) a
x ∈ D ( f 1 ) , f 1 ( x ) > 0 , x ∈ D ( f 2 ) , f 2 ( x ) > 0 , f 2 ( x ) ≠ 1
x ∈ D ( f 1 ) , f 1 ( x ) > 0
x ∈ D ( f 2 ) , f 2 > 0 , f 2 ( x ) ≠ 1
Функция | Ее область определения |
R | |
Линейная y = k · x + b | R |
– ∞ , 0 ∪ 0 , + ∞ | |
Квадратичная y = a · x 2 + b · x + c | R |
y = a n x n + a n – 1 x n – 1 + . . . + a 1 x + a 0 | R |
Целая рациональная | R |
y = C · f ( x ) , где C – число | D ( f ) |
y = f ( x ) n , где n – четное | x ∈ D ( f 1 ) , f ( x ) ≥ 0 |
Показательно-степенная y = ( f 1 ( x ) ) f 2 ( x ) | x ∈ D ( f 1 ) , x ∈ D ( f 2 ) , f 1 ( x ) > 0 |
Отметим, что преобразования можно выполнять, начиная с правой части выражения. Отсюда видно, что допускаются тождественные преобразования, которые на область определения не влияют. Например, y = x 2 – 4 x – 2 и y = x + 2 являются разными функциями, так как первая определяется на ( − ∞ , 2 ) ∪ ( 2 , + ∞ ) , а вторая из множества действительных чисел. Из преобразования y = x 2 – 4 x – 2 = x – 2 x + 2 x – 2 = x + 2 видно, что функция имеет смысл при x ≠ 2 .
Область определения функции
О чем эта статья:
Понятие области определения функции
Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.
Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.
Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).
Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.
Из понятия функции сформулируем определение области определения функции.
Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох. Чтобы обозначить область определения некоторой функции y, используют запись D(y).
Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.
- Например, область значений функции y = x2 — это все числа больше либо равные нулю. Это можно записать так: Е (у): у ≥ 0.
Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.
Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:
- Через точку с запятой указываем два числа: левую и правую границы промежутка.
- Если граница входит в промежуток, ставим возле нее квадратную скобку, если не входит — круглую.
- Если у промежутка нет правой границы, записываем так: +∞. Если нет левой границы, пишем -∞.
- Если нужно описать множество, состоящее из нескольких промежутков, ставим между ними знак объединения: ∪.
Например, все действительные числа от 2 до 5 включительно можно записать так:
Все положительные числа можно описать так:
Ноль не положительное число, поэтому скобка возле него круглая.
Области определения основных элементарных функций
Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.
На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x 2 и другие. А области их определения изучаем, как свойства.
Рассмотрим области определения основных элементарных функций.
Область определения постоянной функции
Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.
Смысл функции — в том, что каждому значению аргумента соответствует значение функции, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.
- Область определения постоянной функции y = -3 — это множество всех действительных чисел: D(y) = (−∞, +∞) или D(y) = R.
- Областью определения функции y = 3 √9 является множество R.
Для тех, кто учится в 7 классе, материала выше достаточно, чтобы подготовиться к контрольной работе. А вот старшеклассникам нужно разбираться в теме несколько глубже — поэтому продолжаем.
Еще больше наглядных примеров и практики — на курсах по математике в онлайн-школе Skysmart!
Область определения функции с корнем
Функцию с корнем можно определить так: y = n √x, где n — натуральное число больше единицы.
Рассмотрим две вариации такой функции.
Область определения корня зависит от четности или нечетности показателя:
- Если n — четное число, то есть, n = 2m, где m ∈ N, то ее область определения есть множество всех неотрицательных действительных чисел:
- Если показатель корня нечетное число больше единицы, то есть n = 2m+1, при этом m принадлежит к N, то область определения корня — множество всех действительных чисел:
Значит, область определения каждой из функций y = √x, y = 4 √x, y = 6 √x,… есть числовое множество [0, +∞). А область определения функций y = 3 √x, y = 5 √x, y = 7 √x,… — множество (−∞, +∞).
Пример
Найти область определения функции:
Подкоренное выражение должно быть неотрицательным, но поскольку оно стоит в знаменателе, то равняться нулю не может. Следовательно, для нахождения области определения необходимо решить неравенство x 2 + 4x + 3 > 0.
Для этого решим квадратное уравнение x 2 + 4x + 3 = 0. Находим дискриминант:
D = 16 – 12 = 4 > 0
Дискриминант положительный. Ищем корни:
Значит парабола f(x) = x 2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x 2 + 4x + 3 2 + 4x + 3 > 0).
