Способы решения задач на нахождение площадей фигур на квадратной решетке
- Авторы
- Руководители
- Файлы работы
- Наградные документы
Бармин А.А. 1
1Муниципальное бюджетное общеобразовательное учреждение “Гимназия “7 “Ступени”
Кощеева Н.А. 1
1Муниципальное бюджетное общеобразовательное учреждение “Гимназия №7 “Ступени”
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF
Введение
«Решение задач – практическое искусство, подобное
плаванию, катанию на лыжах или игре на фортепиано;
научиться ему можно, только подражая хорошим
образцам и постоянно практикуясь»
Д. Пойя
Актуальность
Площадь – это одна из важнейших величин в геометрии. Без знания площадей невозможно решить множество геометрических задач, доказать теоремы. Площади фигур имели огромное значение много веков назад, но не утратили своего значения в современном мире. Понятие «площадь поверхности» используется во многих областях. Без него нельзя обойтись в строительстве, хирургии, авиационной промышленности, автомобилестроении, геологии и во многих других отраслях промышленности и видах деятельности человека.
Элементарными представлениями и простейшими умениями вычислять площадь несложной фигуры должен обладать любой современный образованный человек. Возможно, поэтому задачи такого плана содержатся в материалах государственной итоговой аттестации.
Например: задачи на квадратной решетке (клетчатой бумаге). У меня возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге.
Казалось бы, что увлекательного можно найти на клетчатой плоскости, т.е. на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научился вычислять площади многоугольников, нарисованных на клетчатом листке, познакомился с формулами для вычисления площадей фигур, приемами, позволяющими находить площади комбинированных фигур. Однако четкой классификации и структурирования задач на клетчатой бумаге по методам и способам решения я не встретил. Возможно, потому, что большинство таких задач считается «занимательными», и не так уж много авторов посвятило этой теме свои изыскания. Задался вопросом: существует ли универсальный метод вычисления площади многоугольника, расположенного на квадратной решетке.
Цель исследования заключается в расширении знаний о понятии площадь, поиске приёмов вычисления площадей многоугольников, расположенных на квадратной решетке, попытке выделить универсальный метод и создать обучающую брошюру в помощь ученику 7-9 класса.
Для достижения поставленной цели необходимо решить следующие задачи:
Подобрать необходимую литературу.
Проанализировать и систематизировать полученную информацию.
Найти различные приёмы вычисления площадей фигур, расположенных на клетчатой бумаге.
Классифицировать приемы.
Оформить работу в виде брошюры, создать электронную презентацию.
Предмет исследования: многоугольники на клетчатой бумаге
Объект исследования: приемы вычисления площадей многоугольников на клетчатой бумаге.
Методы исследования: изучение литературных источников и интернет-ресурсов, анализ и классификация информации, консультация с руководителем.
Гипотеза: возможно, многообразие многоугольников на бумаге в клеточку, отсутствие общих правил и методов вычисления площадей таких фигур, вызывают у школьников затруднения. Предположим, что при более внимательном исследовании приемов вычисления площадей фигур на клетчатой бумаге, мы убедимся в существовании универсального приема, позволяющего решить задачу при наличии достаточно простых геометрических сведений.
Теоретическая часть
1.1 Понятие площади
Площадь (S) – это величина, характеризующая размер той части плоскости, которая заключена внутри плоской замкнутой фигуры.
Определение площадей геометрических фигур – одна из древнейших практических задач. Правильный подход к их решению был найден не сразу.
Каждой плоской геометрической фигуре соответствует своя площадь. У пространственных фигур тоже есть соответствующая им площадь, называемая площадью поверхности.
Измерить площадь фигуры – это значит сравнить ее с площадью некоторой фигуры, принятой за единицу измерения площади.
Измерить площадь фигуры в Древней Греции означало построить квадрат, площадь которого равна площади данной фигуры. С тех пор всякое вычисление площади принято называть квадратурой.
Измерение площадей производится с помощью выбранной единицы измерения аналогично измерению длин отрезков. За единицу измерения площадей принимают квадрат, сторона которого равна единице измерения отрезков. Так, если за единицу длины принят сантиметр, то за единицу измерения площадей принят квадрат со стороной 1 см. Такой квадрат называется квадратным сантиметром и обозначается см2. Если единицей измерения длины является 1 м, ему соответствует единица площади 1 м2, если 1 мм, то единицей площади является 1 мм2.
Пусть, например, за единицу измерения площади принят квадратный сантиметр. Тогда запись S =15 см2 означает, что площадь фигуры равна 15 см2, т.е. в данной фигуре квадрат со стороной 1 см укладывается 15 раз. Как правило, в задачах на клетчатой бумаге клетка условно принимается за квадратный сантиметр.
Невозможно в рамках одной работы рассмотреть весь спектр разнообразных фигур, изображенных на квадратной решетке (клетчатой бумаге). Ограничимся многоугольниками.
