Как найти площадь основания конуса задачи

09
Сен 2013

Категория: 02 Стереометрия

02. Конус

2013-09-09
2022-09-11


Задача 1. Высота конуса равна 12, образующая равна 14. Найдите его объем, деленный на pi.

u

Решение: + показать


Задача 2. Конус получается при вращении равнобедренного прямоугольного треугольника ABC вокруг катета, равного 6. Найдите его объем, деленный на pi.

задача на конус 2

Решение:  + показать


Задача 3. Высота конуса равна 15, а диаметр основания – 16. Найдите образующую конуса.

uРешение:  + показать


Задача 4. Найдите объем V конуса, образующая которого равна 3 и наклонена к плоскости основания под углом 30°. В ответе укажите frac{V}{pi}.

3

Решение:  + показать


Задача 5. Длина окружности основания конуса равна 5, образующая равна 8. Найдите площадь боковой поверхности конуса.

3

Решение:  + показать


Задача 6. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 9 раз?

4

Решение:  + показать


Задача 7. Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 6 раз?

8

Решение:  + показать


Задача 8. Во сколько раз увеличится объем конуса, если радиус его основания увеличится в 17 раз, а высота останется прежней?

8

Решение:  + показать


Задача 9. Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.

5

Решение:  + показать


 Задача 10. Объем конуса равен 10. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

6

Решение:  + показать


 Задача 11. Площадь полной поверхности конуса равна 148. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

6

Решение:  + показать


 Задача 12. Найдите объем V конуса, образующая которого равна 11 и наклонена к плоскости основания под углом 30^{circ}. В ответе укажите frac{V}{pi}.

7

Решение:  + показать


Задача 13. Диаметр основания конуса равен 66, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на pi.

11

Решение:  + показать


Задача 14. Площадь основания конуса равна 36pi, высота — 3. Найдите площадь осевого сечения конуса.

Решение:  + показать


Задача 15. Площадь основания конуса равна 48. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 15 и 45, считая от вершины. Найдите площадь сечения конуса этой плоскостью.

Решение:  + показать


Задача 16. Найдите объем V части конуса, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 17. Найдите объем V части конуса, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 18. В сосуде, имеющем форму конуса, уровень жидкости достигает frac{1}{2} высоты. Объём жидкости равен 54 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

v

Решение:  + показать


тест

Вы можете пройти тест

Автор: egeMax |

комментариев 10

Печать страницы

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи по теме «Конус»

(blacktriangleright) Точка (P) – вершина конуса.

(blacktriangleright) Отрезок, соединяющий вершину конуса с границей основания, называется образующей (все образующие равны между собой).

(blacktriangleright) Отрезок, соединяющий вершину конуса с центром основания-круга, является высотой конуса.

(blacktriangleright) Площадь боковой поверхности конуса ({large{S_{text{бок.пов.}}=pi rl}}), где (r) – радиус основания, (l) – образующая.

(blacktriangleright) Площадь полной поверхности конуса – эта сумма площади боковой поверхности и площади основания. [{large{S_{text{полн.пов.}}=pi rl+pi r^2=pi r(r+l)}}]

(blacktriangleright) Объем конуса ({large{V=dfrac{1}{3}S_{text{осн.}}cdot h=dfrac{1}{3}pi
r^2h}})
, где (h) – высота конуса.

Заметим, что конус имеет некоторое сходство с пирамидой, только в основании пирамиды лежит многоугольник (граница которого – ломаная), а в основании конуса – круг (граница которого – гладкая).
Поэтому можно сказать, что поверхность пирамиды “ребристая” , а конуса – “гладкая”.


Задание
1

#1886

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности конуса равна (48pi), а площадь основания равна (36pi). Найдите длину образующей конуса.

Если радиус окружности, лежащей в основании конуса обозначить за (r), а длину образующей за (l), то площадь основания и площадь боковой поверхности конуса выразятся по формулам: (S_{text{осн.}} =
pi r^2)
, (S_{text{бок.пов.}} = pi r l). Из первой формулы следует: (pi r^2 = 36pi) (Rightarrow) (r^2 = 36) (Rightarrow) (r
= 6)
(Rightarrow) (6pi l = 48pi) (Rightarrow) (6l = 48) (Rightarrow) (l = 8).

Ответ: 8


Задание
2

#1887

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности конуса равна (48pi), а площадь боковой поверхности усеченного конуса с такими же основанием и углом наклона образующей к плоскости основания равна (36pi). Найдите высоту усеченного конуса, если высота исходного конуса равна (10).

Площадь боковой поверхности меньшего конуса, который дополняет усеченный конус до полного, равна разности их площадей поверхностей: (S_{text{мал}} = 48pi – 36pi = 12pi). Отношение площадей боковых поверхностей большого и малого конусов равно квадрату коэффициента подобия между ними: [frac{S_{text{бол}}}{S_{text{мал}}} = k^2 =
frac{48pi}{12pi} = 4Rightarrow k = 2]

Тогда высоты конусов относятся друг к другу: (dfrac{h_{text{бол}}}{h_{text{мал}}} = dfrac{10}{h_{text{мал}}}
= k = 2)
. Тогда

[h_{text{мал}} = 5Rightarrow h_{text{усеч}} = h_{text{бол}}
– h_{text{мал}} = 10 – 5 = 5]

Ответ: 5


Задание
3

#962

Уровень задания: Сложнее ЕГЭ

На высоте конуса с вершиной (A), центром основания (C) и радиусом основания (R = 4) отметили точку (E) такую, что расстояние от неё до основания равно (sqrt{3}(4-pi^{-0,5})). Известно, что угол между образующей конуса и плоскостью основания равен (60^circ). Найдите площадь сечения (T) конуса, проходящего через точку (E) и параллельного основанию конуса.

Рассмотрим треугольник (ABC), где (B) – некоторая точка на окружности основания. Так как (AC) – высота конуса, то (ACperp CB), тогда (angle CAB = 90^circ – angle ABC = 30^circ), следовательно, (AB = 2CB = 8). По теореме Пифагора [AC = sqrt{AB^2 – CB^2} = 4sqrt{3}.]

Обозначим через (D) точку пересечения плоскости сечения (T) и (AB). Рассмотрим треугольник (AED): [AE = AC – CE = 4sqrt{3} – sqrt{3}(4 – pi^{-0,5}) = sqrt{dfrac{3}{pi}}.]

