Опубликовано 3 года назад по предмету
Математика
от Valeria163
Как найти площадь основания куба?
-
Ответ
Ответ дан
IlyaGordienkoа*а = а²
Длину умножить на ширину.-
Ответ
Ответ дан
Valeria163А что делать,если ребро куба равно 7 дм?
-
Ответ
Ответ дан
IlyaGordienko7 дм * 7 дм = 49 дм (квадратных).
-
Ответ
Ответ дан
Valeria163Спасибо большое,я уже поняла :3
-
Ответ
Ответ дан
IlyaGordienkoНе за что.
-
Самые новые вопросы
Другие предметы – 2 года назад
Сочинение-рассуждение. прочитайте текст. есть у меня внучка. однажды она говорит: — у веры в субботу день рождения. она
Другие предметы – 2 года назад
Л.н. толстой. как боролся русский богатырь как сказал иван о своей силе? найдите ответ в тексте. запишите.
История – 2 года назад
Кто такой мильтиад и какова его роль в победе над персами?
История – 2 года назад
Какие примеры н. м. карамзин использует для разъяснения пользы новой системы престолонаследия? согласны ли вы с позицией
География – 2 года назад
Дополните схему. она поможет вам лучше усвоить содержание §1.: 1 что изучает география 2 с помощью чего 3 зачем изучают
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
In geometry, the bottom of a three-dimensional object is called a base – if the top of the solid is parallel to the bottom it is also called a base. Since bases occupy a single plane, they have only two dimensions. You can find the area of a base by using the formula for the area of that shape.
Square Bases
Cubes and square pyramids have bases that are square-shaped. The area of a square is equal to the length of one of its sides multiplied by itself, or squared. The formula is A = s2. For example, to find the area of a base of a cube with 5-inch sides: A = 5 inches x 5 inches = 25 square inches
Rectangular Bases
Some rectangular solids and pyramids have rectangular bases. The area of a rectangle is equal to its length, l, multiplied by its width, w: A = l x w. Given a pyramid whose base is 10 inches long and 15 inches wide, find area as follows: A = 10 inches x 15 inches = 150 square inches.
Circular Bases
The bases of cylinders and cones are circular. The area of a circle is equal to the circle’s radius, r, squared then multiplied by a constant called pi: A = pi x r2. Pi always has the same value, approximately 3.14. While pi technically has an endless number of decimal places, 3.14 is a good enough estimation for simple calculations. For example, given a cylinder with a radius of 2 inches, you can find the base’s area as follows: A = 3.14 x 2 inches x 2 inches = 12.56 square inches.
Triangular Bases
A triangular prism has a triangular base. Finding a triangle’s area requires two known quantities: base, labeled b, and height, labeled h. Base is the length of one of the triangle’s sides, height is the distance from that side to the opposite corner of the triangle. The area of the triangle is equal to half of the base times the height: A = b x h x 1/2 You could find the area of a triangle with base length of 4 inches and height of 3 inches as follows: A = 4 inches x 3 inches x 1/2 = 6 square inches.
как найти площадь основания куба, если известна его площадь?
nemnogo debil
Ученик
(131),
закрыт
8 лет назад
Ирина
Мыслитель
(7287)
8 лет назад
Sкуба=a^3, тогда а=корень кубический из Sкуба
Sкв=a^2 – подставляете найденное а
NaumenkoВысший разум (856099)
8 лет назад
неверно
Ирина
Мыслитель
(7287)
да, действительно, у куба есть объем и площадь полной поверхности
я решила, что известен объем (проще решение )))
а товарищи, которые за неверный ответ, получат неуд, будет затем внимательнее формулировать свои вопросы
Куб. Формулы, признаки и свойства
Навигация по странице:
Определение куба
Грань куба
Ребро куба
Вершина куба
Центр грани куба
Центр куба
Ось куба
Диагональ куба
Диагональ грани куба
Объём куба
Площадь поверхности куба
Периметр куба
Сфера вписана в куб
Сфера описана вокруг куба
Свойства куба
Координати вершин куба
Единичный куб
Пересечение единичного куба плоскостью
Определение.
Куб (гексаедр) — это трехмерная фигура, которая состоит из шести динаковых квадратов так, что каждый квадрат полностью соприкасается своими четырьмя сторонами к сторонам остальных четырех квадратов под прямым углом. Куб является правильным многогранником, у которого грани образованы из квадратов. Также кубом можно назвать прямоугольный параллелепипед, у которого все ребра равны.
Определение. Грань куба — это часть плоскости, ограниченная сторонами квадрата.
— куб имеет шесть граней;
— каждая грань куба пересекается с четырьмя другими гранями под прямым углом и параллельная шестой грани;
— грани имеют одинаковую площадь, которую можно найти, используя формулы для вычисления площади квадрата.
Определение. Ребро куба — это отрезок, образованный пересечением двух граней куба.
— куб имеет двенадцать ребер;
— каждый конец ребра соединен с двумя соседними ребрами под прямым углом;
— ребра куба имеют одинаковую длину.
Определение. Вершина куба — это самая отдаленная от центра куба точка, которая лежит на пересечения трех граней куба.
— куб имеет восемь вершин;
— каждая вершина образована только тремя гранями и тремя ребрами.
Определение. Центр грани куба (O1) — это равноудалена точка от всех ребер грани куба.
Определение. Центр куба (O) — это равноудалена точка от всех граней куба.
Определение. Ось куба (i) — это прямая, проходящая через центр куба и центры двух параллельных граней куба.