Вычисление площадей фигур по известным формулам
Чтобы решать задачи на вычисление площадей фигур на квадратной решетке, надо знать формулы, а также простые приёмы, о которых я расскажу.
Для начала выучим формулы площадей элементарных фигур. Они специально собраны в удобную таблицу.
Как правило, эти задания не вызывают больших затруднений, если фигура представляет собой треугольник или привычно расположенный треугольник или многоугольник. Достаточно хорошо знать формулы вычисления площадей этих фигур, выяснить размеры по количеству клеточек и вычислить площадь. В этом легко убеждают приведенные в таблице задачи.
Таблица 1 – Формулы площадей
Название фигуры |
Формула |
Решение |
Квадрат a a |
2 |
Дано: Квадрат, a = 2 см Найти: S Решение: S квадрата 2 = 4 см 2 Ответ: |
Прямоугольник b a |
Дано: Прямоугольник, a = 2 см, b = 6 см Найти: S Решение: S прямоугольника Ответ: |
|
Прямоугольный треугольник b a |
Дано: прямоугольный треугольник, a = 3 см, b = 6 см Найти: S Решение: S треугольника Ответ: |
|
Произвольный треугольник h a |
Дано: произвольный треугольник, a = 8 см, h = 2 см Найти: S Решение: S треугольника Ответ: |
|
Параллелограмм a b |
Дано: Параллелограмм, a = 4 см, b = 6 см, ha = 4 см, hb = 6 см Найти: S Решение: S параллелограмма Ответ: |
|
Трапеция a b |
Дано: Трапеция, a = 4 см, b = 6 см, h = 2 см Найти: S Решение: S трапеции Ответ: |
|
Ромб |
Дано: Ромб, c = 2 см, d = 4 см Найти: S Решение: S ромба Ответ: |
А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Или фигуры, расположенной таким образом, что вычислить необходимые длины по клеточкам не представляется возможным.
Комбинированные фигуры
В окружающем нас мире существует множество материальных предметов разных форм и размеров: жилые дома, детали машин, книги, игрушки и т.д. В геометрии вместо слова предмет говорят геометрическая фигура.
Слово «фигура» в переводе с латинского языка означает «внешний вид», «образ». Геометрическая фигура – совокупность множества точек, линий, поверхностей или тел, которые расположены на поверхности, плоскости или пространстве и формирует конечное количество линий.
Геометрические фигуры весьма разнообразны. Например: треугольник, квадрат, прямоугольник, и другие. Часть любой геометрической фигуры (кроме точки), также является фигурой. Объединение нескольких геометрических фигур, тоже будет являться геометрической фигурой.
Предметы простой формы в своей основе имеют одну геометрическую фигуру, а предметы сложной формы – несколько геометрических фигур. Более сложные объекты обычно называют комбинированными, имея в виду, что данный объект представляет сумму геометрических фигур. К таким объектам можно отнести и наши комбинированные фигуры.
Например:
Рисунок 1 – комбинированные фигуры
Как найти площадь нестандартной фигуры?
Способы вычисления площади сложных фигур
В работе представлены три способа нахождения площади комбинированной фигуры:
Разбиение комбинированных фигур на элементарные. Один из самых простых и доступных способов вычисления площадей был открыт Евклидом. При вычислении площадей он использовал простой прием, называемый методом разбиения. Разобьем эту фигуру на такие составляющие, о которых всё знаем, и найдем ее площадь как сумму площадей этих фигур.
Sф= S1+S2+S3 |
Площадь фигуры как разность площадей элементарных фигур. Берем фигуру в габаритные размеры, находим площадь фигуры как разность площадей элементарных фигур.
Sф= S – S1 – S2 – S3 – S4 |
Существует универсальная формула, позволяющая вычислить площадь фигуры, изображенной на клетке. Эта формула называется формулой Пика. Однако в рамках школьной программы данная формула не рассматривается, несмотря на свою простоту в применении и получении результата.
, где B – узлы внутри фигуры Г – узлы на границе |
Практическая часть
2.1 Задачи для самостоятельной работы
Задача 1: Найдите площадь трапеции, изображенной на клетчатой бумаге (рис. 1) с размером клетки 1 см×1 см. Воспользуйтесь различными приемами:.
Рисунок 1 – Трапеция
1 способ – Формула для вычисления площади трапеции
2 способ – Разбиение комбинированных фигур на элементарные фигуры. Sф = S1+S2+S3
3 способ – Площадь фигуры как разность площадей элементарных фигур.
Sф = S – S1 – S2
4 способ – Формула Пика.
Задача 2: Найдите площадь окрашенной фигуры, изображенной на клетчатой бумаге (рис.2) . Размер каждой клетки равен 1 см х 1 см.
