Как найти площадь окружности с данным диаметром

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Формула (формулы) площади круга

Найти площадь круга можно разными способами, в зависимости от известных данных.

По радиусу

Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):

Формула площади круга по радиусу

Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).

Через диаметр

Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d – диаметр, а π – константа, равная 3,1415…):

Формула площади круга по диаметру

К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).

Через длину окружности

Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L – длина окружности, а π – константа, равная 3,1415…):

Формула площади круга по длине окружности

Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202  / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).

Какие термины используются для поиска площади круга?

Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.

Окружность, круг, радиус, диаметр

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.

Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней. 

Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.

Площадь круга и размеры пицц

Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:

Площадь круга и размеры пицц

Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?

Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:

  • 252 + 252 = 625 + 625 = 1250
  • 402 = 1600

Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.

Площади усеченных частей круга

А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:

Хорда, сектор, сегмент и их площади

Хорда — отрезок, соединяющий любые две точки окружности.

Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.

Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:

S = sr/2

где S — площадь сектора, r — радиус круга.

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.

Площадь сегмента можно найти по формулам:

S = r2sinα/ 2

где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.

Часто задаваемые вопросы о площади круга?

И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.

Входит ли окружность (периметр) в площадь круга?

Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.

Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?

Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Кто впервые научился вычислять площадь круга?

Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Площадь круга через Диаметр

S – площадь круга,

d – диаметр круга,

π ≈ 3,141592653589

Площадь круга через Радиус

S – площадь круга,

r – радиус круга,

π ≈ 3,141592653589

Площадь круга через Длину Окружности

S – площадь круга,

l – длина окружности,

π ≈ 3,141592653589

Определения и термины

Круг – множество точек плоскости, расстояние до которых от данной точки (центра круга) не превышает заданного расстояния (радиуса круга).

Радиус круга – отрезок, соединяющий центр круга с любой точкой, которая лежит на внешней окружности круг

Диаметр круга – отрезок, соединяющий любые две точки, лежащие на внешней окружности круга, и проходящий через центр круга

Окружность – замкнутая плоская кривая состоящия из всех точек полскости равноудаленных от заданной точки (центра окружности)

Число Пи (π) – математическая константа, которая выражает отношение длины окружности к её диаметру.
Равно приблизительно 3,141592653589…

Площадь окружности

Окружность, по своей сути, является границей круга – замкнутой плоской кривой. Из определения следует, что площади окружности не существует,
а существует Площадь круга.

Как посчитать площадь окружности

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать площадь окружности

Чтобы посчитать площадь круга (окружности) просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

окружность

Чтобы вычислить площадь окружности вам нужно знать один из следующих параметров:

  • диаметр
  • радиус
  • длина окружности

Введите его в соответствующие поле и узнаете, чему равна площадь окружности.

Как посчитать площадь окружности зная её длину

Чему равна площадь круга если длина окружности ?

Ответ:

0

Какова площадь окружности (S) если длина окружности C?

Формула

S = C2/ , где π ≈ 3.14

Пример

Если длина окружности у круга равна 4 см, то его площадь примерно равна 1.27 см2.

Как посчитать площадь окружности зная радиус

Чему равна площадь окружности если

её радиус ?

Ответ:

0

Какова площадь окружности (S) если её радиус r?

Формула

S = πr2

Пример

Если радиус круга равен 2 см, то его площадь примерно равна 12.56 см2.

Как посчитать площадь окружности зная диаметр

Чему равна площадь окружности если

её диаметр ?

Ответ:

0

Какова площадь окружности (S) если её диаметр d?

Формула

S = πd2/4

Пример

Если диаметр круга равен 3 см, то его площадь примерно равна 7.06 см2.

См. также

Как рассчитать площадь круга

На данной странице калькулятор поможет рассчитать площадь круга онлайн. Для расчета задайте радиус, диаметр или длину окружности.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

Через радиус


Площадь круга через радиус


Формула для нахождения площади круга через радиус:

π – константа равная (3.14); r – радиус круга.


Через диаметр


Площадь круга через диаметр


Формула для нахождения площади круга через диаметр:

π – константа равная (3.14); d – диаметр.


Через длину окружности


Площадь круга через длину окружности


Формула для нахождения площади круга через длину окружности:

π – константа равная (3.14); l – длина окружности.

Площадь круга через диаметр: онлайн-калькулятор

Автоматическое вычисление на нашем сайте поможет быстро освоить незнакомый материал или не отвлекаться на уже знакомые подсчеты. Для этого понадобится только ввести данные в соответствующее окно и получить готовое решение и ответ. Мы не тратим ваше время на регистрацию, не ограничиваем количество расчетов.

Услугами сервиса пользуются школьники и студенты при подготовке к занятиям и во время контрольных, самостоятельных работ. Алгоритмы, заложенные в вычисления, позволяют быстро получить точную цифру без погрешностей.

Калькулятор площади круга по формуле через диаметр

В нашем сервисе используется формула:

S=14π·d2,

где d – диаметр круга,

π – неизменная величина, равная 3,141592.

Почему площадь круга через диаметр в онлайн-калькуляторе и другие задачи лучше находить на нашем сайте

  • Вы увидите не только итоговую цифру, но и подробное решение. Это поможет свериться с собственными вычислениями, найти ошибку, запомнить алгоритм действий и применять в других примерах.
  • Перевод из одной величины в другую происходит автоматически. Вам не придется самостоятельно делать никаких преобразований. Это сэкономит время и исключит вероятность ошибки.
  • Наша компания оказывает образовательные услуги больше 15 лет. Мы следим за качеством своих продуктов. Перед запуском каждый раздел с подсчетами проходит тщательную проверку.

Если вам понадобилось найти решение с использованием других данных или произвести расчет задания на иную тему, найдите подходящий раздел из предложенных на сайте. При затруднении в освоении темы или повышенной сложности заданий напишите консультанту. Он подберет преподавателя под ваш запрос, который поможет быстро и по невысокой цене освоить проблемный материал.

Добавить комментарий