— куб имеет три оси;
— оси куба взаимно перпендикулярны.
Определение. Диагональ куба (d1) — отрезок, который соединяет противоположные вершины куба и проходит через центр куба.
— куб имеет четыре диагонали;
— диагонали куба пересекаются и делятся пополам в центре куба;
— диагонали куба имеют одинаковую длину.
Формула. Диагональ куба d1 через длину ребра a:
d1 = a√3
Определение. Диагональ грани куба (d2) -отрезок, который соединяет противоположные углы грани куба и проходит через центр грани куба.
Формула. Диагональ грани d2 через длину ребра a:
d2 = a√2
Определение. Объём куба — это совокупность всех точек в пространстве, ограниченные гранями куба.
Формула. Объём куба через длину ребра a:
V = a3
Формула. Объём куба через длину диагонали куба d1:
Определение. Площадь поверхности куба — это совокупность плоскостей всех граней.
Формула. Площадь поверхности куба через длину ребра a:
S = 6a2
Определение. Периметр куба — это совокупность длин всех ребер куба.
Формула. Периметр куба P через длину ребра a:
P = 12a
Определение. Сферой вписанной в куб называется сфера, центр которой совпадает с центром куба и которая касается центров граней куба.
— все шесть граней куба являются касательными плоскостями к вписанной сферы;
— радиус вписанной сферы равен половине длины ребра a.
Формула. Радиус вписанной сферы r через длину ребра a:
Формула. Объема вписанной сферы V через длину ребра a:
Определение. Сферой описанной вокруг куба называется сфера, центр которой совпадает с центром куба и которая соприкасается с восьмью вершинами куба.
— радиус описанной сферы равен половине длины диагонали (d1) куба.
Формула. Радиус описанной сферы R через длину ребра a:
Формула. Объема сферы описанной вокруг куба V через длину ребра a:
Свойства куба
1. В куб можно вписать тетраэдр так, чтобы все четыре вершины тетраэдра лежали на четырех вершинах куба, а все шесть ребер тетраэдра будут лежать на шести гранях куба и ребра будут равны диагонали грани куба.
2. В куб можно вписать правильный шестиугольник так, что все шесть вершин лежат в центрах граней куба.
Координаты вершин куба
1. Координаты вершин куба со стороной a и вершиной D в начале декартовой системы координат так, что ребра этой вершины лежат на осях координат:
A(a, 0, 0),
B(a, a, 0),
C(0, a, 0),
D(0, 0, 0),
E(a, 0, a),
F(a, a, a),
G(0, a, a),
H(0, 0, a).
2. Координаты вершин куба с длиной стороны 2a, у которого центр куба находится в начале декартовой системы координат так, что ребра куба параллельны осям координат:
A(a, -a, -a),
B(a, a, -a),
C(-a, a, -a),
D(-a, -a, -a),
E(a, -a, a),
F(a, a, a),
G(-a, a, a),
H(-a, -a, a).
Определение.
Единичный куб — это куб, у которого длина ребер равна единице.
Пересечение куба плоскостью
1. Если пересечь куб плоскостью, проходящей через центр куба и центры двух противоположных граней, то в сечении будет квадрат, длина стороны которого будет равна длине ребра куба. Эта плоскость делит куб два равных прямоугольных параллелепипеда.
2. Если пересечь куб с ребром a плоскостью, проходящей через центр куба и два параллельных ребра, то в сечении будет прямоугольник со сторонами a и a√2, площадью сечения a2√2. Эта плоскость делит куб две равные призмы.
3. Если пересечь куб плоскостью, проходящей через центр и середины шести граней, то в сечении будет правильный шестиугольник со стороной a√2/2, площадью сечения a2(3√3)/4. У куба одна из диагоналей (FC) каждой грани, что пересекаются, перпендикулярна стороне шестиугольника.
4. Если пересечь куб плоскостью, проходящей через три вершины куба, то в сечении будет правильный треугольник со стороной a√2, площадью сечения a2√3/2 и объемом большей части — 5a3/6 и меньшей — a3/6. Одна из диагоналей куба (EC) перпендикулярна к плоскости сечения и проходит через центр треугольника (M) и делится плоскостью в отношении MC:EМ = 2:1.
Все таблицы и формулы
Что такое куб: определение, свойства, формулы
Sign in
Password recovery
Восстановите свой пароль
Ваш адрес электронной почты
MicroExcel.ru Математика Геометрия Что такое куб: определение, свойства, формулы
В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).
- Определение куба
- Свойства куба
- Свойство 1
- Свойство 2
- Свойство 3
- Формулы для куба
- Диагональ
- Диагональ грани
- Площадь полной поверхности
- Периметр ребер
- Объем
- Радиус описанного вокруг шара
- Радиус вписанного шара
Определение куба
Куб – это правильный многогранник, все грани которого являются квадратами.
- Вершины куба – это точки, являющиеся вершинами его граней.
Всего их 8: A, B, C, D, A1, B1, C1 и D1. - Ребра куба – это стороны его граней.
Всего их 12: AB, BC, CD, AD, AA1, BB1
, CC1, DD1, A1B1, B1C1, C1D1 и A1D1. - Грани куба – это квадраты, из которого состоит фигура.
Всего их 6: ABCD, A1B1C1D1, AA1B1B, BB1C1C, CC1D1D и AA1D1D.
Примечание: куб является частным случаем параллелепипеда или призмы.
Свойства куба
Свойство 1
Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т. е.:
- ABCD || A1B1C1D1
- AA1B1B || CC1D1D
- BB1C1C || AA
1D1D
Свойство 2
Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.
