Как найти площадь основания конуса через объем

Конус – это геометрическая фигура, полученная вращением прямоугольного треугольника вокруг одного из катетов. У каждого конуса есть основание и боковая поверхность.

Любой конус характеризуется высотой h (осевой линией), радиусом r и образующей l (см. рисунок). Именно эти характеристики используются в формулах конуса при вычислении объема, площади поверхности и площади боковой поверхности.

Высота конуса (осевая линия) – это перпендикуляр, проведенный из вершины конуса к основанию.

Радиус конуса – это радиус его основания.

Образующая конуса – это отрезок, который соединяет вершину конуса с любой точкой, лежащей на линии окружности основания.

Формула образующей конуса

Образующую конуса можно найти, зная ее высоту H и радиус R:

L = √H2 + R2

Формула площади боковой поверхности конуса

Площадь боковой поверхности конуса можно получить, зная его радиус R и образующую L:

Sбок.пов = πRL

Формула площади основания конуса

Площадь основания конуса можно вычислить по его радиусу R:

Sосн = πR2

Формула площади конуса

Площадь поверхности конуса можно получить, сложив площадь боковой поверхности и площадь основания конуса:

S = Sбок.пов + Sосн = πRL + πR2

Формула объема конуса

Объем конуса можно вычислить, зная его высоту H и площадь основания:

V = 1/3 ⋅ Sосн ⋅ H = 1/3πR2H

Как найти площадь основания конуса

Площадью основания конуса является круг. Для нахождения его площади надо знать радиус окружности, содержащей этот круг, либо какие-нибудь другие данные, расчеты которых математически связаны с площадью основания конуса.Как найти площадь основания конуса

Площадь круга с радиусом R находится по формуле S=πR^2. Эту формулу можно сразу использовать, если известен радиус.

Объем конуса имеет формулу V=1/3*S*h, где S – площадь основания конуса (площадь круга, на котором “стоит” конус), h – высота конуса. Если в задаче известен объем конуса V и его высота h, площадь основания конуса легко найти как S=3V/h.

В задачах с конусом полезно помнить формулу площади боковой поверхности конуса S’=πRL, где L – образующая конуса (отрезок, соединяющий вершину конуса с любой точкой, лежащей на окружности основания конуса). Могут быть даны какие-либо соотношения между осью конуса и радиусом основания, образующей конуса и радиусом, образующей конуса и осью. Необходимо использовать эти данные в решении задачи, используя тот факт, что ось конуса перпендикулярна основанию конуса.

Определение конуса

Конус — это совокупность всех лучей, которые исходят из какой-либо точки пространства и пересекают плоскую поверхность.

Онлайн-калькулятор площади поверхности конуса

Точка, которая является началом этих лучей, называется вершиной конуса. В случае когда в основании конуса лежит многоугольник, конус превращается в пирамиду.

Конус состоит из некоторых элементов, знать которые необходимо для решения задач.

Образующая — отрезок, соединяющий точку, лежащую на окружности круга, который является основанием, и вершину конуса.
Высота — расстояние от плоскости основания до точки вершины конуса.

Виды конуса

Конус может быть нескольких видов:

Прямым, если его основанием является эллипс или круг. Причем вершина должна точно проектироваться в центр основания.
Косым — это тот случай, когда центр фигуры, лежащей в основании, не совпадает с проекцией вершины на это основание.
Круговым — соответственно, если основание — круг.
Усеченным — область конуса, которая будет лежать между основанием и сечением плоскости, параллельной основанию и пересекающей этот конус.

Формула площади поверхности конуса

Для нахождения полной площади поверхности конуса нужно найти сумму площади основания (или оснований, если конус усеченный) конуса и площади его боковой поверхности:

S=Sосн+SбокS=S_{text{осн}}+S_{text{бок}}

SоснS_{text{осн}} — площадь основания (оснований) конуса;

SбокS_{text{бок}} — площадь боковой поверхности конуса.

Рассмотрим примеры нахождения площади поверхности обычного прямого кругового конуса, а также усеченного этого же конуса.

Формула площади поверхности кругового конуса

Sосн=π⋅r2S_{text{осн}}=picdot r^2
Sбок=π⋅r⋅lS_{text{бок}}=picdot rcdot l

rr — радиус круга (основания) кругового конуса;
ll — длина образующей этого конуса.

Пример

найти площадь конуса

Найти площадь поверхности кругового конуса, если радиус основания равен 3 (см.), а высота hh треугольника, путем вращения которого образовался данный конус, равна 4 (см.)

Решение

r=3r=3
h=4h=4

Образующую можно найти, если рассмотреть треугольник, катетами которого являются радиус и высота, а гипотенузой – сама образующая ll. По теореме Пифагора имеем:

l2=r2+h2l^2=r^2+h^2
l2=32+42l^2=3^2+4^2
l2=25l^2=25
l=5l=5

Вычислим площадь основания конуса:

Sосн=π⋅r2=π⋅32≈28.26S_{text{осн}}=picdot r^2=picdot 3^2approx28.26 (см. кв.)

Площадь боковой поверхности:

Sбок=π⋅r⋅l=π⋅3⋅5≈47.10S_{text{бок}}=picdot rcdot l=picdot 3cdot 5approx47.10 (см. кв.)