Так как сечение (T) параллельно плоскости основания, а (AC) – высота конуса, то (ACperp ED), тогда (triangle AED) – прямоугольный и (angle EAD = 30^circ), откуда [ED = AEcdot mathrm{tg}, angle EAD = sqrt{dfrac{3}{pi}}cdot dfrac{1}{sqrt{3}} = dfrac{1}{sqrt{pi}} = r] – радиус сечения (T).

Таким образом, площадь сечения (T) равна (pi r^2 = picdotdfrac{1}{pi} = 1).

Ответ: 1


Задание
4

#963

Уровень задания: Сложнее ЕГЭ

Радиусы оснований усечённого конуса равны [r = dfrac{2}{sqrt[4]{2}sqrt{pi}}qquad text{и}qquad R = dfrac{10}{sqrt[4]{2}sqrt{pi}},] а угол между его образующей и основанием равен (45^circ). Найдите площадь боковой поверхности этого усечённого конуса.

Обозначим центры оснований усечённого конуса через (A) и (E), так что (A) – центр большего основания. Отметим на большем основании точку (C), а точку меньшего основания, через которую проходит образующая, выходящая из (C), обозначим через (D).

Высота (AE) и образующая (CD) лежат в одной плоскости. Обозначим точку их пересечения через (B).

Так как (AE) – высота, то (AEperp CD) и (AEperp AC).

Рассмотрим прямоугольный треугольник (BAC):
в нём (angle BCA = 45^circ), тогда [AB = R = dfrac{10}{sqrt[4]{2}sqrt{pi}},qquadqquad BC = Rsqrt{2} = dfrac{10sqrt{2}}{sqrt[4]{2}sqrt{pi}}.]

Рассмотрим прямоугольный треугольник (BED):
так как (angle EBD = 45^circ), то [BE = r = dfrac{2}{sqrt[4]{2}sqrt{pi}},qquadqquad BD = rsqrt{2} = dfrac{2sqrt{2}}{sqrt[4]{2}sqrt{pi}},] тогда (EA = AB – BE = R – r), (DC = BC – BD = Rsqrt{2} – rsqrt{2} = sqrt{2}(R – r)). [S_{text{бок}} = pi(R + r)cdot I,] где (I) – образующая, тогда [S_{text{бок}} = pi(R + r)cdotsqrt{2}(R – r) = sqrt{2}pi(R^2 – r^2) = sqrt{2}pileft(dfrac{100}{sqrt{2}pi} – dfrac{4}{sqrt{2}pi}right) = 96.]

Ответ: 96

Старшеклассникам, которые готовятся к сдаче ЕГЭ по математике, непременно стоит научиться вычислять площадь и другие неизвестные параметры конуса. Как показывает практика предыдущих лет, подобные задания из раздела «Геометрия в пространстве» вызывают у выпускников определенные сложности.

При этом понимать, как найти площадь боковой поверхности или, к примеру, сечения конуса, параллельного основанию, должны все учащиеся, независимо от уровня их подготовки. Это позволит им успешно пройти аттестационное испытание по математике.

Базовая информация, которую стоит запомнить

  • Конус представляет собой геометрическое тело, которое образовано совокупностью круга, точки, находящейся вне его плоскости, и лучей, соединяющих заданную точку с точками круга. Его высотой называется перпендикуляр, который опущен из вершины на плоскость основания.
  • Все образующие конуса равны между собой.
  • Осевое сечение конуса представляет собой равнобедренный треугольник. Основание этой фигуры равняется двум радиусам. Боковые стороны треугольника равны образующим конуса.

Занимайтесь вместе с сайтом «Школково»!

Чтобы не допускать распространенных ошибок при решении задач по теме «Конус», выбирайте наш математический портал. Здесь есть весь необходимый материал для изучения разделов, требующих повторения.

Специалисты образовательного проекта «Школково» предлагают новый подход к подготовке к экзамену, предполагающий переход от простого к сложному. Вначале мы даем полную теорию, основные формулы и элементарные практические задачи с решением, в том числе и по теме «Конус», а затем постепенно переходим к заданиям экспертного уровня, которые также встречаются в ЕГЭ. Вся необходимая информация представлена в разделе «Теоретическая справка».

Вы также можете сразу приступить к решению онлайн-задач на вычисление высоты усеченного конуса, площади его боковой поверхности, объема, а также похожих задач на вычисление, например, нахождению объема или площади сечения куба. Большая база упражнений представлена в разделе «Каталог». Перечень заданий систематически обновляется.

Проверьте, насколько легко вы сможете определить площадь конуса в режиме онлайн. Если упражнение потребовало от вас минимальных усилий, рекомендуем вам не тратить время на простые задачи и переходить к более сложным. А если затруднения все же возникли, тогда вам непременно стоит находить время в своем ежедневном расписании на дистанционные занятия вместе со «Школково». С нами вы сможете быстро усвоить алгоритм решения задач на расчет объема конуса и других неизвестных параметров.

УСТАЛ? Просто отдохни

Скачать материал

без ожидания

Задачи по теме Конус

Скачать материал

без ожидания

  • Сейчас обучается 120 человек из 40 регионов

  • Сейчас обучается 26 человек из 17 регионов

Описание презентации по отдельным слайдам:

  • Задачи по теме Конус

    1 слайд

    Задачи по теме Конус

  • Даны два конуса. Радиус основания и образующая первого конуса равны соответст...

    2 слайд

    Даны два конуса. Радиус основания и образующая первого конуса равны соответственно 3 и 9, а второго — 6 и 9. Во сколько раз площадь боковой поверхности второго конуса больше площади боковой поверхности первого?

    Решение: Т.к. площадь боковой поверхности конуса: S=πrl.
    Значит S1= π·3·9= 27π,
    S2= π·6·9= 54π, тогда S2: S1= 54π : 27π = 2

  • 1) Даны два конуса. Радиус основания и образующая первого конуса равны, соотв...

    3 слайд

    1) Даны два конуса. Радиус основания и образующая первого конуса равны, соответственно, 2 и 4, а второго — 6 и 8. Во сколько раз площадь боковой поверхности второго конуса больше площади боковой поверхности первого? Ответ: 6
    Решить самостоятельно

  • Объём ко­ну­са равен 160., Через середину высоты конуса про­ве­де­на плос­кос...