Рисунок 2 –Треугольник |
Площадь находим по формуле Пика. Формула нахождения |
Задача 3: Найдите площадь окрашенной фигуры, изображенной на клетчатой бумаге (рис.3) . Размер каждой клетки равен 1 см х 1 см.
Рисунок 3 –Прямоугольник |
Площадь фигуры как разность площадей элементарных фигур. ФормуланахожденияSф= S – S1 – S2 – S3– S4 |
Задача 4: Найдите площадь окрашенной фигуры, изображенной на клетчатой бумаге (рис.4) . Размер каждой клетки равен 1 см х 1 см.
Рисунок 4 – Параллелограмм |
Площадь находим по формуле Пика. Формула нахождения |
Задача 5: Найдите площадь окрашенной фигуры, изображенной на клетчатой бумаге (рис.5) . Размер каждой клетки равен 1 см х 1 см.
Рисунок 5 – Фигура |
Разбиение комбинированных фигур на элементарные фигуры. Формула нахождения Sф = S1 + S2 + S3 |
Заключение
В процессе исследования я изучил много справочной литературы, побывал на сайтах, прочитал некоторые книги в электронном виде. Я рассмотрел различные многоугольники, заданные на клетчатой бумаге. Научился вычислять их площадь различными методами. Убедился в том, что универсальным методом можно считать метод Пика, поскольку он приемлем практически для любых многоугольников, независимо от расположения. Недостатком этого метода считаю неточность результата при сомнительном положении узлов квадратной решетки. Лежит ли узел внутри контура или на границе. Для себя выделил в качестве универсального метода «метод разности площадей элементарных фигур».
Поделился своими наблюдениями в созданной брошюре с надеждой, что мой труд будет интересен другим ученикам.
Навыки, полученные в результате работы над данной темой, буду применять в обычных жизненных ситуациях, а также при дальнейшем глубоком изучении геометрии как науки.
Список использованных источников литературы
Бутузов, В. Ф. Геометрия. 7 – 9 классы: учеб. для общеобразоват. организаций. – М.: Просвещение, 2016. – 383 с.
Смирнова, И. М. Геометрические задачи с практическим содержанием: Учеб. пособие / И.М.Смирнова, В.А. Смирнов. – 2-е изд., доп. – М.: МЦНМО, 2015. – 216 с.
Трошин, В. В.Занимательные дидактические материалы по математике. Сборник заданий. Выпуск 2. – М.: Глобус, 2008. – 288 с.
Интернет – ресурсы
Материалы сайта: http://kopilkaurokov.ru/matematika
Материалы сайта: http://www.edufuture.buz
Материалы сайта: http://www.matematikius.into
Приложение
Задача № 1: Найдите площадь комбинированной фигуры, изображенной на клетчатой бумаге (рис. 6) с размером клетки 1 см×1 см, используя формулу Пика.
Рисунок 6
Задача № 2: Найдите площадь комбинированной фигуры, изображенной на клетчатой бумаге (рис. 7) с размером клетки 1 см×1 см., см. используя метод сумм.
Рисунок 7
Задача № 3: Найдите площадь комбинированной фигуры, изображенной на клетчатой бумаге (рис. 8) с размером клетки 1 см×1 см, используя метод разности.
Рисунок 8
Задача № 4: Найдите площадь комбинированной фигуры, изображенной на клетчатой бумаге (рис. 9) с размером клетки 1 см×1 см. используя известные методы.
Рисунок 9
Задача № 5: Найдите площадь комбинированной фигуры, изображенной на клетчатой бумаге (рис. 10) с размером клетки 1 см×1 см известными способами нахождения площади.
Рисунок 10
Просмотров работы: 369
Содержание:
1. Модуль
1: Основные формулы площадей.
2. Модуль
2: Методы нахождения площадей.
3. Модуль
3: Задачи с решением.
4. Модуль
4: Задачи для закрепления.
5. Модуль
5: Задачи для самостоятельной работы и зачета.
Модуль
1. Теоретическая часть
1.1.Основные
определения и формулы для площадей фигур.
Прямоугольник.
Прямоугольником
называется четырехугольник, у которого все углы равны. Все углы в
прямоугольнике прямые, т.е. составляют 90°.Площадь прямоугольника равна
произведению его сторон .
Квадрат.
Квадратом
называется параллелограмм с
прямыми углами и равными сторонами. Квадрат есть частный вид прямоугольника, а
также частный вид ромба. См. также площадь ромба.
Площадь квадрата равна квадрату длины его стороны. Или половине квадрата
диагонали.
;
Трапеция.
Трапецией называется
четырехугольник, у которого две стороны параллельны, а две другие не
параллельны. Площадь трапеции равна произведению полусуммы ее
оснований на высоту.
Площадь трапеции равна произведению её средней
линии на высоту.
Параллелограмм.
Параллелограммом называется
четырехугольник, у которого противоположные стороны попарно
параллельны. Площадь параллелограмма равна произведению его
основания на высоту.