- AC1 = BD1 = A1C = B1D (диагонали куба).
- О – точка пересечения диагоналей:
AO = OC1 = BO = OD1 = A1O = OC = B1O = OD.
Свойство 3
Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.
Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.
Формулы для куба
Примем следующие обозначения, которые будут использоваться далее:
- a – ребро куба;
- d – диагональ куба или его грани.
Диагональ
Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.
Диагональ грани
Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.
Площадь полной поверхности
Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.
Периметр ребер
Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.
Объем
Объем куба равен длине его ребра, возведенной в куб.
Радиус описанного вокруг шара
Радиус шара, описанного около куба, равняется половине его диагонали.
Радиус вписанного шара
Радиус вписанного в куб шара равен половине длины его ребра.
ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ
Таблица знаков зодиака
Нахождение площади трапеции: формула и примеры
Нахождение длины окружности: формула и задачи
Римские цифры: таблицы
Таблица синусов
Тригонометрическая функция: Тангенс угла (tg)
Нахождение площади ромба: формула и примеры
Нахождение объема цилиндра: формула и задачи
Тригонометрическая функция: Синус угла (sin)
Геометрическая фигура: треугольник
Нахождение объема шара: формула и задачи
Тригонометрическая функция: Косинус угла (cos)
Нахождение объема конуса: формула и задачи
Таблица сложения чисел
Нахождение площади квадрата: формула и примеры
Что такое тетраэдр: определение, виды, формулы площади и объема
Нахождение объема пирамиды: формула и задачи
Признаки подобия треугольников
Нахождение периметра прямоугольника: формула и задачи
Формула Герона для треугольника
Что такое средняя линия треугольника
Нахождение площади треугольника: формула и примеры
Нахождение площади поверхности конуса: формула и задачи
Что такое прямоугольник: определение, свойства, признаки, формулы
Разность кубов: формула и примеры
Степени натуральных чисел
Нахождение площади правильного шестиугольника: формула и примеры
Тригонометрические значения углов: sin, cos, tg, ctg
Нахождение периметра квадрата: формула и задачи
Теорема Фалеса: формулировка и пример решения задачи
Сумма кубов: формула и примеры
Нахождение объема куба: формула и задачи
Куб разности: формула и примеры
Нахождение площади шарового сегмента
Что такое окружность: определение, свойства, формулы
Куб — свойства, виды и формулы » Kupuk.
net
Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.
Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:
-
многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;
-
прямая призма, все грани которой есть квадраты;
-
прямоугольный параллелепипед, все рёбра которого равны.
Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.
Элементы куба
Основными элементами многогранника считаются грани, рёбра, вершины.
Грань
Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.
Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.
Грани куба попарно перпендикулярны, являются квадратами, равны между собой.
Ребро
Линии пересечения сторон называются рёбрами.
Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.
Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.
Вершина
Точки пересечения рёбер называются вершинами. Их число равно восьми.
Центр грани
Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.
Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.
Центр куба
Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.
Это есть центр симметрии куба.
Ось куба
Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.
Диагональ куба
Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.
Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:
Формула доказывается с помощью дважды применённой теоремы Пифагора.
Диагональ куба — одна из осей симметрии.
Все диагонали куба равны между собой и точкой пересечения делятся пополам.
Диагональ грани куба
Длина диагонали грани в √2 раз больше ребра, то есть:
Эта формула доказывается также с помощью теоремы Пифагора.
Объем куба
Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:
Периметр куба
Сумма длин всех рёбер равна:
Площадь поверхности
Сумма площадей всех граней называется площадью поверхности куба. Она равна:
Сфера, вписанная в куб
Такая сфера имеет центр, совпадающий с центром куба.
Радиус равен половине ребра:
Сфера, описанная вокруг куба
Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:
Координаты вершин куба
В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.
Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:
Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).
Свойства куба
Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.
Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.
Прочие свойства:
-
у куба все грани равны, являются квадратами;
-
у куба все рёбра равны;
-
один центр и несколько осей симметрии.
- Объем куба (на основе длины стороны) = a 3 кубических дюймов, где a – длина стороны куба
- Объем куба (по диагонали) = (√3×d 3 )/9кубических дюймов, где d — длина диагонали куба
- Шаг 1: Рассмотрим любой квадратный лист бумаги.
- Шаг 2: Теперь площадь, покрытая этим квадратным листом, будет равна площади его поверхности, т. е. его длине, умноженной на его ширину. Оба одинаковы в случае куба. Таким образом, площадь поверхности будет равна «s 2 ».
- Шаг 3: Куб получается путем складывания нескольких квадратных листов таким образом, чтобы высота стала равной длине и ширине, т. е. единицам «s». Таким образом, высота или толщина куба равна «s».
- Шаг 1. Рассмотрим любой лист бумаги квадратной формы.
- Шаг 2: В случае квадрата, поскольку длина и ширина равны, площадь поверхности будет равна «s 2 » (длина, умноженная на ширину).
- Шаг 3: Поскольку у куба 6 граней, общая площадь поверхности куба равна площади одной грани, умноженной на 6 = 6s 2
- Куб имеет 12 ребер, 6 граней и 8 вершин.
- Все грани куба имеют форму квадрата, поэтому длина, ширина и высота одинаковы.
- Углы между любыми двумя гранями или поверхностями равны 90°.
- Противоположные плоскости или грани куба параллельны друг другу.
- Противоположные ребра куба параллельны друг другу.
- Каждая грань куба встречается с остальными четырьмя гранями.