    4 слайд

    Объём ко­ну­са равен 160., Через середину высоты конуса про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Най­ди­те объём ко­ну­са, от­се­ка­е­мо­го от дан­но­го ко­ну­са про­ведённой плос­ко­стью.
    Решение:
    От­но­ше­ние объ­е­мов ко­ну­сов равно кубу их ко­эф­фи­ци­ен­та по­до­бия. Вы­со­ты ко­ну­сов от­но­сят­ся как 1:2, по­это­му их объ­е­мы от­но­сят­ся как 1:8.
    Сле­до­ва­тель­но, объем от­се­ка­е­мо­го ко­ну­са равен 160 : 8 = 20

  • Решить самостоятельноОбъём конуса равен 135. Через точку, делящую высоту кону...

    5 слайд

    Решить самостоятельно
    Объём конуса равен 135. Через точку, делящую высоту конуса в отношении 1:3, считая от вершины, проведена плоскость, параллельная основанию. Найдите объём конуса, отсекаемого от данного конуса проведённой плоскостью. Ответ:5
    Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса. Ответ:2
    Объем конуса равен 128. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса. Ответ:16

  • Объём конуса равен 150π  а его высота равна 6 . Найдите радиус основания кону...

    6 слайд

    Объём конуса равен 150π  а его высота равна 6 . Найдите радиус основания конуса.
    Решение: Найдём ра­ди­ус ос­но­ва­ния ко­ну­са по фор­му­ле: V=1/3·πR²h
    Откуда R²=3V:πh => R²= 150π : 6π = 25. Тогда R=5

  • Решить самостоятельноОбъём конуса равен  9π, а его высота равна 3 . Найдите р...

    7 слайд

    Решить самостоятельно
    Объём конуса равен  9π, а его высота равна 3 . Найдите радиус основания конуса. Ответ:3
    Объём конуса равен  25π, а его высота равна 3 . Найдите радиус основания конуса. Ответ:5

  • Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 3 раза? Р...

    8 слайд

    Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 3 раза?
    Решение: Объем ко­ну­са вычисляется по формуле V=1/3·Socн·h .
    Значит, если высоту уменьшить в 3 раза, то и объём уменьшится в 3 раза

  • Решить самостоятельноВо сколько раз уменьшится объем конуса, если его высоту...

    9 слайд

    Решить самостоятельно
    Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 18,5 раза?
    2) Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 24 раза?
    3) Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 10 раз?

  • Во сколько раз увеличится объем конуса, если его радиус основания увеличить в...

    10 слайд

    Во сколько раз увеличится объем конуса, если его радиус основания увеличить в 1,5 раза?
    Решение: Объем конуса вычисляется по формуле
    V=1/3·Soc.·h = 1/3·πR²·h.
    Значит, если радиус основания увеличить в 1,5 раза, то объём конуса увеличится в 2,25 раза

  • Решить самостоятельноВо сколько раз увеличится объем конуса, если его радиус...

    11 слайд

    Решить самостоятельно
    Во сколько раз увеличится объем конуса, если его радиус основания увеличить в 40 раз?
    2) Во сколько раз увеличится объем конуса, если его радиус основания увеличить в 22 раза?
    3) Во сколько раз увеличится объем конуса, если его радиус основания увеличить в 31 раз?

  • Во сколько раз увеличится площадь боковой поверхности конуса, если его образу...

    12 слайд

    Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 3 раза?
    Решение: Площадь боковой поверхности конуса вычисляется по формуле
    S= πR·L, где L-образующая.
    Значит если увеличить L в 3 раза, то площадь боковой поверхности конуса тоже увеличится в 3 раза. 

  • Решить самостоятельноВо сколько раз увеличится площадь боковой поверхности ко...

    13 слайд

    Решить самостоятельно
    Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 36 раз?
    Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 11 раз?
    Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 1,5 раза?

  • Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его...

    14 слайд

    Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

    Решение: Площадь боковой поверхности конуса вычисляется по формуле S= πR·L.
    Значит, если радиус основания уменьшится в 1,5 раза, то площадь боковой поверхности конуса тоже уменьшится в 1,5 раза.

  • Решить самостоятельноВо сколько раз уменьшится площадь боковой поверхности ко...

    15 слайд

    Решить самостоятельно
    Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 8 раз, а образующая останется прежней?
    2) Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 36 раз, а образующая останется прежней?
    3) Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 21 раз, а образующая останется прежней?

  • Высота конуса равна 4, а диаметр основания — 6. Найдите образующую конуса. Ре...

    16 слайд

    Высота конуса равна 4, а диаметр основания — 6. Найдите образующую конуса.
    Решение: По теореме Пифагора
    𝑳= 𝑯 𝟐 + 𝒅 𝟐 𝟐 = 𝟏𝟔+ 𝟑𝟔 𝟒 = 𝟐𝟓 =𝟓

  • Решить самостоятельноВысота конуса равна 8, а диаметр основания — 30. Найдите...

    17 слайд

    Решить самостоятельно
    Высота конуса равна 8, а диаметр основания — 30. Найдите образующую конуса. Ответ: 17
    2) Высота конуса равна 5, а диаметр основания — 24. Найдите образующую конуса. Ответ: 13
    3) Высота конуса равна 6, а диаметр основания — 16. Найдите образующую конуса. Ответ: 10

  • Высота конуса равна 4, а длина образующей — 5. Найдите диаметр основания кону...

    18 слайд

    Высота конуса равна 4, а длина образующей — 5. Найдите диаметр основания конуса.
    Решение: По теореме Пифагора
    𝑹= 𝑳 𝟐 − 𝑯 𝟐 = 𝟐𝟓−𝟏𝟔 = 𝟗 =3;
    2R = 6

  • Решить самостоятельноВысота конуса равна 72, а длина образующей — 90. Найдите...

    19 слайд

    Решить самостоятельно
    Высота конуса равна 72, а длина образующей — 90. Найдите диаметр основания конуса.
    Ответ:108
    2) Высота конуса равна 21, а длина образующей — 75. Найдите диаметр основания конуса. Ответ: 54

    3) Высота конуса равна 57, а длина образующей — 95. Найдите диаметр основания конуса. Ответ: 76

  • Диаметр основания конуса равен 6, а длина образующей — 5. Найдите высоту кону...

