Как найти площадь окружности через диаметр окружности

Формула (формулы) площади круга

Найти площадь круга можно разными способами, в зависимости от известных данных.

По радиусу

Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):

Формула площади круга по радиусу

Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).

Через диаметр

Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d – диаметр, а π – константа, равная 3,1415…):

Формула площади круга по диаметру

К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).

Через длину окружности

Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L – длина окружности, а π – константа, равная 3,1415…):

Формула площади круга по длине окружности

Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202  / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).

Какие термины используются для поиска площади круга?

Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.

Окружность, круг, радиус, диаметр

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.

Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней. 

Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.

Площадь круга и размеры пицц

Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:

Площадь круга и размеры пицц

Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?

Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:

  • 252 + 252 = 625 + 625 = 1250
  • 402 = 1600

Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.

Площади усеченных частей круга

А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:

Хорда, сектор, сегмент и их площади

Хорда — отрезок, соединяющий любые две точки окружности.

Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.

Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:

S = sr/2

где S — площадь сектора, r — радиус круга.

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.

Площадь сегмента можно найти по формулам:

S = r2sinα/ 2

где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.

Часто задаваемые вопросы о площади круга?

И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.

Входит ли окружность (периметр) в площадь круга?

Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.

Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?

Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Кто впервые научился вычислять площадь круга?

Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.

Поделитесь в соцсетях

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Как рассчитать площадь круга

На данной странице калькулятор поможет рассчитать площадь круга онлайн. Для расчета задайте радиус, диаметр или длину окружности.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

Через радиус


Площадь круга через радиус


Формула для нахождения площади круга через радиус:

π – константа равная (3.14); r – радиус круга.


Через диаметр


Площадь круга через диаметр


Формула для нахождения площади круга через диаметр:

π – константа равная (3.14); d – диаметр.


Через длину окружности


Площадь круга через длину окружности


Формула для нахождения площади круга через длину окружности:

π – константа равная (3.14); l – длина окружности.

Площадь круга через радиус

{S = pi r^2}

Здесь вы можете рассчитать площадь круга по известным параметрам. Для вычисления достаточно знать радиус, диаметр круга или длину его окружности.

Содержание:
  1. калькулятор площади круга
  2. отличие окружности от круга
  3. формула площади круга через радиус
  4. формула площади круга через диаметр
  5. формула площади круга через длину окружности
  6. примеры задач

Окружность и круг – в чём отличие?

Часто понятия круг и окружность путают, хотя это разные вещи.

Окружность – это замкнутая линия, а круг – это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко – это окружности, а монета или вкусный блин – это круги.

Круг – бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.

Отличие окружности и круга

Формула площади круга через радиус

Площадь круга через радиус

S = pi r^2

r – радиус круга

Формула площади круга через диаметр

Площадь круга через диаметр

S = pi dfrac{d^2}{4}

d – диаметр круга

Формула площади круга через длину окружности

Площадь круга через длину окружности

S = dfrac{L^2}{4pi}

L – длина окружности

Примеры задач на нахождение площади круга

Задача 1

Найдите площадь круга, радиус которого равен 4 см.

Решение

Для решения задачи воспользуемся формулой площади круга через радиус.

S = pi r^2 = pi cdot 4^2 = 16 pi : см^2 approx 50.26548 : см^2

Ответ: 16 pi : см^2 approx 50.26548 : см^2

Полученный ответ удобно проверить с помощью калькулятора .

Задача 2

Найдите площадь круга, радиус которого равен 7 см.

Решение

Задача похожа на предыдущую, поэтому решение будет выглядеть аналогично.

S = pi r^2 = pi cdot 7^2 = 49 pi : см^2 approx 153.93804 : см^2

Ответ: 49 pi : см^2 approx 153.93804 : см^2

Проверим ответ на калькуляторе .

Задача 3

Найдите площадь круга, радиус которого равен 9 см.

Решение

Еще одна типовая задача.

S = pi r^2 = pi cdot 9^2 = 81 pi : см^2 approx 254.469 : см^2

Ответ: 81 pi : см^2 approx 254.469 : см^2

Проверим ответ на калькуляторе .

Найти площадь круга поможет калькулятор онлайн, который быстро и точно вычислит искомую величину. Площадь круга можно считать через диаметр или радиус. Здесь есть 2 калькулятора которыми мы рассчитываем площадь круга через диаметр и через радиус.

Калькулятор площади круга через диаметр

Калькулятор площади круга через радиус

Расчет площади круга на калькуляторе онлайн

Расчет площади круга пожалуй самый популярный вопрос в сети. Этот расчет может пригодиться практически любому человеку, начиная от школьника и заканчивая инженером. Поэтому мы тоже решили обязательно добавить на наш сайт точный калькулятор площади круга. Просто введите диаметр или радиус круга, нажмите на кнопку «Рассчитать» и мгновенно получите результат. Даже нажимать на неё не обязательно, всё на автомате. Результаты выводятся в нужных вам единицах измерения.

Площадь круга в основном считается двумя способами, а именно:

  • площадь круга через диаметр
  • площадь круга через радиус

Каким именно способом пользоваться решать вам. Он зависит от конкретной задачи и имеющихся исходных данных (размеров).

Наш онлайн-калькулятор площади круга удобен тем, что можно выбрать различные единицы измерения диаметра круга и рассчитанной площади круга. Стоит только переключиться и всё будет тут же пересчитано. К тому же у него очень хорошая точность, в чём вы можете легко убедиться сами.

И еще, имейте ввиду, что калькулятор округляет результат до 3-х знаков после запятой. Для обычных расчётов этого вполне достаточно. Если понадобится еще большая точность, напишите об этим в комментариях.

Формула площади круга через диаметр

S = π * D2 / 4 , где

S — площадь круга,
D — диаметр круга,
π — число «Пи».

Формула площади круга через радиус

S = π * R2 , где

S — площадь круга,
R — радиус круга,
π — математическая константа.

Как видите формулы для расчёта площадей круга очень простые, однако лучше всего площадь круга вычислит онлайн калькулятор. В таком случае будет меньше ошибок и не будет путаницы в единицах измерения.

Таблица площади круга в зависимости от диаметра

Диаметр круга, см Площадь круга, см2
1 0,79
2 3,14
3 7,07
4 12,57
5 19,64
10 78,54
15 176,72
20 314,16
25 480,87
50 1963,50
100 7853,98
200 31415,93

Пригодилось? Добавьте в закладки чтобы не потерять или нажмите на «поделиться».

Было полезно? Поделитесь с друзьями!

Найти площадь круга через диаметр

где: π — 3,141592, d — диаметр круга

Диаметром круга называют хорду проходящую через центр круга
Хорда — это часть прямой, которая проходит между двумя точками окружности

Формула расчета площади круга через диаметр:

Найти

Через диаметр

Через радиус

Калькулятор онлайн

Круг — множество точек на плоскости ограниченных окружностью (т.е. лежащих внутри окружности)

S = π(d/2)²

Расчет площади

Трапеция

Параллелограмм

Ромб

Прямоуголник

Круг

Квадрат

Добавить комментарий