Площадь параллелограмма равна произведению двух соседних его
сторон на синус угла между ними.
Правильный многоугольник.
Для
того чтобы вычислить площадь правильного многоугольника его разбивают
на равные треугольники с общей вершиной в центре вписанной окружности. А
площадь правильного многоугольника равна произведению его полупериметра
на радиус вписанной окружности правильного
многоугольника.
Выпуклый четырёхугольник.
Площадь выпуклого четырёхугольника равна половине произведения
его диагоналей на синус угла между ними.
Площадь четырёхугольника, вписанного в окружность, равна корню
квадратному из произведения разностей полупериметра этого четырёхугольника и
всех его сторон
Ромб.
Ромбом называется параллелограмм с
равными сторонами. Квадрат есть частный вид ромба. У квадрата диагонали равны.
См. также площадь квадрата. Площадь
ромба равна половине произведения его диагоналей.
Площадь ромба равна произведению
квадрата его стороны на синус одного из его углов.
Сектор.
Сектор
круга, окружности — это часть круга, окружности ограниченная
дугой и двумя радиусами, проведенными к концам дуги. Площадь сектора
круга равна произведению половины длины дуги
сектора на радиус круга.
Площадь кругового сектора равна произведению площади единичного
сектора (сектор, соответствующий центральному углу с мерой равной единице) на
меру центрального угла, соответствующего данному сектору ( формулы для случаев градусной и радианной мер центральных
углов).
Окружность.
Окружность есть
геометрическое место точек плоскости, равноудаленных от одной ее точки. Равные
отрезки, соединяющие центр с точками окружности, называются радиусами. Круг
есть часть плоскости, лежащая внутри окружности. Площадь круга равна
произведению полуокружности на радиус.
Площадь
сегмента круга, окружности.
Сегмент круга, окружности — это
часть круга, окружности,
ограниченная дугой и стягивающей ее хордой.
Площадь сегмента круга, окружности
находится, как разность площади сектора и площади равнобедренного треугольника выраженную через угол.
Площадь кольца.
Площадь
кольца через радиусы находится как произведение числаπ на разность
квадратов внешнего и внутреннего радиусов кольца.
Площадь кольца через
диаметры находится как произведение одной четвертой числа π на
разность квадратов внешнего и внутреннего диаметров кольца.
Площадь кругового кольца равна удвоенному произведению числа
“пи”, среднего радиуса кольца и его ширины.
Площадь сектора кольца.
Сектор
кольца — это часть круга, окружности ограниченная дугами разных радиусов и
двумя линиями радиусами, проведенными к концам дуги большего радиуса.
Площадь сектора кольца вычисляется
как разность площадей большего и меньшего секторов круга.
Площадь сектора кольца если угол в
градусах, вычисляется как произведение числа π на отношение угла
сектора к углу полной окружности 360° и на разность квадратов большего и
меньшего радиусов.
Площадь треугольника.
Треугольник образуется
соединением отрезками трех точек, не лежащих на одной прямой. При этом точки
называются вершинами треугольника, а отрезки – его сторонами. Площадь
треугольника равна произведению половины основания треугольника на его
высоту.
Площадь треугольника по формуле
Герона равна корню из произведения разностей полупериметра треугольника
(p) и каждой из его сторон.
Если
известно две стороны треугольника и угол
между ними, то площадь данного треугольника вычисляется, как половина
произведения этих сторон умноженная на синус угла между ними.
Если
один из углов прямой, то треугольник – прямоугольный. Площадь прямоугольного
треугольника равна половине произведения катетов треугольника.
Площадь равнобедренного треугольника
вычисляется по классической формуле площади
треугольника — произведение половины
основания треугольника на его высоту. Высоту мы подставим в эту формулу
из формулы высоты равнобедренного
треугольника.
Площадь
равностороннего треугольника вычисляется по классической формуле площади
треугольника — произведение половины
основания треугольника на его высоту. Высоту мы подставим в эту формулу
из формулы высоты равностороннего
треугольника
Площадь треугольника равна отношению произведения
квадрата его стороны на синусы прилежащих углов к удвоенному синусу
противолежащего угла.
Площадь треугольника равна отношению произведения
квадрата его высоты на синус угла, из вершины которого проведена эта высота, к
удвоенному произведению синусов двух других углов.
Площадь треугольника равна произведению квадрата
его полупериметра на тангенсы половин всех углов треугольника.
Площадь
треугольника равна отношению произведения всех его сторон к четырём радиусам,
описанной около него окружности.
Площадь треугольника равна удвоенному
произведению квадрата радиуса, описанной около него окружности, и синусов всех
его углов.
Площадь треугольника (многоугольника) равна
произведению его полупериметра и радиуса окружности, вписанной в этот
треугольник (многоугольник).
Площадь треугольника равна произведению квадрата
радиуса вписанной окружности на котангенсы половин всех углов треугольника.