    20 слайд

    Диаметр основания конуса равен 6, а длина образующей — 5. Найдите высоту конуса.
    Решение: По теореме Пифагора
    𝑯= 𝑳 𝟐 − 𝒅 𝟐 𝟐 = 𝟐𝟓− 𝟑𝟔 𝟒 = 𝟏𝟔 =𝟒;

  • Решить самостоятельноДиаметр основания конуса равен 108, а длина образующей —...

    21 слайд

    Решить самостоятельно
    Диаметр основания конуса равен 108, а длина образующей — 90. Найдите высоту конуса. Ответ: 72
    2) Диаметр основания конуса равен 42, а длина образующей — 75. Найдите высоту конуса. Ответ: 72
    3) Диаметр основания конуса равен 24, а длина образующей — 13. Найдите высоту конуса. Ответ: 5

  • В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2  высоты. Объём...

    22 слайд

    В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2  высоты. Объём жидкости равен 70 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?
    Решение: Меньший конус подобен большему с коэффициентом 0,5. Объемы подоб­ных тел относятся как куб коэффициента подобия. Поэтому объем большего конуса в 8 раз больше объема меньшего конуса, он равен 70 ∙ 8 = 560 мл. Следовательно, необходимо долить 560 − 70 = 490 мл жидкости.

  • В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2  высоты. Объём...

    23 слайд

    В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2  высоты. Объём сосуда 1600 мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.
    Решение: Меньший конус подобен большему с коэффициентом 0,5. Объемы подоб­ных тел относятся как куб коэффициента подобия. Поэтому объем большего конуса в 8 раз больше объема меньшего конуса. Объем налитой жидкости равен 1600 : 8 = 200 мл.

  • Решить самостоятельноВ сосуде, имеющем форму конуса, уровень жидкости достига...

    24 слайд

    Решить самостоятельно
    В сосуде, имеющем форму конуса, уровень жидкости достигает 1/3  высоты. Объём жидкости равен 14 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд? Ответ: 364
    2) В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2  высоты. Объём жидкости равен 40 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд? Ответ: 280
    3) В сосуде, имеющем форму конуса, уровень жидкости достигает 1/4  высоты. Сколько миллилитров жидкости налито в сосуд, если объем всего сосуда равен 384? Ответ: 6

  • Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу...

    25 слайд

    Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна 𝟑 𝟐 .  Найдите площадь боковой поверхности конуса.
    Решение: Так как цилиндр имеет высоту, равную радиусу основания, то площадь боковой поверхности цилиндра равна 𝑺 бц =𝟐𝝅𝑹𝑯=𝟐𝝅 𝑹 𝟐 =𝟑 𝟐 , следовательно

    𝝅 𝑹 𝟐 = 𝟑 𝟐 𝟐

    Площадь боковой поверхности конуса равна 
    𝑺 бк =𝝅𝑹𝑳, так как 𝑳= 𝑯 𝟐 + 𝑹 𝟐 = 𝟐 𝑹 𝟐 =𝑹 𝟐 ;

    𝑺 бк =𝝅𝑹𝑳=𝝅𝑹∙𝑹 𝟐 = 𝟐 𝝅 𝑹 𝟐 = 𝟑 𝟐 𝟐 ∙ 𝟐 =𝟑

  • Диаметр основания конуса равен 12, а длина образующей — 10. Найдите площадь о...

    26 слайд

    Диаметр основания конуса равен 12, а длина образующей — 10. Найдите площадь осевого сечения этого конуса.
    Решение: Осевым сечением конуса является равнобедренный треугольник, основание которого —это диаметр основания конуса, а высота совпадает с высотой конуса. Так как R = 6, то
    𝑯= 𝑳 𝟐 − 𝑹 𝟐 = 𝟏𝟎𝟎−𝟑𝟔 =𝟖;
    Следовательно, площадь осевого сечения
    𝑺 сеч = 𝟏 𝟐 ∙𝑯∙𝟐𝑹= 𝟏 𝟐 ∙𝟖∙𝟏𝟐=𝟒𝟖

  • 1)  Высота конуса равна 8, а длина образующей — 10. Найдите площадь осевого с...

    27 слайд

    1) Высота конуса равна 8, а длина образующей — 10. Найдите площадь осевого сечения этого конуса. Ответ: 48
    Решить самостоятельно

  •  Площадь основания конуса равна 18. Плоскость, параллельная плоскости основан...

    28 слайд

     Площадь основания конуса равна 18. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 3 и 6, считая от вершины. Найдите площадь сечения конуса этой плоскостью
    Решение: Сечение плоскостью, параллельной основанию, представляет собой круг, радиус которого относится к радиусу основания конуса как 3 : 9. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому площадь сечения в 9 раз меньше площади основания. Тем самым, она равна 2.

  •  Площадь основания конуса равна 16π, высота — 6. Найдите площадь осевого сече...

    29 слайд

     Площадь основания конуса равна 16π, высота — 6. Найдите площадь осевого сечения конуса.
    Решение: Осевым сечением конуса является равнобедренный треугольник, высота которого совпадает с высотой конуса, а основание является диаметром основания конуса. Поэтому площадь осевого сечения равна половине произведения высоты конуса на диаметр его основания или произведению высоты конуса на радиус основания R. Поскольку по условию πR²=16π, то радиус основания конуса равен 4, а тогда искомая площадь осевого сечения равна 24.

  • Решить самостоятельноПлощадь основания конуса равна 36π, высота —10. Найдите...

    30 слайд

    Решить самостоятельно
    Площадь основания конуса равна 36π, высота —10. Найдите площадь осевого сечения конуса. Ответ:60

  • Около конуса описана сфера (сфера содержит окружность основания конуса и его...

    31 слайд

    Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен 𝟏𝟎 𝟐 .   Найдите образующую конуса.
    Решение: Высота конуса перпендикулярна основанию и равна радиусу сферы. Тогда по теореме Пифагора получаем:

    𝑳= 𝑹 𝟐 + 𝑹 𝟐 =𝑹 𝟐 ;

    𝑳=𝟏𝟎 𝟐 ∙ 𝟐 =𝟐𝟎

  • Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара ра...

    32 слайд

    Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 28. Найдите объем конуса.