- Каждая вершина куба встречается с тремя гранями и тремя ребрами.
- Объем куба (на основе длины стороны) = a 3 , где a — длина стороны куба
- Объем куба (по диагонали) = (√3×d 3 )/9 , где d — длина диагонали куба
- Длина диагонали грани куба = √2a единиц , где a = длина каждой стороны куба
- Длина главной диагонали куба = √3a единиц , где a = длина каждой стороны куба
- Куб Формула
- Платоновые тела
- Формы
- Твердые формы
- Плоские фигуры
-
Пример 1: Сколько воды хранится в одном кубике льда со стороной 5 дюймов?
Решение:
Дано,
Длина кубика льда = 5 дюймов
Количество воды в кубике льда = объему кубика
Следовательно, объем кубика льда = 5 × 5 × 5 в 3
= 125 в 3
Ответ: Количество воды во льду равно 125 в
0 13 900.
-
Пример 2: Найдите общую площадь поверхности куба, если длина стороны куба равна 25 дюймам.
Решение:
Длина стороны куба, a = 25 дюймов формула площади куба: A = 6a 2
A = 6 × 25 × 25
A = 3750
Ответ: Площадь поверхности куба составляет 3750 квадратных дюймов.
-
Пример 3: Найдите объем кубика Рубика длиной 5 дюймов.
Решение:
Чтобы найти объем кубика Рубика:
Длина стороны кубика = 5 дюймов ( дано)
Используя формулу куба,
объем = с × с × с = с 3Поставьте значения,
объем = 5 × 5 × 5 = 5 3 = 125
Ответ: Объем кубика Рубика равен 125 кубических дюймов.
- Куб имеет 12 ребер, 6 граней и 8 вершин.
- Все грани куба имеют квадратную форму.
- Общая площадь поверхности (TSA) = 6x 2
- Площадь боковой поверхности (LSA) = 4x 2
-
Все грани куба имеют квадратную форму.
-
Все грани и ребра равны.
-
Углы куба прямые.
-
Каждая из граней встречается с четырьмя соседними гранями.
-
Каждая из вершин встречается с тремя гранями и тремя ребрами.
-
Ребра, противоположные друг другу, параллельны и также равны.
-
Все 12 диагоналей на поверхности имеют площадь одинаковой величины
-
Все 4 внутренние диагонали равны
-
Каков объем куба 11,5 см?
-
Если объем куба равен 343 см 3 , то какова мера ребра куба?
Cube Formula — Что такое Cube Formula? Примеры
Формула куба помогает нам найти площадь поверхности, диагонали и объем куба. Куб числа непосредственно отражает объем куба, имеющего длину ребра, равную данному числу. Куб — это трехмерный твердый объект с шестью квадратными гранями, все стороны которого имеют одинаковую длину. Давайте узнаем о формуле куба с несколькими решенными примерами в конце.
Что такое формула куба?
Куб является одним из пяти платоновых тел и также известен как правильный шестигранник.
Формула куба
Объем куба
Объем куба можно рассчитать с использованием различных формул на основе заданных параметров. Его можно рассчитать, используя длину стороны, а также размер диагонали куба.
Боковая площадь куба
Боковая площадь куба равна сумме площадей всех боковых граней куба. У куба 4 боковые грани, поэтому сумма площадей всех 4 боковых граней куба равна его боковой поверхности.
LSA куба = 4a 2
, где a — длина стороны.
Общая площадь куба
Общая площадь поверхности куба будет равна сумме площади основания и площади вертикальных поверхностей куба. Поскольку все грани куба состоят из квадратов одинакового размера, то общая площадь поверхности куба будет равна площади поверхности одной грани, сложенной с самой собой в пять раз. Таким образом, формула для нахождения площади поверхности куба:
Общая площадь поверхности (TSA) куба = 6a 2
, где a — длина стороны.
Диагональ куба
Куб имеет диагонали двух разных длин, более короткие лежат на квадратных гранях, а более длинные проходят через центр. Главной диагональю куба называется та, которая проходит через центр, который можно найти, умножив длину одной стороны на квадратный корень из 3.
Диагональ куба = a√3
Давайте лучше разберемся с формулами куба на нескольких решенных примерах.
Хотите найти сложные математические решения за считанные секунды?
Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.
Запись на бесплатный пробный урок
Примеры с использованием формулы куба
Пример 1: Найдите объем кубика Рубика длиной 4 дюйма.
Решение:
Чтобы найти объем кубика Рубика: кубик Рубика0003
Длина стороны куба = 4 дюйма (дано)
Используя формулу куба,
объем = с × с × с = с 3
Поместите значения,
объем = 4 × 4 × 4 = 4 3 = 64
Ответ: Объем кубика Рубика составляет 64 кубических дюйма.
Пример 2: Размеры куба – 64 дюйма. Найдите его диагональ по формуле куба.
Решение:
Чтобы найти диагональ куба:
Размеры куба: длина (l) = ширина (w) = высота (h) = 64 дюйма (данные)
Используя формулу куба,
диагональ = a√3
Поместите значения,
Диагональ = 64√3 = 110,848 дюйма
Ответ: Диагональ куба равна 110,848 дюйма
Пример 3: Найдите общую площадь поверхности куба, если длина стороны куба равна 25 дюймам. .
Решение:
Длина стороны куба, a = 25 дюймов
Используя формулу площади куба, а именно: A = 6a 2
Поместите значения,
A = 6 × 25 × 25 = 3750 квадратных дюймов
Ответ: Площадь поверхности куб равен 3750 квадратных дюймов.