Поскольку коэффициент a = 1 > 0, то ветви параболы смотрят вверх. Можно сделать вывод, что на интервалах (−∞, -3) ∪ (−1, +∞) выполнено неравенство x 2 + 4x + 3 > 0 (ветви параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке (-3; -1) ниже оси абсцисс, что соответствует неравенству x 2 + 4x + 3
Область определения степенной функции
Степенная функция выглядит так: y = x a , то есть, f(x) = x a , где x — переменная в основании степени, a — некоторое число в показателе степени.
Область определения степенной функции зависит от значения показателя степени.
Перечислим возможные случаи:
- Если a — положительное целое число, то область определения функции есть множество действительных чисел: (−∞, +∞).
- Для нецелых действительных положительных показателей степени: D(f) = [0, +∞).
- Если a — отрицательное целое число, то область определения функции представляет собой множество (−∞, 0) ∪ (0, +∞).
- Для остальных действительных отрицательных a область определения степенной функции — числовой промежуток (0, +∞).
При a = 0 степенная функция y = x a определена для всех действительных значений x, кроме x = 0. Это связано с тем, что мы не определяли 0 0 . А любое отличное от нуля число в нулевой степени равно единице. То есть, при a = 0 функция приобретает вид y = x 0 = 1 на области определения (−∞, 0) ∪ (0, +∞).
Рассмотрим несколько примеров.
- Область определения функций y = x 5 , y = x 12 — множество R, так как показатели степени целые положительные.
- Степенные функции определены на интервале [0, +∞), так как их показатели положительные, но не целые.
- Область определения функции y = x −2 , как и функции y = x −5 — это множество (−∞, 0) ∪ (0, +∞), так как показатели степени целые отрицательные.
- Область определения степенных функций y = x -√19 , y = x -3e , — открытый числовой луч (0, +∞), так как их показатели не целые и отрицательные.
Область определения показательной функции
Показательную функцию можно задать формулой y = a x , где переменная x — показатель степени, а — больше нуля и не равно единице.
Область определения показательной функции — это множество R.
Примеры показательных функций:
- y = e x
- y = (√15) x
- y = 13 x .
Область определения каждой из них (−∞, +∞).
Область определения логарифмической функции
Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.
Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:
Рассмотрим примеры логарифмических функций:
- y = log7x
- y = lnx
Область определения этих функций есть множество (0, +∞).
Пример
Укажите, какова область определения функции:
Составим и решим систему:
Ответ: область определения: D(f) = (−3, -2) ∪ (−2, +∞).
Область определения тригонометрических функций
Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.
- Функция, которая задается формулой y = sinx, называется синусом, обозначается sin и определяется на множестве всех действительных чисел. Область определения синуса — это множество всех действительных чисел, то есть, D(sin) = R.
- Функция, которая задана формулой y = cosx, называется косинусом, обозначается cos и определяется на множестве R. Область определения функции косинус — множество всех действительных чисел: D(cos) = R.
- Функции, которые заданы формулами y = tgx и y = ctgx, называются тангенсом и котангенсом и обозначаются tg и ctg. Область определения тангенса — это множество всех действительных чисел, кроме чисел . Область определения котангенса — это множество всех действительных чисел, кроме чисел πk, k ∈ Z.
Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что и x ∈ r, x ≠ πk, k ∈ Z соответственно.
Пример
Найдите область определения функции f(x) = tg2x.
Так как a(x) = 2x, то в область определения не войдут следующие точки:
Перенесем 2 из левой части в знаменатель правой части:
В результате . Отразим графически:
Ответ: область определения: .
Область определения обратных тригонометрических функций
Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.
-
Функция, которая задается формулой y = arcsinx и рассматривается на отрезке [−1, 1], называется арксинусом и обозначается arcsin.
Область определения арксинуса — это множество [−1, 1], то есть, D(arcsin) = [−1, 1].
Функция, которая задается формулой y = arccosx и рассматривается на отрезке [−1, 1], называется арккосинусом и обозначается arccos.
Область определения функции арккосинус — отрезок [−1, 1], то есть, D(arccos) = [−1, 1].
Функции, которые задаются формулами вида y = arctgx и y = arcctgx и рассматриваются на множестве всех действительных чисел, называются арктангенсом и арккотангенсом и обозначаются arctg и arcctg.
Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.
Таблица областей определения функций
Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.
И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните.
Функция
Область определения функции
Как найти область определения функции
Что такое область определения функции?
Начнём с краткого определения. Область определения функции y=f(x) – это множество значений X, для которых существуют значения Y.
Войдём в тему более основательно. Каждой точке графика функции соответствуют:
- определённое значение “икса” – аргумента функции;
- определённое значение “игрека” – самой функции.
Верны следующие факты.
- От аргумента – “икса” – вычисляется “игрек” – значения функции.
- Область определения функции – это множества всех значений “икса”, для которых существует, то есть может быть вычислен “игрек” – значение функции. Иначе говоря, множество значений аргумента, на котором “функция работает”.