    Решение: Формулу для объёма шара: 𝑽= 𝟒 𝟑 𝝅 𝑹 𝟑 , а формула объёма конуса: 𝑽= 𝟏 𝟑 𝝅 𝑹 𝟑 .
    Значит объём конуса в 4 раза меньше объёма шара. Тогда объём конуса равен V = 28 : 4 = 7

  • Решить самостоятельноКонус вписан в шар. Радиус основания конуса равен радиус...

    33 слайд

    Решить самостоятельно
    Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 116. Найдите объем конуса. Ответ: 29
    Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 160. Найдите объем конуса. Ответ: 40
    Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 132. Найдите объем конуса. Ответ: 33

  • Площадь боковой поверхности конуса в два раза больше площади основания. Найди...

    34 слайд

    Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.
    Решение: 𝑺 бок =𝟐 𝑺 осн ; 𝝅𝑹𝑳=𝟐𝝅 𝑹 𝟐 ;
    𝑳=𝟐𝑹
    Значит, в прямоугольном треугольнике, образованном высотой, образующей и радиусом основания конуса, катет, равный радиусу, вдвое меньше гипотенузы. Тогда он лежит напротив угла 30°. Следовательно, угол между образующей конуса и плоскостью основания равен 60°.

  • Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной повер...

    35 слайд

    Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на π .
    Решение: По теореме Пифагора
    𝑳= 𝑯 𝟐 + 𝑹 𝟐 = 𝟏𝟔+𝟗 = 𝟐𝟓 =𝟓;
    Площадь полной поверхности конуса

    𝑺=𝝅 𝑹 𝟐 +𝝅𝑹𝑳=𝝅𝑹 𝑳+𝑹 =𝝅∙𝟑∙𝟖=𝟐𝟒𝝅;
    𝑺 𝝅 =𝟐𝟒

  • Решить самостоятельноРадиус основания конуса равен 12, высота равна 16. Найди...

    36 слайд

    Решить самостоятельно
    Радиус основания конуса равен 12, высота равна 16. Найдите площадь полной поверхности конуса, деленную на π . Ответ: 264
    2) Радиус основания конуса равен 28, высота равна 21. Найдите площадь полной поверхности конуса, деленную на π . Ответ: 1764
    3) Радиус основания конуса равен 15, высота равна 36. Найдите площадь полной поверхности конуса, деленную на π . Ответ: 810

  • Длина окружности основания конуса равна 3, образующая равна 2. Найдите площад...

    37 слайд

    Длина окружности основания конуса равна 3, образующая равна 2. Найдите площадь боковой поверхности конуса.
    Решение: Длина окружности: 𝑪=𝟐𝝅𝑹=𝟑;
    𝝅𝑹= 𝟑 𝟐
    Площадь боковой поверхности конуса 𝑺=𝝅𝑹𝑳= 𝟑 𝟐 ∙𝟐=𝟑

  • Решить самостоятельноДлина окружности основания конуса равна 6, образующая ра...

    38 слайд

    Решить самостоятельно
    Длина окружности основания конуса равна 6, образующая равна 2. Найдите площадь боковой поверхности конуса. Ответ: 6
    Длина окружности основания конуса равна 5, образующая равна 8. Найдите площадь боковой поверхности конуса. Ответ: 20
    Длина окружности основания конуса равна 8, образующая равна 6. Найдите площадь боковой поверхности конуса. Ответ: 24

  • Конус получается при вращении равнобедренного прямоугольного треугольника  во...

    39 слайд

    Конус получается при вращении равнобедренного прямоугольного треугольника  вокруг катета, равного H = 6. Найдите объем конуса, деленный на π .
    Решение: Радиус основания равен высоте конуса и равен 6, тогда объем конуса равен:
    𝑽= 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟑 𝝅 𝑹 𝟑 = 𝟏 𝟑 𝝅∙ 𝟔 𝟑 =𝟕𝟐𝝅;

    𝑽 𝝅 = 𝟕𝟐𝝅 𝝅 =𝟕𝟐

  • Решить самостоятельноКонус получается при вращении равнобедренного прямоуголь...

    40 слайд

    Решить самостоятельно
    Конус получается при вращении равнобедренного прямоугольного треугольника АВС  вокруг катета, равного 15. Найдите его объем, деленный на π . Ответ: 1125
    2) Конус получается при вращении равнобедренного прямоугольного треугольника АВС  вокруг катета, равного 120. Найдите его объем, деленный на π . Ответ: 576000
    3) Конус получается при вращении равнобедренного прямоугольного треугольника АВС  вокруг катета, равного 60. Найдите его объем, деленный на π . Ответ: 72000

  • Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90...

    41 слайд

    Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π.
    Решение: В равнобедренном прямоугольном треугольнике высота, проведенная из вершины прямого угла равна половине гипотенузы, т.е. радиусу основания конуса: H = R = 3. Тогда объем конуса  вычисляется следующим образом:
    𝑽= 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟑 𝝅 𝑹 𝟑 = 𝟏 𝟑 𝝅∙ 𝟑 𝟑 =𝟗𝝅;

    𝑽 𝝅 = 𝟗𝝅 𝝅 =𝟗

  • Решить самостоятельноДиаметр основания конуса равен 66, а угол при вершине ос...

    42 слайд

    Решить самостоятельно
    Диаметр основания конуса равен 66, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π.
    Ответ: 11979
    Диаметр основания конуса равен 12, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π.
    Ответ: 72
    Диаметр основания конуса равен 36, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π.
    Ответ: 1944

  • Найдите объем  конуса, образующая которого равна 2 и наклонена к плоскости ос...

    43 слайд

    Найдите объем конуса, образующая которого равна 2 и наклонена к плоскости основания под углом 30° . В ответе укажите V/π.
    Решение: Высоту конуса найдем по свойству стороны прямоугольного треугольника, находящейся напротив угла в  30° – она вдвое меньше гипотенузы, которой в данном случае является образующая конуса. H = 1
    Радиус основания найдем по теореме Пифагора: 𝑹= 𝑳 𝟐 − 𝑯 𝟐 = 𝟒−𝟏 = 𝟑
    𝑽= 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟑 𝝅∙ 𝟑 𝟐 ∙𝟏=𝝅;

    𝑽 𝝅 = 𝝅 𝝅 =𝟏

  • Решить самостоятельноНайдите объем  конуса, образующая которого равна 44 и на...