Часто задаваемые вопросы о формуле куба
Что такое формула куба?
Формула куба помогает нам найти площадь поверхности, диагонали и объем куба. Это простые формулы, зависящие в основном от одного параметра — длины ребра или стороны куба.
Как рассчитать диагональ куба по формуле куба?
Главную диагональ куба , пересекающую центр, можно найти, умножив длину одной стороны на квадратный корень из 3. Таким образом, диагональ куба = a√3, где a – ребро куба. .
Что такое s в формуле куба?
В формуле куба s относится к ребру куба. Все формулы куба — объем, площадь поверхности и диагонали — зависят от ребра куба, представленного как s, так и a.
Как вывести формулу куба?
Чтобы вычислить объем по формуле куба,
Таким образом, можно сделать вывод, что общее пространство, занимаемое кубом, то есть объем, равно площади основания, умноженной на высоту. Объем куба = s 2 × s = s 3
Чтобы вывести формулу поверхности куба,
Куб – формула, форма, определение, примеры
Куб – это трехмерный объект, имеющий 6 конгруэнтных квадратных граней. Размеры всех 6 квадратных граней куба одинаковы. Куб иногда также называют правильным шестигранником или квадратной призмой. Это одно из 5 платоновых тел. Некоторыми примерами куба из реальной жизни являются кубик льда, кубик Рубика, обычные игральные кости и т. Д. Давайте узнаем о кубе вместе с его формулами, несколькими решенными примерами и практическими вопросами здесь.
1. | Определение куба |
2. | Свойства куба |
3. | Кубическая сетка |
4. | Формула куба |
5. | Часто задаваемые вопросы о кубе |
Определение куба
Куб — это твердый трехмерный объект с шестью квадратными гранями, все стороны которого имеют одинаковую длину. Он также известен как правильный шестигранник и является одним из пяти платоновых тел. Фигура состоит из шести квадратных граней, восьми вершин и двенадцати ребер. Длина, ширина и высота в кубе имеют одинаковые измерения, поскольку трехмерная фигура представляет собой квадрат, все стороны которого имеют одинаковую длину. В кубе грани имеют общую границу, называемую ребром, которая считается ограничивающей линией ребра. Структура определяется так, что каждая грань соединена с четырьмя вершинами и четырьмя ребрами, вершина связана с тремя ребрами и тремя гранями, а ребра соприкасаются с двумя гранями и двумя вершинами.
Куб Значение
Куб — это объемная объемная фигура, имеющая 6 квадратных граней. Это геометрическая фигура с 6 равными гранями, 8 вершинами и 12 равными ребрами. Некоторые примеры кубиков из реальной жизни — это игра в кости, кубики льда, кубик Рубика и т. д., которые мы видим вокруг себя.
Свойства куба
Куб считается особым видом квадратной призмы, так как все грани имеют форму квадрата и являются платоновыми телами. У куба, как и у любой другой трехмерной или двумерной формы, есть множество различных свойств. Свойства:
Кубическая сетка
Сетка куба формируется, когда трехмерная фигура с квадратными гранями сглаживается путем разделения по краям, превращая ее в двумерную фигуру. Через сетку куба мы можем ясно видеть шесть граней, то есть шесть квадратных граней, которые соединяются вместе по краям, образуя куб. Вот изображение для справки:
Куб Формула
Формула куба помогает нам найти площадь поверхности, диагонали и объем куба. Давайте обсудим различные формулы куба.
Площадь поверхности куба
Существует два типа площадей поверхности куба — Площадь боковой поверхности и Общая площадь поверхности
Площадь боковой поверхности куба
Площадь боковой поверхности куба равна сумме площадей всех боковые грани куба. У куба 4 боковые грани, поэтому сумма площадей всех 4 боковых граней куба равна его боковой поверхности. Боковая площадь куба также известна как площадь его боковой поверхности (LSA) и измеряется в квадратных единицах.
LSA куба = 4a 2
, где a — длина стороны. Для получения дополнительной информации вы можете проверить эту интересную статью о боковой площади формулы куба.
Общая площадь поверхности куба
Общая площадь поверхности куба будет равна сумме площади основания и площади вертикальных поверхностей куба. Поскольку все грани куба состоят из квадратов одинакового размера, то общая площадь поверхности куба будет равна площади поверхности одной грани, сложенной с самой собой в пять раз. Он измеряется как «количество квадратных единиц» (квадратные сантиметры, квадратные дюймы, квадратные футы и т. д.). Следовательно, формула для нахождения площади поверхности куба:
Общая площадь поверхности (TSA) куба = 6a 2
, где a — длина стороны. Для получения дополнительной информации вы можете ознакомиться с этой интересной статьей о площади поверхности куба.
Объем куба
Объем куба – это пространство, занимаемое кубом. Объем куба можно узнать, найдя куб длины стороны куба. Для определения объема куба существуют разные формулы, основанные на разных параметрах. Его можно рассчитать, используя длину стороны или размер диагонали куба, и он выражается в кубических единицах длины. Следовательно, две разные формулы для нахождения объема куба:
Вы можете узнать больше о формуле объема, прочитав эту интересную статью о объеме куба.