Полная площадь

S=Sосн+Sбок≈28.26+47.10=75.36S=S_{text{осн}}+S_{text{бок}}approx28.26+47.10=75.36 (см. кв.)

Ответ: 75.36 см. кв.

Формула площади поверхности усеченного кругового конуса

Для усеченного кругового конуса площадь боковой поверхности можно найти по формуле:

Sбок=π⋅l⋅(r+r′)S_{text{бок}}=picdot lcdot (r+r’)

ll — длина образующей конуса;
rr — радиус основания;
r′r’ — радиус круга, получаемый при усечении кругового конуса.

Пример

площадь конуса  радиус второго основания

Условие возьмем из предыдущей задачи, добавив к нему только лишь радиус второго основания r′r’. Пусть он будет равен 2 (см.). Требуется вычислить полную площадь поверхности этого усеченного конуса.

Решение

l=5l=5
r=3r=3
r′=2r’=2

Оснований у нас теперь два, поэтому полная площадь оснований будет равна сумме площадей этих оснований с радиусами rr и r′r’:

Sосн=Sосн r+Sосн r’S_{text{осн}}=S_{text{осн r}}+S_{text{осн r’}}

Площадь основания радиуса rr:

Sосн r=π⋅r2=π⋅32≈28.26S_{text{осн r}}=picdot r^2=picdot 3^2approx28.26 (см. кв.)

Площадь основания радиуса r′r’:

Sосн r’=π⋅r′2=π⋅22≈12.56S_{text{осн r’}}=picdot r’^2=picdot 2^2approx12.56 (см. кв.)

Площадь боковой поверхности:

Sбок=π⋅l⋅(r+r′)=π⋅5⋅(3+2)≈78.50S_{text{бок}}=picdot lcdot (r+r’)=picdot 5cdot (3+2)approx78.50 (см. кв.)

Полная площадь:

S=Sосн+Sбок=Sосн r+Sосн r’+Sбок≈28.26+12.56+78.50=119,32S=S_{text{осн}}+S_{text{бок}}=S_{text{осн r}}+S_{text{осн r’}}+S_{text{бок}}approx28.26+12.56+78.50=119,32 (см. кв.)

Ответ: 119,32 см. кв.

Не знаете, как решить задачу по геометрии? Наши эксперты оперативно помогут вам с решением!

Тест по теме «Площадь поверхности конуса»

Площадь поверхности конуса состоит из площади боковой поверхности конуса и площади основания (круга).

конус_1.svg

Рис. (1). Конус

Площадь боковой поверхности конуса вычисляется по формуле:

где (R) — радиус конуса,

(l) — образующая конуса.

Площадь основания конуса вычисляется  по формуле

S(круга) =
πR2.

Площадь полной поверхности конуса  вычисляется по формуле

S(полн.) =S(бок.) +S(круга) =πRl+πR2.

Объём конуса вычисляют по формуле

V = 13⋅H⋅ S(круга) = πR2⋅H3

Площадью боковой поверхности конуса является площадь её развёртки.

Развёрткой боковой поверхности конуса является круговой сектор.

  

сектор.svg

Рис. (2). Развёртка конуса

α

 — градусная мера центрального угла.

Радиус этого сектора — образующая конуса

(AK = KB = l)

  

Источники:

Рис. 1. Конус. © Якласс

Рис. 2. Развёртка конуса. © Якласс

Формулы объема и площади поверхности. Цилиндр, конус и шар

Тела вращения, изучаемые в школе, – это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы — считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Формулы объема и площади поверхности. Цилиндр, конус и шар

Смотрите также: Формулы объема и площади поверхности многогранников.
Кроме формул, в решении задач по стереометрии нужны также элементарная логика и пространственное воображение. Есть и свои небольшие секреты.

Например, такой важный факт:

Если все линейные размеры объемного тела увеличить в 2 раза, то площадь его поверхности увеличится в 4 раза, а объем – в 8 раз. 

(ведь 2^2=4, 2^3=8).

Вот такая задача. Как и остальные на нашем сайте, она взята из банка заданий ФИПИ.

1. Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.
Рисунок к задаче 1
Очевидно, что объем меньшего конуса в 8 раз меньше объема большого и равен двум.

Для решения некоторых задач полезны начальные знания стереометрии. Например — что такое правильная пирамида или прямая призма. Полезно помнить, что у цилиндра, конуса и шара есть еще общее название — тела вращения. Что сферой называется поверхность шара. А, например, фраза «образующая конуса наклонена к плоскости основания под углом 30 градусов предполагает, что вы знаете, что такое угол между прямой и плоскостью. Вам также может пригодиться теорема Пифагора и простые формулы площадей фигур.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, — снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?
Рисунок к задаче 2
Всё просто — рисуем вид снизу. Видим, что радиус большего круга в sqrt{2} раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в 2 раза больше.

Говорят, что хороший чертеж — это уже половина решения. Читайте о том, как строить чертежи в задачах по стереометрии.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких sqrt{2} или pi у вас в ответе в части В быть не должно. Подставлять приближенное значение числа pi тоже не нужно! Оно обязательно должно сократиться! Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на pi».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче 14 Профильного ЕГЭ по математике.
Мы тоже расскажем о ней.


Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Формулы объема и площади поверхности. Цилиндр, конус и шар» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Добавить комментарий