    44 слайд

    Решить самостоятельно
    Найдите объем конуса, образующая которого равна 44 и наклонена к плоскости основания под углом 30° . В ответе укажите V/π. Ответ: 10 648
    Найдите объем конуса, образующая которого равна 52 и наклонена к плоскости основания под углом 30° . В ответе укажите V/π. Ответ: 17576
    Найдите объем конуса, образующая которого равна 34 и наклонена к плоскости основания под углом 30° . В ответе укажите V/π. Ответ: 4913

  • Решение: Радиус основания конуса R  равен половине  диагонали квадрата ABCD:...

    45 слайд

    Решение: Радиус основания конуса R  равен половине диагонали квадрата ABCD:
    𝑹= 𝟏 𝟐 𝑨𝑪= 𝟏 𝟐 ∙𝟒 𝟐 =𝟐 𝟐
    Тогда объем конуса равен:
    𝑽= 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟑 𝝅 𝟐 𝟐 𝟐 ∙𝟔=𝟏𝟔𝝅;

    𝑽 𝝅 = 𝟏𝟔𝝅 𝝅 =𝟏𝟔
    Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на π.

  • Решить самостоятельноКонус описан около правильной четырехугольной пирамиды с...

    46 слайд

    Решить самостоятельно
    Конус описан около правильной четырехугольной пирамиды со стороной основания 3 и высотой 13. Найдите его объем, деленный на π. Ответ: 19,5
    Конус описан около правильной четырехугольной пирамиды со стороной основания 8 и высотой 12. Найдите его объем, деленный на π. Ответ: 128
    Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 9. Найдите его объем, деленный на π. Ответ: 24

  • Решение:  Объем данной части конуса равен 

𝑽= 𝟗𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟒 ∙...

    47 слайд

    Решение: Объем данной части конуса равен

    𝑽= 𝟗𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟒 ∙ 𝟏 𝟑 𝝅∙ 𝟗 𝟐 ∙𝟏𝟐=𝟖𝟏𝝅;

    𝑽 𝝅 = 𝟖𝟏𝝅 𝝅 =𝟖𝟏
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .
    S
    90°
    12
    9

  • Решить самостоятельно1) Найдите объем V  части конуса, изображенной на рисунк...

    48 слайд

    Решить самостоятельно
    1) Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .

    S
    90°
    14
    6
    S
    90°
    18
    12
    S
    90°
    24
    9
    Ответ: 126
    Ответ: 486
    Ответ: 648

  • Решение:  Объем данной части конуса равен 

𝑽= 𝟔𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟔 ∙...

    49 слайд

    Решение: Объем данной части конуса равен

    𝑽= 𝟔𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟏 𝟔 ∙ 𝟏 𝟑 𝝅∙ 𝟏𝟐 𝟐 ∙𝟐𝟕=𝟐𝟏𝟔𝝅;

    𝑽 𝝅 = 𝟐𝟏𝟔𝝅 𝝅 =𝟐𝟏𝟔
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .
    S
    60°
    27
    12

  • Решить самостоятельноНайдите объем V  части конуса, изображенной на рисунке....

    50 слайд

    Решить самостоятельно
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .

    S
    60°
    21
    12
    S
    60°
    33
    12
    S
    60°
    36
    18
    Ответ: 504
    Ответ: 1944
    Ответ: 792

  • Решение:  Объем данной части конуса равен 

𝑽= 𝟐𝟕𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟑 𝟒 ∙...

    51 слайд

    Решение: Объем данной части конуса равен

    𝑽= 𝟐𝟕𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟑 𝟒 ∙ 𝟏 𝟑 𝝅∙ 𝟏𝟐 𝟐 ∙𝟏𝟓=𝟓𝟒𝟎𝝅;

    𝑽 𝝅 = 𝟓𝟒𝟎𝝅 𝝅 =𝟓𝟒𝟎
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .
    O
    S
    90°
    15
    12

  • Решить самостоятельноНайдите объем V  части конуса, изображенной на рисунке....

    52 слайд

    Решить самостоятельно
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .
    O
    S
    90°
    14
    12
    O
    S
    90°
    13
    6
    O
    S
    90°
    12
    9
    Ответ: 504
    Ответ: 117
    Ответ: 243

  • Решение:  Объем данной части конуса равен 

𝑽= 𝟑𝟎𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟓 𝟔 ∙...

    53 слайд

    Решение: Объем данной части конуса равен

    𝑽= 𝟑𝟎𝟎° 𝟑𝟔𝟎° ∙ 𝟏 𝟑 𝝅 𝑹 𝟐 𝑯= 𝟓 𝟔 ∙ 𝟏 𝟑 𝝅∙ 𝟗 𝟐 ∙𝟐𝟕=𝟏𝟖𝟐𝟐,𝟓𝝅;

    𝑽 𝝅 = 𝟏𝟖𝟐𝟐,𝟓𝝅 𝝅 =𝟏𝟖𝟐𝟐,𝟓
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .
    O
    S
    60°
    27
    9

  • Решить самостоятельноНайдите объем V  части конуса, изображенной на рисунке....

    54 слайд

    Решить самостоятельно
    Найдите объем V  части конуса, изображенной на рисунке. В ответе укажите V/π .
    O
    S
    60°
    14
    12
    O
    S
    60°
    13
    6
    O
    S
    60°
    11
    9
    Ответ: 1680
    Ответ: 390
    Ответ: 742,5

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 252 427 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

Другие материалы

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

Контрольная работа по геометрии 10 класс

  • Учебник: «Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.
  • Тема: § 3. Двугранный угол. Перпендикулярность плоскостей
  • 28.03.2018
  • 820
  • 0

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

«Геометрия. Учебник 10-11 класс », Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Управление персоналом и оформление трудовых отношений»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС педагогических направлений подготовки»

  • Курс повышения квалификации «Основы построения коммуникаций в организации»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Основы менеджмента в туризме»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Учебная деятельность по предметной области «Черчение»: основы предмета и реализация обучения в условиях ФГОС»

  • Курс профессиональной переподготовки «Корпоративная культура как фактор эффективности современной организации»

  • Курс профессиональной переподготовки «Организация маркетинговой деятельности»

  • Курс профессиональной переподготовки «Стандартизация и метрология»

Самостоятельная работа по теме «Конус»

I вариант

  1. Вы­со­та ко­ну­са равна 8, а диа­метр ос­но­ва­ния — 30. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 21, а длина об­ра­зу­ю­щей — 75. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 144, а длина об­ра­зу­ю­щей — 75. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна 36π, вы­со­та — 3. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 9. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 3 и 6, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 28, а длина об­ра­зу­ю­щей — 35. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 42, а длина об­ра­зу­ю­щей — 35. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 3, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 20, об­ра­зу­ю­щая равна 25. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 108. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в  раз боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 12, вы­со­та равна 16. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 16. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 3 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 66, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на .

