Площадь Круга через Длину Окружности
Калькулятор рассчитывает Площадь круга по Длине Окружности. Расчет производится автоматически при вводе величины Длины Окружности. Подробное решение показывает формулу и порядок вычислений
Длина Окружности:
Десятичных знаков –
Десят. знаков –
0
Посчитать
Показать решение
Сохранить
П.н.
Сохраненные результаты
Нет сохраненных результатов
Формула площади круга через длину Окружности
Площадь круга через длину Окружности
S – площадь круга,
l – длина окружности,
π ≈ 3,141592653589
Определения и термины
Круг – множество точек плоскости, расстояние до которых от данной точки (центра круга) не превышает заданного расстояния (радиуса круга).
Окружность – замкнутая плоская кривая состоящия из всех точек полскости равноудаленных от заданной точки (центра окружности)
Число Пи (π) – математическая константа, которая выражает отношение длины окружности к её диаметру.
Равно приблизительно 3,141592653589…
Условие задачи:
Длина окружности 5 м. Найти площадь круга, ограниченного этой окружностью.
Дано:
Длина окружности, L = 5 м
Пояснение к рисунку:
O – центр окружности
Найти площадь круга: S
Решение
Используем формулу площади круга через радиус. Но нам пока не известен радиус, его надо найти.
Определить радиус, нам поможет формула длины окружности.
После преобразования, выразим радиус через длину окружности и подставим значения.
Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14
Получили значение радиуса окружности.
В формулу площади круга, подставляем найденное значение радиуса.
Ответ:
Если в формулу площади круга подставить выраженный радиус через длину окружности, то получим следующую формулу, в которой площадь круга сразу выражена через длину окружности. Проверим, подставив наше значение
Калькулятор для расчета площади круга
- Подробности
-
Опубликовано: 04 сентября 2017
-
Обновлено: 13 августа 2021
Оглавление:
- 📝 Как это работает?
- 🤔 Частые вопросы и ответы
- 📋 Похожие материалы
- 📢 Поделиться и комментировать
Формула (формулы) площади круга
Найти площадь круга можно разными способами, в зависимости от известных данных.
По радиусу
Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):
Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).
Через диаметр
Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d – диаметр, а π – константа, равная 3,1415…):
К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).
Через длину окружности
Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L – длина окружности, а π – константа, равная 3,1415…):
Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202 / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).
Какие термины используются для поиска площади круга?
Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.
Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.
Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.
Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.
Радиус — отрезок, который соединяет центр окружности и любую точку на ней.
Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.
Площадь круга и размеры пицц
Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:
Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?
Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:
- 252 + 252 = 625 + 625 = 1250
- 402 = 1600
Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.
Площади усеченных частей круга
А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:
Хорда — отрезок, соединяющий любые две точки окружности.
Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.
Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:
S = sr/2
где S — площадь сектора, r — радиус круга.
Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.
Площадь сегмента можно найти по формулам:
S = r2sinα/ 2
где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.
Часто задаваемые вопросы о площади круга?
И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.
Входит ли окружность (периметр) в площадь круга?
Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.
Какие есть ещё калькуляторы для круга у вас на сайте?
У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.
Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?
Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.
Почему Пи равняется 3,1415926…, а не является «ровным» числом?
Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.
Кто впервые научился вычислять площадь круга?
Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.
Похожие калькуляторы
Возможно вам пригодятся ещё несколько калькуляторов по данной теме:
- Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
- Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
- Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
- Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
- Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
- Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
- Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
- Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
- Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
- Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.
Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!
Есть что добавить?
Напишите своё мнение, комментарий или предложение.
Показать комментарии
{S = pi r^2}
Здесь вы можете рассчитать площадь круга по известным параметрам. Для вычисления достаточно знать радиус, диаметр круга или длину его окружности.
Содержание:
- калькулятор площади круга
- отличие окружности от круга
- формула площади круга через радиус
- формула площади круга через диаметр
- формула площади круга через длину окружности
- примеры задач
Окружность и круг – в чём отличие?
Часто понятия круг и окружность путают, хотя это разные вещи.
Окружность – это замкнутая линия, а круг – это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко – это окружности, а монета или вкусный блин – это круги.
Круг – бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.
Формула площади круга через радиус
S = pi r^2
r – радиус круга
Формула площади круга через диаметр
S = pi dfrac{d^2}{4}
d – диаметр круга
Формула площади круга через длину окружности
S = dfrac{L^2}{4pi}
L – длина окружности
Примеры задач на нахождение площади круга
Задача 1
Найдите площадь круга, радиус которого равен 4 см.
Решение
Для решения задачи воспользуемся формулой площади круга через радиус.
S = pi r^2 = pi cdot 4^2 = 16 pi : см^2 approx 50.26548 : см^2
Ответ: 16 pi : см^2 approx 50.26548 : см^2
Полученный ответ удобно проверить с помощью калькулятора .
Задача 2
Найдите площадь круга, радиус которого равен 7 см.