Шар и сфера.
Шаровой,
или сферической поверхностью (иногда просто сферой) называется геометрическое
место точек пространства, равноудаленных от одной точки – центра шара. Площадь
поверхности сферы равна учетверенной площади большого круга:
Куб.
Прямоугольный параллелепипед,
все грани которого – квадраты, называется кубом. Все ребра куба равны,
а площадь поверхности куба равна сумме площадей шести его граней, т.е.площади квадрата со
стороной H умноженной на шесть. Площадь поверхности куба равна.
Конус.
Круглый конус может
быть получен вращением прямоугольного треугольника вокруг
одного из его катетов, поэтому круглый конус называют также конусом вращения.
Боковая площадь поверхности круглого
конуса равна произведению половины окружности основания на образующую.
Цилиндр.
Цилиндрической
поверхностью называется поверхность, образуемая прямой, сохраняющей одно и тоже
направление и пересекающей направляющую линию. Цилиндр —
круговой если в основании его лежит круг. Площадь боковой поверхности круглого
цилиндра равна произведению длины окружности основания
на высоту.
Прямоугольный параллелепипед.
Параллелепипедом
называется призма, основание которой параллелограмм. Параллелепипед
имеет шесть граней, и все они — параллелограммы. Параллелепипед, четыре боковые
грани которого — прямоугольники, называется прямым. Прямой параллелепипед у
которого все шесть граней прямоугольники, называется
прямоугольным. Площадь поверхности прямоугольного
параллелепипеда равна удвоенной сумме площадей трех граней этого
параллелепипеда.
Усеченный конус.
Усеченный
конус получится, если в конусе провести сечение, параллельное основанию.
Тело ограниченное этим сечением, основанием и боковой поверхностью конуса
называется усеченным конусом. Боковая площадь поверхности усеченного
конуса вычисляется по формуле.
Шаровой сегмент.
Часть
шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или
сферическим сегментом. Основанием шарового сегмента называется круг ABCD.
Высотой шарового сегмента называется отрезок NM, т.е. длина перпендикуляра,
восстановленного из центра N основания до пересечения с поверхностью
шара. Точка M называется вершиной шарового сегмента. Площадь
поверхности шарового сегмента равняется произведению его высоты на
окружность большого круга шара.
Шаровой
слой.
Шаровой слой — это часть шара,
заключенная между двумя секущими параллельными плоскостями. Шаровой пояс или Шаровая
зона — это кривая поверхность шарового слоя. Круги ABC и DEF это основания
шарового пояса. Расстояние между основаниями это высота шарового слоя. Кривая
поверхность шарового слоя равна произведению его высоты на окружность
большого круга шара.
Шаровой сектор.
Шаровой
сектор — это часть шара, ограниченная кривой поверхностью шарового
сегмента и конической поверхностью основанием которой служит основание
сегмента, а вершиной — центр шара. Поверхность шарового сектора складывается из
кривых поверхностей шарового сегмента и конуса. Зная радиус основания сегмента
и конуса r при помощи теоремы Пифагора и прямоугольного треугольника
получим высоты сегмента и конуса:
1.2.Справочные
таблицы «Площади плоских фигур, площади поверхности и объема тел вращения»
Модуль
2. Методы нахождения площади плоских фигур.
Рассмотрим несколько способов нахождения
площади плоских фигур:
·
формула Пика,
·
метод обводки.
1.1
Формула Пика.
Формула, при помощи которой можно находить площадь фигуры
построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник,
многоугольник). Об этой формуле обычно рассказывается применительно к
нахождению площади треугольника. На примере треугольника мы её и рассмотрим.
Площадь искомой фигуры можно найти по формуле:
М – количество узлов на границе треугольника (на сторонах и
вершинах)
N – количество узлов внутри треугольника
*Под «узлами» имеется ввиду пересечение линий.
Найдём
площадь треугольника: Отметим узлы:
1 клетка = 1 см
M = 15 (обозначены красным)
N = 34 (обозначены синим)
Пример 1. Найдём площадь параллелограмма:
Отметим узлы:
M = 18 (обозначены красным)
N = 20 (обозначены синим)
Пример 2. Найдём площадь трапеции: Отметим
узлы:
M = 24 (обозначены красным)
N = 25 (обозначены синим)
Пример 3. Найдём площадь многоугольника:
Отметим узлы:
M = 14 (обозначены красным)
N = 43 (обозначены синим)
Понятно, что находить площадь трапеции, параллелограмма,
треугольника проще и быстрее по соответствующим формулам площадей этих фигур.
Но знайте, что можно это делать и таким образом. А вот когда дан многоугольник, у которого пять и более углов эта
формула работает хорошо.