Диагональ куба
Диагональ куба — это отрезок, соединяющий две противоположные вершины куба. Длину диагонали куба можно определить по формуле диагонали куба. Это помогает найти длину диагоналей лица и главных диагоналей. Каждая диагональ грани образует гипотенузу образовавшегося прямоугольного треугольника. Куб имеет шесть граней (квадратной формы). На каждой грани есть две диагонали, соединяющие несмежные вершины. Следовательно, у нас есть двенадцать диагоналей граней и четыре главные диагонали, соединяющие противоположные вершины куба. Формула диагонали куба для расчета длины диагонали грани и диагонали основного тела куба определяется как 9.0003
Давайте посмотрим на несколько решенных примеров куба и его свойств для лучшего понимания.
☛Связанные темы
Ниже перечислены некоторые темы, связанные с кубом.
Примеры кубов
перейти к слайдуперейти к слайду
Разбивайте сложные концепции с помощью простых визуальных средств.
Математика больше не будет сложным предметом, особенно когда вы понимаете концепции с помощью визуализаций.
Запись на бесплатный пробный урок
Практические вопросы по Cube
перейти к слайдуперейти к слайду
Часто задаваемые вопросы о Cube
Что такое куб в геометрии?
В геометрии куб представляет собой трехмерную геометрическую фигуру с шестью конгруэнтными квадратными гранями. Идеальным примером куба из реальной жизни является кубик льда. Это одно из пяти платоновых тел, также известное как правильный шестигранник.
Каковы два основных свойства куба?
Куб — это трехмерная фигура со многими геометрическими свойствами. Два основных свойства перечислены ниже.
Почему куб называют правильным шестигранником?
Правильный шестигранник представляет собой трехмерный объект с 6 конгруэнтными гранями. Таким образом, куб называется правильным шестигранником.
Какая формула площади боковой стороны куба?
Площадь поперечной стороны куба можно вычислить, зная длину его ребра. Площадь боковой стороны куба с длиной ребра ‘x’ равна 4×9.0020 2 кв. шт.
Как найти площадь боковой поверхности куба?
Площадь боковой стороны куба с длиной ребра ‘x’ можно получить, сложив площади 4-х боковых граней. Таким образом, боковая площадь куба = х 2 + х 2 + х 2 + х 2 = 4х 2 .
В чем разница между площадью поверхности и боковой поверхностью куба?
Площадь поверхности (или) общая площадь поверхности (TSA) куба представляет собой сумму площадей всех граней, тогда как площадь боковой поверхности (LSA) представляет собой только сумму 4 боковых граней куба. Если «x» — длина ребра куба, то
Что такое площадь поверхности и площадь?
Обычно термин «площадь» используется для обозначения пространства, ограниченного двухмерным объектом. «Площадь поверхности» используется для представления суммы площадей всех граней трехмерного объекта.
Что такое объем формулы куба?
Объем куба можно рассчитать по длине стороны. Объем куба 3 , где а — длина стороны куба.
По какой формуле найти площадь основания куба?
Формула для нахождения площади основания куба: 2 , где а — длина стороны куба.
Что представляют собой 5 Платоновых тел?
Куб представляет землю, октаэдр представляет воздух, тетраэдр представляет огонь, икосаэдр представляет воду, а додекаэдр представляет вселенную.
Формула куба – объяснение, свойства и примеры решения
Нас окружают разные предметы, которые состоят из разных геометрических форм. Подумайте о детской игре с кубиками, игральными костями или кубиком льда. Что вы замечаете общего среди всего этого? Все они имеют форму куба, не так ли? В этой статье мы изучим, что такое куб? Объем формулы куба, площадь формулы куба, площадь поверхности формулы куба. Некоторыми из распространенных примеров кубика являются кубик льда, игральные кости, кубик Рубика.
Введение. Что такое куб?
Куб — это трехмерная фигура, состоящая из граней квадратной формы одинакового размера. Все углы куба пересекаются в точке 90 0 . У куба 6 равных граней, и все грани квадратной формы. Он имеет 8 вершин и 12 равных ребер.
На приведенном ниже рисунке изображен куб, где l — длина, b — ширина, h — высота, и l = b = h. Длина, ширина и высота представляют ребра куба. И когда три ребра встречаются в точке, это называется вершиной.
(Изображение будет загружено в ближайшее время)
Свойства куба
Площадь поверхности куба Формула площади трехмерный объект. Поскольку трехмерный объект состоит из двухмерных граней, площадь поверхности представляет собой сумму площадей всех граней фигуры. Поэтому, чтобы найти площадь поверхности трехмерного объекта, мы должны сложить площади всех его граней. Мы можем использовать базовую формулу площади для вычисления его граней, поскольку они представляют собой простые 2D-фигуры,
Например, куб имеет шесть граней. Следовательно, площадь его поверхности будет равна сумме площадей всех шести граней. Поскольку все стороны куба являются квадратами, мы можем выразить площадь поверхности куба как 6 x (Площадь квадрата)
В основном площадь поверхности можно классифицировать как:
Площадь изогнутой поверхности объекта – это площадь всех криволинейных поверхностей объекта.
Боковая поверхность предмета – это площадь всех граней предмета, за исключением площади его основания и вершины. Для куба площадь боковой поверхности будет равна сумме площадей четырех сторон, то есть умноженной на 4 стороны.
Площадь боковой поверхности = 4 × (край) 2 |
902
Куб — это трехмерный объект, поэтому пространство, занимаемое кубом, будет трехмерным.
Куб ограничен шестью квадратными гранями, поэтому площадь поверхности будет вычисляться путем сложения площадей всех шести квадратных граней. Следовательно, площадь поверхности куба по формуле равна 9.0003
Площадь поверхности куба = 6 (сторона) 2 |
. с точки зрения объема этого объекта. Объем твердого тела является произведением трех измерений, поэтому объем выражается в кубических единицах. Предположим, что объем куба измеряется произведением его длины, ширины и высоты.