Можно понимать область определения функции и как проекцию графика функции на ось Ox.
Что требуется, чтобы уверенно находить область определения функции? Во-первых, нужно различать виды функций (корень, дробь, синус и др.). Во-вторых, решать уравнения и неравенства с учетом вида функции (например, на что нельзя делить, какое выражение не может быть под знаком корня и тому подобное). Согласитесь, не так уж много и не так сложно. При изучении темы области определения функции поможет материал Свойства и графики элементарных функций. А поскольку областью определения функции служат различные множества, а также их объединения и пересечения, то пригодится и материал Множества и операции над множествами.
Итак, чтобы находить области определения распространённых функций, порешаем уравнения и неравенства с одной переменной.
После этого экскурса в важную составную матанализа многие согласятся, что найти область определения функции не очень сложно.
Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы. Приступаем к практике.
Общий принцип на самых простых примерах
Пример 1. На рисунке изображён график функции . Знаменатель дроби не может быть равен нулю, так как на нуль делить нельзя. Поэтому, приравнивая знаменатель нулю
и решая это уравнение:
получаем значение, не входящее в область определения функции: 1. То есть, область определения заданной функции – это все значения “икса” от минус бесконечности до единицы и от единицы до плюс бесконечности. Это хорошо видно на графике. Приведённый здесь пример функции относится к виду дробей. На уроке разберём решения всех распространённых видов функций.
Пример 2. Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Так как подкоренное выражение должно быть неотрицательным, нужно решить неравенство
Если перенести какое-либо слагаемое в другую часть неравенства с противоположным знаком, то мы получим равносильное неравенство с тем же знаком неравенства (можно ознакомиться со всеми основными свойствами неравенств). Переносим минус 5 и получаем неравенство
Получаем решение: область определения функции – все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).
На чертеже сверху – фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в “плюсовом” направлении штриховка продолжается бесконечно вместе с самой осью.
Область определения корня n-й степени
В случае, функции корня n-й степени, то есть когда функция задана формулой и n – натуральное число:
если n – чётное число, то областью определения функции является множество всех неотрицательных действительных чисел, то есть [0; + ∞[ ;
если n – нечётное число, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ .
Пример 3. Найти область определения функции .
Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно. Поэтому решаем неравенство
.
Это квадратное неравенство
,
По формуле находим дискриминант:
.
По формуле находим корни квадратного трёхчлена:
.
Найденные точки разбивают числовую прямую на три промежутка:
и .
При этом знак квадратного трёхчлена (больше или меньше нуля) совпадает со знаком коэффициента a во всех точках промежутков
и
и противоположен знаку коэффициента a во всех точках промежутка .
В нашем случае имеем отрицательный коэффициент a=-1 , поэтому квадратный трёхчлен неотрицателен во всех точках промежутка .
Следовательно, область определения данной функции – [- 1; 1] .
Заштрихованная область числовой прямой на чертеже сверху – это область определения данной функции.
Область определения степенной функции
Область определения степенной функции находится в зависимости от вида степени в выражении.
Область определения степенной функции с дробным показателем степени
В случае, когда функция задана формулой :
если – положительное, то областью определения функции является множество [0; + ∞[ , то есть нуль входит в область определения;
если – отрицательное, то областью определения функции является множество (0; + ∞[ , то есть нуль не входит в область определения.
Пример 4. Найти область определения функции .
Решение. Выражение функции можно представить так:
Квадратный трёхчлен в скобках в знаменателе должен быть строго больше нуля (ещё и потому, что дробный показатель степени данной степенной функции – отрицательный). Поэтому решим строгое неравенство, когда квадратный трёхчлен в скобках строго больше нуля:
.
.
Дикриминант получился отрицательный. Следовательно сопряжённое неравенству квадратное уравнение не имеет корней. А это значит, что квадратный трёхчлен ни при каких значениях “икса” не равен нулю. Таким образом, область определения данной функции – вся числовая ось, или, что то же самое – множество R действительных чисел, или, что то же самое – ]- ∞; + ∞[ .
Пример 5. Найти область определения функции .
Решение. Оба слагаемых в выражении функции – степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции – множество [0; + ∞[ .
На чертеже сверху заштрихована часть числовой прямой от нуля (включительно) и больше, причём штриховка продолжается вместе с самой прямой до плюс бесконечности.
Область определения степенной функции с целым показателем степени
В случае, когда функция задана формулой :
если a – положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;
если a – отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.
На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).
Пример 6. Найти область определения функции .
Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы – так же целого числа. Следовательно, область определения данной функции – вся числовая прямая, то есть ]- ∞; + ∞[ .
Область определения показательной и логарифмической функции
Область определения показательной функции
В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ . Подробнее о графике такой функции.
Область определения логарифмической функции
Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ . Подробнее о графике такой функции.