Теперь взгляните на следующие фигуры:
Это типовые фигуры, в заданиях стоит вопрос о нахождении их
площади. При помощи формулы Пика такие задачи решаются за минуту. Например,
найдём площадь фигуры:
M = 11 (обозначены красным)
N = 5 (обозначены синим)
Ответ: 9,5
1.2 Метод обводки.
- Достроить
искомую фигуру до прямоугольника. - Найти
площадь всех получившихся дополнительных фигур и площадь самого
прямоугольника. - Из
площади прямоугольника вычесть сумму площадей всех лишних фигур.
Бывает,
что не так-то просто рассчитать, сколько клеток в нужном отрезке. Вот смотри, треугольник:
Вроде бы даже прямоугольный и S=12⋅abS=21⋅ab, но чему
тут равно aa, и чему
равно bb? Как узнать?
Применим для полной ясности оба способа
I способ.
Найдем по
теореме Пифагора из ΔADC а по
теореме Пифагора из ΔBCE.
На листе в клетку легко посчитать длину катетов.
Итак:
Значит,
Теперь
Значит,
Подставляем в формулу:
Значит,
II способ
Нужно окружить нашу фигуру прямоугольником. Вот
так:
Получился
один (нужный) треугольник внутри и три ненужных треугольника снаружи. Но
площади этих ненужных треугольников легко считаются на листе в клетку. Посчитаем
их, а потом просто вычтем из целого прямоугольника.
Итак,
Почему же этот способ лучше? Потому что он работает
и для любых фигур. К примеру, нужно посчитать площадь такой фигуры:
Окружаем
ее прямоугольником и снова получаем одну нужную, но сложную площадь и много
ненужных, но простых.
А теперь чтобы найти
площадь просто находим площадь прямоугольника и вычитаем из него оставшуюся
площадь фигур на клетчатой бумаге.
Значит,
Вот и ответ:
Модуль
3: Задачи с решением.
1. Найдите площадь четырёхугольника, изображённого
на клетчатой бумаге
с размером клетки 1 см * 1 см. Ответ
дайте в квадратных сантиметрах.
Решение:
Разобьём четырёхугольник
диагональю РС на два треугольника. Диагональ эта хороша тем, что идёт под
углом 45° к горизонту. Проведём через точки А и В прямые, параллельные диагонали.
Если на верхней прямой взять любую точку Т, то площадь треугольника РТС окажется равной площади треугольника РАС, т.к. основание РС у них общее,
а высоты, проведённые к РС, равны. Такие же рассуждения
о точке К.
Таким образом, если удачно разместить точки Т и К, как на рисунке
выше, то
SACBP = SPAC + SPBC = SPTC + SPKC = STKP = 0,5·6·3 = 9
Ответ: 9
Возможны и другие варианты
расположения точек Т и
К:
2. Найдите
площадь фигуры, изображенной на рисунке, считая стороны квадратных клеток
равными единице.
Решение:
Отрежем у данной фигуры все полукруглые части (выпуклости),
которые выходят за рамки квадрата 4·4, и аккуратно упакуем их
на свободные в квадрате места.
Площадь данной причудливой фигуры просто равна площади квадрата 4·4 =
16.
Ответ: 16
3.
Найдите площадь четырехугольника, изображенного на клетчатой
бумаге с размером клетки 1 см * 1 см. Ответ дайте в квадратных сантиметрах.
Решение:
Опишем около неё прямоугольник.
Из площади прямоугольника (в данном случае это квадрат) вычтем
площади полученных простых фигур:
Ответ: 4,5
4. Найдите
площадь треугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.
5. Найдите
площадь треугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.
6. На
клетчатой бумаге нарисован круг площадью 93. Найдите площадь заштрихованного
сектора.
7. На
клетчатой бумаге нарисованы два круга. Площадь внутреннего круга равна 9.
Найдите площадь заштрихованной фигуры.
8. Найдите
(в см2) площадь S
фигуры, изображенной на клетчатой бумаге с размером
клетки 1см×1см. В ответе запишите S/π.
9. Найдите
площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.
Модуль
4. Задачи для закрепления.
1.
Найдите площадь треугольника ABC,
считая стороны квадратных клеток равными 1.
2.
Найдите площадь треугольника ABC,
считая стороны квадратных клеток равными 1.
3.
Найдите площадь прямоугольника ABCD,
считая стороны квадратных клеток равными 1.
4.
Найдите площадь ромба ABCD,
считая стороны квадратных клеток равными 1.
5.
Найдите площадь трапеции ABCD,
считая стороны квадратных клеток равными 1.
6.
Найдите площадь трапеции ABCD,
считая стороны квадратных клеток равными 1.
7.
Найдите площадь четырехугольника ABCD,
считая стороны квадратных клеток равными 1.
8.
Найдите площадь четырехугольника ABCD,
считая стороны квадратных клеток равными 1.
9.
Найдите площадь S сектора,
считая стороны квадратных клеток равными 1. В ответе укажите .
10.