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 15. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 3, об­ра­зу­ю­щая равна 6. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 54 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 18,5 раза?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 2,5 раза?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 8 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 36 раз?

Самостоятельная работа по теме «Конус»

II вариант

  1. Вы­со­та ко­ну­са равна 5, а диа­метр ос­но­ва­ния – 24. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 72, а длина об­ра­зу­ю­щей — 90. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 108, а длина об­ра­зу­ю­щей — 90. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна 36π, вы­со­та — 10. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 32. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 9 и 27, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 8, а длина об­ра­зу­ю­щей — 10. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 36, а длина об­ра­зу­ю­щей — 30. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 7, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 36, об­ра­зу­ю­щая равна 45. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 164. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 28, вы­со­та равна 21. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 10. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 44 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 300. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 6, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 6. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 12, об­ра­зу­ю­щая равна 15. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 14 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы на­пол­нить сосуд до­вер­ху?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 20 раз?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 3,5 раза?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 19 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 11 раз?

Самостоятельная работа по теме «Конус»

III вариант

  1. Вы­со­та ко­ну­са равна 15, а диа­метр ос­но­ва­ния – 16. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 57, а длина об­ра­зу­ю­щей — 95. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 42, а длина об­ра­зу­ю­щей равна 75. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна , вы­со­та — 9. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 48. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 15 и 45, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 36, а длина об­ра­зу­ю­щей — 39. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 30, а длина об­ра­зу­ю­щей — 25. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 6, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 21, об­ра­зу­ю­щая равна 35. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 84. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в  раз боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 16, вы­со­та равна 12. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 168. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 11 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 300. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 30, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 120. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 12, об­ра­зу­ю­щая равна 14. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 40 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы на­пол­нить сосуд до­вер­ху?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 22 раза?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 5,2 раз?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 15 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 9 раз?

Самостоятельная работа по теме «Конус»

IV вариант

  1. Вы­со­та ко­ну­са равна 6, а диа­метр ос­но­ва­ния – 16. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 96, а длина об­ра­зу­ю­щей — 100. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 24, а длина об­ра­зу­ю­щей равна 13. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна , вы­со­та — 15. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 45. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его высоту на от­рез­ки дли­ной 4 и 8, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 16, а длина об­ра­зу­ю­щей — 20. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 10, а длина об­ра­зу­ю­щей — 13. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 5, об­ра­зу­ю­щая равна 8. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 24, об­ра­зу­ю­щая равна 26. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 148. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между образующей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 72, вы­со­та равна 21. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 128. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, которое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 27 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 300. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 36, а угол при вер­ши­не осе­во­го се­че­ния равен . Вы­чис­ли­те объем конуса, де­лен­ный на .

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, равно­го 3. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 3, об­ра­зу­ю­щая равна 9. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 21 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 16,5 раза?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 12 раз?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 28 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 22 раза?

Самостоятельная работа по теме «Конус»

V вариант

  1. Вы­со­та ко­ну­са равна 12, а диа­метр ос­но­ва­ния – 10. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 64, а длина об­ра­зу­ю­щей — 80. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 10, а длина об­ра­зу­ю­щей равна 13. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна , вы­со­та — 4. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 112. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 10 и 30, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 24, а длина об­ра­зу­ю­щей — 25. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 24, а длина об­ра­зу­ю­щей — 37. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 7, об­ра­зу­ю­щая равна 8. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 40, об­ра­зу­ю­щая равна 50. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 36. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в  раз боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 24, вы­со­та равна 18. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 120. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 51 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 300. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 12, а угол при вер­ши­не осе­во­го се­че­ния равен . Вы­чис­ли­те объем ко­ну­са, де­лен­ный на .

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 30. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 4, об­ра­зу­ю­щая равна 10. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 152 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 6 раз?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 15 раз?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 40 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 35 раз?

Самостоятельная работа по теме «Конус»

VI вариант

  1. Вы­со­та ко­ну­са равна 21, а диа­метр ос­но­ва­ния — 144. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 30, а длина об­ра­зу­ю­щей — 34. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 152, а длина об­ра­зу­ю­щей — 95. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна , вы­со­та — 10. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 128. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 16 и 48, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 24, а длина об­ра­зу­ю­щей — 30. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 32, а длина об­ра­зу­ю­щей — 34. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 4, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 28, об­ра­зу­ю­щая равна 35. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 100. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 24, вы­со­та равна 7. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 112. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 7 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 18, а угол при вер­ши­не осе­во­го се­че­ния равен . Вы­чис­ли­те объем ко­ну­са, де­лен­ный на .

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 21. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 20, об­ра­зу­ю­щая равна 22. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 49 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 6,5 раза?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 17 раз?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 30 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 40 раз?

Самостоятельная работа по теме «Конус»

VII вариант

  1. Вы­со­та ко­ну­са равна 72, а диа­метр ос­но­ва­ния — 108. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 25, а длина об­ра­зу­ю­щей — 65. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 56, а длина об­ра­зу­ю­щей — 100. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна , вы­со­та — 16. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 81. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 2 и 4, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 32, а длина об­ра­зу­ю­щей — 40. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 60, а длина об­ра­зу­ю­щей — 50. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 4, об­ра­зу­ю­щая равна 5. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 15, об­ра­зу­ю­щая равна 17. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 144. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в  раз боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 60, вы­со­та равна 32. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 24. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 12 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 300. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 42, а угол при вер­ши­не осе­во­го се­че­ния равен . Вы­чис­ли­те объем ко­ну­са, де­лен­ный на .

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 60. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 7, об­ра­зу­ю­щая равна 8. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 34 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

  1. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 20,5 раза?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 18 раз?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 2 раза?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 20 раз?