Внутренняя часть полого объекта может быть заполнена воздухом или какой-либо жидкостью, которая принимает форму объекта. В таких случаях объем вещества, который может вместить внутренность предмета, называется вместимостью полого предмета. Таким образом, мы можем сказать, что объем объекта — это мера занимаемого им пространства, а вместимость объекта — это объем вещества, которое может вместить его внутренность.
А объем куба — это занимаемое им пространство. Объем формулы куба будет рассчитан как:
Volume = (side) 3 |
Length of Diagonal of Face of the Cube = √2(edge) |
Длина диагонала из куба = √3 (Edge) |
3
3
3
9000 9028
3 9000
Периметр = 12 (ребро)
Решаемые примеры
Пример 1. Найдите площадь поверхности куба, длина стороны которого равна 7 см.
Решение:
Указанная длина = края = 7 см
Ум.
= 6 × 49
= 294 см 2
Пример 2: Сторона кубического ящика равна 9 м. Найдите объем кубического ящика.
Решение:
DED, сторона = A = 9m
по формуле объема A Cube, мы знаем, что
V = A 3 11963
9
v = 3 1113
9
v = 3 1113
9
v = 3 1113
V = 3 111996469
v = 3 11996469
v = 3 113
V = 3 x 9 x 9
V = 729 кв. м или 729 м 2
Время викторины
Значение кубов в математике
Кубы — это трехмерные квадраты, которые многие считают символом геометрического совершенства. С какой стороны на него ни посмотри, он выглядит одинаково. Это часть геометрии в математике и чрезвычайно важна как глава. Понимание этого является ключом к пониманию других связанных концепций. Учащиеся должны быть внимательны при изучении кубиков, так как из этой главы возникнет много вопросов. Они могут перейти к формуле куба — объяснение, свойства и примеры решений и подробно разобраться в этом. На этой странице Веданту каждая концепция упрощена для понимания учеником.
Содержание
- Куб — свойства, виды и формулы
- Элементы куба
- Грань
- Ребро
- Вершина
- Центр грани
- Центр куба
- Ось куба
- Диагональ куба
- Диагональ грани куба
- Объем куба
- Периметр куба
- Площадь поверхности
- Сфера, вписанная в куб
- Сфера, описанная вокруг куба
- Координаты вершин куба
- Свойства куба
- Элементы куба
- Грань
- Ребро
- Вершина
- Центр грани
- Центр куба
- Ось куба
- Диагональ куба
- Диагональ грани куба
- Объем куба
- Периметр куба
- Площадь поверхности
- Сфера, вписанная в куб
- Сфера, описанная вокруг куба
- Координаты вершин куба
- Свойства куба
- Что такое основание куба
- Свойства куба:
- Прямоугольный параллелепипед
- Пирамида
- Что такое куб: определение, свойства, формулы
- Определение куба
- Свойства куба
- Свойство 1
- Свойство 2
- Свойство 3
- Формулы для куба
- Диагональ
- Диагональ грани
- Площадь полной поверхности
- Периметр ребер
- Объем
- Радиус описанного вокруг шара
- Радиус вписанного шара
- Что такое основание куба
- Содержание
- Свойства куба
- Тела кубической формы
- В микромире
- Примечания
- См. также
- Полезное
- Смотреть что такое «Куб» в других словарях:
Куб — свойства, виды и формулы
Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.
Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:
многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;
прямая призма, все грани которой есть квадраты;
прямоугольный параллелепипед, все рёбра которого равны.
Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.
Элементы куба
Основными элементами многогранника считаются грани, рёбра, вершины.
Грань
Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.
Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.
Грани куба попарно перпендикулярны, являются квадратами, равны между собой.
Ребро
Линии пересечения сторон называются рёбрами.
Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.
Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.
Вершина
Точки пересечения рёбер называются вершинами. Их число равно восьми.
Центр грани
Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.
Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.
Центр куба
Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.
Это есть центр симметрии куба.
Ось куба
Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.
Диагональ куба
Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.
Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:
Формула доказывается с помощью дважды применённой теоремы Пифагора.
Диагональ куба — одна из осей симметрии.
Все диагонали куба равны между собой и точкой пересечения делятся пополам.
Диагональ грани куба
Длина диагонали грани в √2 раз больше ребра, то есть:
Эта формула доказывается также с помощью теоремы Пифагора.
Объем куба
Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:
Периметр куба
Сумма длин всех рёбер равна:
Площадь поверхности
Сумма площадей всех граней называется площадью поверхности куба. Она равна:
Сфера, вписанная в куб
Такая сфера имеет центр, совпадающий с центром куба.
Радиус равен половине ребра:
Сфера, описанная вокруг куба
Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:
Координаты вершин куба
В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.
Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:
Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).
Свойства куба
Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.
Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.
у куба все грани равны, являются квадратами;
у куба все рёбра равны;
один центр и несколько осей симметрии.
Источник
Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.
Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:
многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;
прямая призма, все грани которой есть квадраты;
прямоугольный параллелепипед, все рёбра которого равны.
Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.
Элементы куба
Основными элементами многогранника считаются грани, рёбра, вершины.
Грань
Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.
Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.
Грани куба попарно перпендикулярны, являются квадратами, равны между собой.
Ребро
Линии пересечения сторон называются рёбрами.
Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.
Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.
Вершина
Точки пересечения рёбер называются вершинами. Их число равно восьми.
Центр грани
Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.
Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.
Центр куба
Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.
Это есть центр симметрии куба.
Ось куба
Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.