Найдите площадь S кольца,
считая стороны квадратных клеток равными 1. В ответе укажите .
11. Найдите площадь треугольника, вершины которого имеют
координаты (1, 1), (4,4), (5, 1).
12.
Найдите площадь четырехугольника, вершины которого имеют координаты (1, 0), (0,
2), (4, 4), (5, 2).
13. Найдите площадь S круга,
изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.
14. Найдите площадь S круга,
описанного около прямоугольника ABCD. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите (в кв. см).
15. В ромб ABCD, площадь которого
равна , вписан круг. Найдите
площадь круга, если размер каждой клетки на чертеже равен 1см *1см.
16.Найдите площадь S круга,
описанного около прямоугольника ABCD. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите (в кв. см).
17. Найдите площадь круга, описанного
около прямоугольного треугольника АВС. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите ( в кв. см).
18. Найдите площадь круга, описанного
около прямоугольного треугольника АВС. Размер каждой клетки на чертеже
равен 1см*1см. В ответе укажите (в кв. см).
19. Найдите площадь S круга,
описанного около четырехугольника, изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см × 1 см. Ответ дайте в сантиметрах.
20. Найдите площадь S круга,
описанного около четырехугольника, изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см × 1 см. Ответ дайте в сантиметрах.
21. Найдите площадь S круга,
изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.
22. Найдите площадь S сектора. В
ответе укажите . Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.
23. Найдите площадь S заштрихованной
части кругового сектора АОВ. Размер каждой клетки на чертеже равен 1см *1см.
В ответе укажите (в кв. см).
24.Найдите площадь круга, описанного около
прямоугольника АВСD. Размер каждой клетки на чертеже равен 1см 1см.
В ответе укажите (в кв. см).
25. Два одинаковых круга касаются друг
друга и сторон прямоугольника ABCD. Найдите площадь одного круга, если площадь
прямоугольника равна .
26. Две одинаковых окружности касаются
друг друга и сторон прямоугольника ABCD. Найдите периметр прямоугольника, если
длина каждой окружности равна 3,6
27. Диаметр полукруга совпадает со
стороной прямоугольника ABCD, а 3 другие стороны прямоугольника касаются
полукруга. Найдите длину полуокружности, если периметр прямоугольника равен .
Модуль
5. Задачи для самостоятельных и зачетных работ.
1. На клетчатой
бумаге с клетками размером 1 см 1 см
изображена фигура (см. рисунок). Найдите ее площадь в квадратных
сантиметрах.
2. Найдите площадь квадрата ABCD, считая стороны квадратных
клеток равными 1.
3. Найдите площадь квадрата, вершины которого
имеют координаты (4;3), (10;3), (10;9), (4;9).
4. Во сколько раз площадь квадрата, описанного
около окружности, больше площади квадрата, вписанного в эту окружность?
5. В прямоугольнике расстояние от точки пересечения
диагоналей до меньшей стороны на 1 больше, чем расстояние от нее до
большей стороны. Периметр прямоугольника равен 28. Найдите меньшую
сторону прямоугольника.
6. На клетчатой бумаге с клетками размером 1
см 1 см изображен параллелограмм (см. рисунок).
Найдите его площадь в квадратных сантиметрах.
7. Найдите площадь параллелограмма, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных
сантиметрах.
8. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных
сантиметрах.
9. Найдите периметр четырехугольника , если стороны квадратных клеток равны .
10. На клетчатой бумаге с клетками размером 1
см 1 см изображена трапеция (см. рисунок).
Найдите ее площадь в квадратных сантиметрах.
11. На клетчатой бумаге с клетками размером 1
см 1 см изображена трапеция (см. рисунок).
Найдите ее площадь в квадратных сантиметрах.
12. Найдите площадь трапеции, вершины которой
имеют координаты (1;1), (10;1), (8;6), (5;6).
13. Найдите высоту трапеции , опущенную из вершины , если стороны квадратных клеток равны .
14. На клетчатой бумаге с клетками размером
1 см 1 см изображена фигура (см. рисунок).
Найдите ее площадь в квадратных сантиметрах.
15.
Найдите площадь четырехугольника,
вершины которого имеют координаты (8;0), (10;8), (2;10), (0;2).
16. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных
сантиметрах.
17. Найдите
площадь четырехугольника, изображенного на клетчатой бумаге с размером
клетки 1 см 1
см (см. рис.). Ответ дайте в квадратных сантиметрах.
18. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
19.
Найдите площадь четырехугольника, изображенного на
клетчатой бумаге с размером клетки 1 см 1
см (см. рис.). Ответ дайте в квадратных сантиметрах.
20. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах
21. На клетчатой бумаге с размером клетки 1×1 изображён
треугольник. Найдите радиус описаной около него окружности.
22. На клетчатой бумаге нарисованы два круга. Площадь
внутреннего круга равна 11. Найдите площадь заштрихованной фигуры.