Самостоятельная работа по теме «Конус»

VIII вариант

  1. Вы­со­та ко­ну­са равна 57, а диа­метр ос­но­ва­ния — 152. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

  2. Вы­со­та ко­ну­са равна 48, а длина об­ра­зу­ю­щей — 52. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

  3. Диа­метр ос­но­ва­ния ко­ну­са равен 96, а длина об­ра­зу­ю­щей — 80. Най­ди­те вы­со­ту ко­ну­са.

  4. Пло­щадь ос­но­ва­ния ко­ну­са равна , вы­со­та — 2. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

  5. Пло­щадь ос­но­ва­ния ко­ну­са равна 64. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 8 и 24, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

  6. Вы­со­та ко­ну­са равна 12, а длина об­ра­зу­ю­щей — 15. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  7. Диа­метр ос­но­ва­ния ко­ну­са равен 54, а длина об­ра­зу­ю­щей — 45. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

  8. Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 3, об­ра­зу­ю­щая равна 8. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

  9. Вы­со­та ко­ну­са равна 30, об­ра­зу­ю­щая равна 34. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

  10. Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 192. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту по­по­лам. Най­ди­те пло­щадь пол­ной по­верх­но­сти от­се­чен­но­го ко­ну­са.

  11. Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

  12. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 24, вы­со­та равна 45. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

  13. Объем ко­ну­са равен 144. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

 

  1. Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 19 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 300. В от­ве­те ука­жи­те .

  2. Диа­метр ос­но­ва­ния ко­ну­са равен 30, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

  3. Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 15. Най­ди­те его объем, де­лен­ный на .

  4. Вы­со­та ко­ну­са равна 20, об­ра­зу­ю­щая равна 25. Най­ди­те его объем, де­лен­ный на .

  5. В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  вы­со­ты. Объём жид­ко­сти равен 120 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

  6. Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

  1. Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­ту умень­шить в 12,5 раза?

  2. Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус ос­но­ва­ния уве­ли­чить в 19 раз?

  3. Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шить в 37 раз?

  4. Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щую уве­ли­чить в 2,5 раза?

Ответы

1 вариант

2 вариант

3 вариант

4 вариант

5 вариант

6 вариант

7 вариант

8 вариант

1

17

1

13

1

17

1

10

1

13

1

75

1

90

1

95

2

144

2

108

2

152

2

56

2

96

2

32

2

120

2

40

3

21

3

72

3

72

3

5

3

12

3

57

3

96

3

64

4

18

4

60

4

27

4

150

4

20

4

70

4

128

4

8

5

1

5

2

5

3

5

5

5

7

5

8

5

9

5

4

6

588

6

48

6

540

6

192

6

168

6

432

6

768

6

108

7

588

7

432

7

300

7

60

7

420

7

480

7

1200

7

972

8

3

8

7

8

6

8

20

8

28

8

4

8

10

8

12

9

600

9

1944

9

1764

9

360

9

2400

9

1176

9

200

9

800

10

27

10

41

10

21

10

37

10

9

10

25

10

36

10

48

11

45

11

60

11

45

11

60

11

45

11

60

11

45

11

60

12

384

12

1764

12

576

12

10584

12

1296

12

1176

12

7680

12

1800

13

2

13

1,25

13

21

13

16

13

15

13

14

13

3

13

18

14

3,375

14

10648

14

166,375

14

2460,375

14

16581,375

14

42,875

14

216

14

45,125

15

11979

15

9

15

1125

15

1944

15

72

15

243

15

3087

15

1125

16

1125

16

72

16

576000

16

9

16

9000

16

3087

16

72000

16

1125

17

27

17

324

17

208

17

72

17

112

17

560

17

35

17

1500

18

378

18

364

18

280

18

147

18

361

18

343

18

238

18

285

19

87,75

19

243

19

216

19

263,25

19

117

19

216

19

840

19

3510

20

18,5

20

20

20

22

20

16,5

20

6

20

6,5

20

20,5

20

12,5

21

6,25

21

12,25

21

27,04

21

144

21

225

21

289

21

324

21

361

22

8

22

19

22

15

22

28

22

40

22

30

22

2

22

37

23

36

23

11

23

9

23

22

23

35

23

40

23

20

23

2,5

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь поверхности прямого кругового конуса (боковую, полную и основания), а также разберем примеры решения задач для закрепления материала.

  • Формула вычисления площади конуса

    • 1. Боковая поверхность

    • 2. Основание

    • 3. Полная площадь

  • Примеры задач

Формула вычисления площади конуса

1. Боковая поверхность

Площадь (S) боковой поверхности конуса равняется произведению числа π на радиус основания и на длину образующей.

Sбок. = πRl

Площадь поверхности конуса

Образующая (l) соединяет вершину конуса и границу основания, другими словами, точку на окружности.

Примечание: в вычислениях значение числа π округляется до 3,14.

2. Основание

Основанием конуса является круг, площадь которого вычисляется так:

Sосн. = πR2

Учитывая то, что диаметр круга равняется двум его радиусам (d = 2R), данную формулу можно представить в виде:

Sосн. = π(d/2)2

3. Полная площадь

Для вычисления суммарной площади конуса следует сложить площади боковой поверхности и основания:

Sполн. = πRl + πR2 = πR(l + R)

Примеры задач

Задание 1
Вычислите площадь боковой поверхности конуса, если известно, что его радиус равен 16 см, а длина образующей – 5 см.

Решение:
Используем соответствующую формулу с известными нам величинами:
S = 3,14 ⋅ 16 см ⋅ 5 см = 251,2 см2.

Задание 2
Высота конуса равна 4 см, а его радиус – 3 см. Найдите суммарную площадь поверхности фигуры.

Решение:
Если рассмотреть конус в сечении, то можно заметить, что его высота, радиус и образующая представляют собой прямоугольный треугольник. Следовательно, воспользовавшись теоремой Пифагора, можно найти длину образующей (является гипотенузой):
l2 = (4 см)2 + (3 см)2 = 25 см2.
l = 5 см.

Осталось только использовать найденное и известные по условиям задачи значения, чтобы рассчитать площадь:
S = 3,14 ⋅ 3 см ⋅ (5 см + 3 см)  = 75,36 см2.

Добавить комментарий