Диагональ куба
Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.
Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:
Формула доказывается с помощью дважды применённой теоремы Пифагора.
Все диагонали куба равны между собой и точкой пересечения делятся пополам.
Диагональ грани куба
Длина диагонали грани в √2 раз больше ребра, то есть:
Эта формула доказывается также с помощью теоремы Пифагора.
Объем куба
Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:
Периметр куба
Сумма длин всех рёбер равна:
Площадь поверхности
Сумма площадей всех граней называется площадью поверхности куба. Она равна:
Сфера, вписанная в куб
Такая сфера имеет центр, совпадающий с центром куба.
Радиус равен половине ребра:
Сфера, описанная вокруг куба
Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:
Координаты вершин куба
В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.
Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:
Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).
Свойства куба
Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.
Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.
у куба все грани равны, являются квадратами;
у куба все рёбра равны;
один центр и несколько осей симметрии.
Источник
Что такое основание куба
Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.
Свойства куба:
2. Противоположные грани попарно параллельны.
3. Все двугранные углы куба – прямые.
Прямоугольный параллелепипед
Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.
1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.
Чтобы были понятны формулы, введем обозначения:
$с$-высота(она же боковое ребро);
$S_<п.п>$-площадь полной поверхности;
$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.
Пирамида
Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.
Формулы вычисления объема и площади поверхности правильной пирамиды.
В основании лежат правильные многоугольники, рассмотрим их площади:
Задачи на нахождение объема составного многогранника:
Задачи на нахождение площади поверхности составного многогранника.
— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:
Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.
— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Источник
Что такое куб: определение, свойства, формулы
В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).
Определение куба
Куб – это правильный многогранник, все грани которого являются квадратами.
Примечание: куб является частным случаем параллелепипеда или призмы.
Свойства куба
Свойство 1
Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:
Свойство 2
Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.
Свойство 3
Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.
Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.
Формулы для куба
Примем следующие обозначения, которые будут использоваться далее:
Диагональ
Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.
Диагональ грани
Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.
Площадь полной поверхности
Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.
Периметр ребер
Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.
Объем
Объем куба равен длине его ребра, возведенной в куб.
Радиус описанного вокруг шара
Радиус шара, описанного около куба, равняется половине его диагонали.
Радиус вписанного шара
Радиус вписанного в куб шара равен половине длины его ребра.
Источник
Что такое основание куба
Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.
В различных дисциплинах используются значения термина, имеющие отношения к тем или иным свойствам геометрического прототипа. В частности, в аналитике (OLAP-анализ) применяются так называемые аналитические многомерные кубы, позволяющие в наглядном виде сопоставить данные из различных таблиц.
Содержание
Свойства куба
Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба. Диагональ куба находится по формуле , где d — диагональ, а — ребро куба.
Тела кубической формы
В микромире
Примечания
См. также
Полезное
Смотреть что такое «Куб» в других словарях:
куб — куб, а, мн. ч. к уб ы, к уб ов … Русский орфографический словарь
куб — 1. КУБ, а; кубы; м. [греч. kybos] 1. Геометрическое тело правильный шестигранник, все грани которого квадраты; предмет, имеющий форму такого шестигранника. Начертить куб. Композиция из гипсовых кубов и призм. Мраморный куб памятника. 2. Разг. =… … Энциклопедический словарь
КУБ — ОАО АКБ «Кузбассугольбанк» http://cbank.ru/ организация, фин., энерг. КУБ кнопочный пост управления взрывобезопасный КУБ ОАО «Кредит Урал банк» http://www.credit … Словарь сокращений и аббревиатур
куб — сущ., м., употр. сравн. часто Морфология: (нет) чего? куба, чему? кубу, (вижу) что? куб, чем? кубом, о чём? о кубе; мн. что? кубы и кубы, (нет) чего? кубов и кубов, чему? кубам и кубам, (вижу) что? кубы и кубы, чем? кубами и кубами, о чём? о… … Толковый словарь Дмитриева
кубіт — кубі/т, род. кубіта, мн. кубіти, род. мн. кубітів одиниця інформації, що закодована в квантовій системі, фізичний носій інформації, що може перебуватив станах |0> та |1> і будь якій суперпозиції цих станів. • Стан кубіта може змінюватись… … Фізико-технічний словник-мінімум
КУБ — 1. КУБ1, куба, муж. (греч. kybos). 1. Правильный шестигранник, все грани которого (квадраты (мат.). Начертить куб. 2. Мера объема, равная кубическому метру. Куб дров. 3. Сосуд для перегонки или кипячения жилкостей в форме шара или цилиндра с… … Толковый словарь Ушакова
КУБ — 1. КУБ1, куба, муж. (греч. kybos). 1. Правильный шестигранник, все грани которого (квадраты (мат.). Начертить куб. 2. Мера объема, равная кубическому метру. Куб дров. 3. Сосуд для перегонки или кипячения жилкостей в форме шара или цилиндра с… … Толковый словарь Ушакова
КУБ — (от латинского cubus, от греческого kybos игральная кость), 1) один из 5 типов правильных многогранников, имеющий гранями квадраты, 12 ребер, 8 вершин, в каждой вершине сходятся 3 ребра. Куб иногда называют гексаэдром. 2) Третья степень а3 числа… … Современная энциклопедия
КУБ — КУБ, в математике результат двукратного умножения числа на самого себя. Таким образом, кубом числа а является произведение а х а х а, что записывается как а3. Куб называют также третьей степенью числа. Кубом именуется правильная шестисторонняя… … Научно-технический энциклопедический словарь
Источник