Найти область определения функции самостоятельно, а затем посмотреть решение
Пример 7. Найти область определения функции .
Пример 8. Найти область определения функции .
Область определения тригонометрических функций
Область определения функции y = cos(x) – так же множество R действительных чисел.
Область определения функции y = tg(x) – множество R действительных чисел, кроме чисел .
Область определения функции y = ctg(x) – множество R действительных чисел, кроме чисел .
Пример 9. Найти область определения функции .
Решение. Внешняя функция – десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь – синус “икса”. Пользуясь тригонометической таблицей (или поворачивая воображаемый циркуль по окружности), видим, что условие sin x > 0 нарушается при “иксе” равным нулю, “пи”, два, умноженном на “пи” и вообще равным произведению числа “пи” и любого чётного ( 2kπ ) или нечётного целого числа ( (2k+1)π ).
Таким образом, область определения данной функции задаётся выражением
,
где k – целое число.
Область определения обратных тригонометрических функций
Область определения функции y = arcsin(x) – множество [-1; 1] .
Область определения функции y = arccos(x) – так же множество [-1; 1] .
Область определения функции y = arctg(x) – множество R действительных чисел.
Область определения функции y = arcctg(x) – так же множество R действительных чисел.
Пример 10. Найти область определения функции .
Решение. Решим неравенство:
Решение получили, основываясь на свойстве неравенств: если все части верного неравенства умножить на одно и то же положительное число, то получится также верное неравество. В данном случае умножали на 4.
Таким образом, получаем область определения данной функции – отрезок [- 4; 4] .
Пример 11. Найти область определения функции .
Решение. Решим два неравенства:
Решение первого неравенства:
Решение получили, основываясь на свойстве неравенств: если обе части верного неравенства умножить на одно и то же отрицательное число изменить знак неравенства на противоположный, то получится верное неравенство. В данном случае умножали на минус 2.
Аналогично и решение второго неравенства:
Таким образом, получаем область определения данной функции – отрезок [0; 1] .
Область определения дроби
Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.
Пример 12. Найти область определения функции .
Решение. Решая равенство нулю знаменателя дроби:
находим область определения данной функции – множество ]- ∞; – 2[ ∪ ]- 2 ;+ ∞[ , то есть все числа, кроме минус 2.
Пример 13. Найти область определения функции .
Решение. Решим уравнение:
Таким образом, получаем область определения данной функции – ]- ∞; – 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[ , то есть все числа, кроме минус единицы и единицы.
Пример 14. Найти область определения функции .
Решение. Область определения первого слагаемого – данной функции – множество R действительных чисел, второго слагаемого – все действительные числа, кроме -2 и 2 (получили, решая равенство нулю знаменателя, как в предыдущем примере). В этом случае область определения функции должна удовлетворять условиями определения обоих слагаемых. Следовательно, область определения данной функции – ]- ∞; – 2[ ∪ ]- 2 ; 2[ ∪ ]2 ;+ ∞[ , то есть все числа, кроме -2 и 2.
Пример 15. Найти область определения функции .
Решение. Решим уравнение:
Уравнение не имеет действительных корней. Но функция определена только на действительных числах. Таким образом, получаем область определения данной функции – вся числовая прямая или, что то же самое – множество R действительных чисел или, что то же самое – ]- ∞; + ∞[ .
То есть, какое бы число мы не подставляли вместо “икса”, знаменатель никогда не будет равен нулю.
Пример 16. Найти область определения функции .
Решение. Решим уравнение:
Таким образом, получаем область определения данной функции – ]- ∞; – 1[ ∪ ]- 1 ; 0[ ∪ ]0 ; 1[ ∪ ]1 ;+ ∞[ .
Пример 17. Найти область определения функции .
Решение. Кроме того, что знаменатель не может быть равным нулю, ещё и выражение под корнем не может быть отрицательным. Сначала решим уравнение:
График квадратичной функции под корнем представляет собой параболу, ветви которой направлены вверх. Как следует из решения квадратного уравнения, парабола пересекает ось Ox в точках 1 и 2. Между этими точками линия параболы находится ниже оси Ox, следовательно значения квадратичной функции между этими точками отрицательное. Таким образом, исходная функция не определена на отрезке [1; 2] .
Найти область определения функции самостоятельно, а затем посмотреть решение
Пример 18. Найти область определения функции .
Пример 19. Найти область определения функции .
Область определения постоянной
Постоянная (константа) определена при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[ .
Пример 20. Найти область определения функции y = 2 .
Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f(x) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.
Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.
Область определения линейной функции
Если функция задана формулой вида y = kx + b , то область определения функции – множество R действительных чисел.
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/oblast-opredeleniya-funkcii
http://function-x.ru/function_definition_area.html
[/spoiler]