Решение
Задача похожа на предыдущую, поэтому решение будет выглядеть аналогично.
S = pi r^2 = pi cdot 7^2 = 49 pi : см^2 approx 153.93804 : см^2
Ответ: 49 pi : см^2 approx 153.93804 : см^2
Проверим ответ на калькуляторе .
Задача 3
Найдите площадь круга, радиус которого равен 9 см.
Решение
Еще одна типовая задача.
S = pi r^2 = pi cdot 9^2 = 81 pi : см^2 approx 254.469 : см^2
Ответ: 81 pi : см^2 approx 254.469 : см^2
Проверим ответ на калькуляторе .
Например, нужно вычислить площадь круглой колонны. Диаметр не измеришь. Какие формулы использовать, чтобы высчитать её площадь. Формула площади: S = П*r²Формула длины окружности (периметра): P = 2*П*rП – это число Пи: 3.14…Из окружности находим радиус: r = P/2ПИ подставляем это в формулу площади: S = П*(P/2П)² = П*P²/4П²Если я правильно раскрыл скобки со степенями, то: П – сокращаются и остаётся: S = P²/4Павтор вопроса выбрал этот ответ лучшим Ксарфакс 5 лет назад Для того, чтобы найти площадь круга через длину окружности, нужно сначала вспомнить формулы, по которым вычисляется: 1) Длина окружности. 2) Площадь круга. Итак, формула для длины окружности: l =2πR. Что касается площади круга, то она вычисляется по формуле: C = πR². Здесь R – это радиус, а π – число Пи, которое равно 3,14. Если известна длина окружности, то легко выразить её радиус. После этого остаётся лишь подставить полученное значение в формулу для площади круга. R = l / 2π. C = π * (l / 2π)² = l² / 4π. Пример Дана длина окружности l = 20 см. Нужно найти площадь круга. C = l² / 4π = (20 * 20) / (4 * 3,14) = 400 / 12,56 = 31,85 см. Таким образом, если длина окружности равна 20 см., то площадь круга будет составлять 31,85 см. Урания 2 года назад Площадь круга можно легко рассчитать по известной формуле, в которую входит радиус круга (или окружности, что одно и то же): S = πR²; Где R – это радиус окружности, а число π – это неизменяемая величина, равная – 3,14 В свою очередь, длина окружности тоже рассчитывается через его радиус: С = 2πR; Отсюда следует, что выразив радиус окружности из последней формулы (R = C/2π) , и подставив его в первую формулу, мы получим формулу, в которой площадь круга будет выражена через его длину окружности: S = π(C/ 2π)². После возведения в квадрат и необходимых сокращений, получим окончательную искомую формулу: S = C²/4π Эта именно та формула, в которой площадь (S) круга выражена через его длину окружности (С). Чёрная Луна 4 года назад Выедим формулу для нахождения площади круга, при условии использования длинны окружности. Как известно, формула площади круга: S = 2πR²; Формула периметра окружности или длинны окружности вычисляется по формуле: С = 2πR; R – это радиус окружности, число π – всегда равно 3,14. Радиус необходим нам для того, чтобы найти площадь. А зная длину окружности мы можем вычислить радиус. R = C/2π Заменяем эту форму на радиус в формуле по нахождению площади окружности: S = 2π(C/2π)²; После раскрытия скобок и сокращения получаем следующую формулу: S = C²/4π По конечной формуле можно найти площадь круга, зная его периметр. Для этого есть формула вычисления площади окружности – где S – искомая площадь, C – длина окружности, П – число равное 3,14. Допустим длина окружности равна 75 сантиметрам. Возводим ее в квадрат, получаем 5625. Теперь получаем 5625/4П. Сокращаем выражение до минимума – 5625/4=1406 Теперь это значение выглядит как 1406/п = 447 квадратных сантиметров. Это стандартная геометрическая задача. Радиус колонны вычисляется из формулы длины окружности L = 2 * пи * R, откуда R = 0.5 * L / пи Площадь находим по формуле S = пи * R^2 = пи * (0.5 * L / пи)^2 = 0.25 * пи * L^2. Аналогично можно посчитать и объем колонны, зная лишь длину окружности и высоту. V = 0.25 * пи * L^2 * H, где H – высота колонны. -Irinka- 4 года назад Выведенная формула для нахождения S окружности, зная длину его окружности: Так как площадь круга равняется Подставляя в формулу значение радиуса, мы получаем формулу нахождения площади круга, через длину окружности. Допустим длина l=8 см, число π=3,14 Получается, что площадь круга будет равна 5 см². Бекки Шарп 3 года назад Есть такая всем известная константа Пи (3,1425), она равна длине окружности поделенной на длину диаметра. То есть зная длину, мы всегда найдем диаметр. А зная диаметр мы можем посчитать площадь круга по известной формуле. Знаете ответ? |