23.
Найдите площадь четырехугольника, вершины
которого имеют координаты (1;7), (8;2), (8;4), (1;9).
24. Найдите площадь закрашенной фигуры на координатной
плоскости.
25. Точки O(0;
0), A(10; 0), B(8; 6), C(2; 6) являются вершинами
трапеции. Найдите длину ее средней линии DE.
26. Найдите (в см2) площадь S закрашенной фигуры,
изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите .
27. Найдите площадь сектора круга радиуса , центральный угол которого равен 90°
28. . Найдите
центральный угол сектора круга радиуса , площадь которого равна . Ответ дайте в градусах.
29. На клетчатой бумаге нарисовано два круга. Площадь
внутреннего круга равна 1. Найдите площадь заштрихованной фигуры.
30. На клетчатой бумаге нарисовано два круга. Площадь
внутреннего круга равна 9. Найдите площадь заштрихованной фигуры.
Зачет
№1
Найдите площадь окрашенной фигуры,
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
№2
Найдите площадь окрашенной фигуры,
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
№3
В детском саду дети делали аппликации
родителям в подарок. Найдите площадь аппликации (окрашенной фигуры),
изображенной на чертеже. Размер каждой клетки равен 1см*1см.
Ответ дайте в квадратных сантиметрах.
1.
2.
3.
4.
5.
№4 В детском саду дети делали фото- рамки
родителям в подарок. Найдите площадь фото-рамки (окрашенной фигуры),
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.
6.
7.
8.
9.
10
В едином государственном экзамене по математике в части B есть задача, где нужно вычислить площадь закрашенной фигуры. Несмотря на свою простоту, в этой задаче часто допускают ошибки. В этой статье вы узнаете, как решить задачу части В, зная всего лишь одну формулу (площадь прямоугольного треугольника равна половине произведения катетов).
Пример 1
Площадь красного квадрата = 6 х 6 = 36.
Площадь фигуры 1 = (6 х 1) / 2 = 3.
Площадь фигуры 2 = (4 х 1) / 2 = 2
Площадь фигуры 3 = 1 х 1 = 1
Площадь фигуры 4 = (3 х 1) / 2 = 1,5
Площадь фигуры 5 = (2 х 6) / 2 = 6
Площадь закрашенной фигуры = 36 – (3 + 2 + 1 + 1,5 + 6) = 36 – 13,5 = 22,5
Пример 2
Площадь закрашенного треугольника в прямоугольнике 1 = (6 х 4) / 2 = 12
Площадь закрашенного треугольника в прямоугольнике 2 = (6 х 2) / 2 = 6
Площадь закрашенной фигуры = 12 + 6 = 18
Пример 3
Площадь красного прямоугольника = (7 – 3) х (9 – 1) = 4 х 8 = 32
Площадь фигуры 1 = (7 – 3) х (3 -1) / 2 = 4 х 2 / 2 = 4
Площадь фигуры 3 = (7 – 3) х (9 – 5) / 2 = 4 х 4 / 2 = 8
Площадь закрашенной фигуры (фигуры 2) = 32 – 4 – 8 = 20
Пример 4
Площадь закрашенной фигуры = (10 – 4) х (9 -1) = 6 х 8 = 48
Пример 5
Диагональ большого квадрата = 16
Диагональ малого (внутреннего) квадрата = 8
Площадь большого квадрата = 1 / 2 * 16² = 1/2 * 256 = 128
Площадь малого квадрата = 1 / 2 * 8² = 1/2 * 64 = 32
Площадь закрашенной фигуры = 128 – 32 = 96
Если забыли как найти площадь квадрата, зная диагональ, то можно разложить эту фигуру на прямые треугольники и вычислить площадь, как в примерах выше.
Понравилась статья? Ставь лайк и подписывайся на Математику. Впереди много интересного.
Найдите площадь окрашенной фигуры, изображенной на чертеже.
Размер каждой клетки равен 1 см на 1 см.
Ответ дайте в квадратных сантиметрах.
Только, пожалуйста, с полным решением!
Вы зашли на страницу вопроса Найдите площадь окрашенной фигуры, изображенной на чертеже?, который относится к
категории Геометрия. По уровню сложности вопрос соответствует учебной
программе для учащихся 10 – 11 классов. В этой же категории вы найдете ответ
и на другие, похожие вопросы по теме, найти который можно с помощью
автоматической системы «умный поиск». Интересную информацию можно найти в
комментариях-ответах пользователей, с которыми есть обратная связь для
обсуждения темы. Если предложенные варианты ответов не удовлетворяют,
создайте свой вариант запроса в верхней строке.
Всего: 74 1–20 | 21–40 | 41–60 | 61–74
Добавить в вариант
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки
1 см 1 см (см. рис.). В ответе запишите
Всего: 74 1–20 | 21–40 | 41–60 | 61–74