Как найти площадь основания шестиугольной пирамиды формула

Основание правильной пирамиды является правильный многоугольник – равносторонний треугольник, квадрат. Основанием пирамиды называют ту фигуру, над которой расположена вершина пирамиды.То есть это та грань пирамиды, которая не включает в себя ее вершину. Площадь основания пирамиды – это площадь этой плоской фигуры.

Площадь основания правильной пирамиды

Правильная пирамида может быть трех видов:

  • треугольная,
  • четырехугольная,
  • шестиугольная.

Соответственно у правильной треугольной пирамида основание – равносторонний треугольник. У правильной четырехугольной пирамиды основание – квадрат. В основании шестиугольной правильной пирамиды в основании лежит шестиугольник. Приведем формулы для нахождения площади основания пирамиды:

Площадь основания правильной треугольной пирамиды

В основании равносторонний треугольник – находим его площадь:

displaystyle S=frac{a^2 sqrt{3}}{4}, где a – сторона треугольника.

Основание треугольной пирамиды

Основание треугольной пирамиды

Площадь основания правильной четырехугольной пирамиды

В основании правильной четырехугольной пирамиды лежит квадрат, площадь квадрата:

displaystyle S=a^2, где a – сторона квадрата.

Основание четырехугольной пирамиды

Основание четырехугольной пирамиды

Площадь основания правильной шестиугольной пирамиды

Это площадь правильного шестиугольника. Если известна сторона шестиугольника, то площадь правильного шестиугольника находится по формуле:

displaystyle S=frac{3a^2 sqrt{3}}{2}

Основание шестиугольной пирамиды

Основание шестиугольной пирамиды

Площадь основания любой пирамиды

Площадь основания любой пирамиды – это площадь ее основания.

Если в основании пирамиды треугольник, то формулы для нахождения площади любого треугольника вы можете посмотреть в статье “Площадь треугольника”.

В основании пирамиды может лежать любой прямоугольник, любой многоугольник. Обычно в школьных задачах, в основании пирамиды часто лежит треугольник, редко прямоугольник. Задачи, в которых в основании пирамиды лежит пятиугольник, семиугольник или произвольных многоугольник, практически не встречаются. Хотя их можно увидеть в олимпиадных задачах.

Теперь давайте решим несколько задач для нахождения площади основания пирамиды

Примеры решения задач

Задача 1

Дана правильная треугольная пирамида. Сторона основания пирамиды равна 2. Найдите площадь основания пирамиды.

Решение: пирамида правильная и треугольная, значит, в основании равносторонний треугольник. Тогда площадь основания пирамиды находится по формуле: S=frac{a^2 sqrt{3}}{4}. Нам дана сторона a=2, тогда S=frac{2^2 sqrt{3}}{4} = sqrt{3}

Ответ: sqrt{3}

Задача 2

Строитель решил построить здание в форме правильной шестиугольной пирамиды, для основания пирамиды у него есть доски, каждая площадью 0,5sqrt{3} м2. Сколько досок ему понадобится, если сторона основания пирамиды равна 6 м?

Решение:

Рассчитаем площадь основания правильной шестиугольной пирамиды. Для этого воспользуемся формулой: S=frac{3a^2 sqrt{3}}{2}. Подставим в нее значение стороны a=6. Получим: S=frac{3 cdot 6^2 sqrt{3}}{2}=54 sqrt{3} м2.

Теперь подсчитаем, сколько нам понадобится досок: N=frac{54 sqrt{3}}{0,5 sqrt{3}}=108.

Ответ: 108 досок.

Задача 3

Основанием пирамиды является прямоугольный равнобедренный треугольник, с катетом, равным 4. Найдите площадь основания пирамиды.

Площадь основания пирамиды - к задаче 3

Решение: иными словами – нас просят определить площадь прямоугольного равнобедренного треугольника. Так как треугольник прямоугольный и равнобедренный, то один из катетов будет основанием треугольника, а другой – высотой. Определяем площадь по формуле:

S=frac{a^2}{2}=frac{4^2}{2}=8.

Ответ: 8

Пирамида, в основании которой лежит правильный шестиугольник, а боковые стороны образуются правильными треугольниками, называется шестиугольной.
шестиугольная пирамид
Этот многогранник отличается множеством свойств:

  • Все стороны и углы основания равны между собой;
  • Все ребра и двугранные угля пирамиды также равны между собой;
  • Треугольники, образующие боковые стороны одинаковы, соответственно, у них одинаковые площади, стороны и высоты.

Для расчета площади правильной шестиугольной пирамиды применяется стандартная формула площади боковой поверхности шестиугольной пирамиды:

S_bok={1/2}Pa

где P – периметр основания, a – длина апофемы пирамиды. В большинстве случаев можно рассчитать боковую площадь по этой формуле, однако иногда можно воспользоваться и другим методом. Так как боковые грани пирамиды образованы равными треугольниками, можно найти площадь одного треугольника, а потом умножить его на количество боковых сторон. В шестиугольной пирамиде их 6. Но этот способ можно применять и при расчете площади треугольной пирамиды.Рассмотрим пример расчета площади боковой поверхности шестиугольной пирамиды.

Иконка карандаша 24x24Пусть дана правильная шестиугольная пирамида, в которой апофема равна a = 7 см, сторона основания b = 3 см. Рассчитайте площадь боковой поверхности многогранника.
Для начала найдем периметр основания. Так как пирамида правильная – в ее основании лежит правильный шестиугольник. Значит, все его стороны равны, а периметр рассчитывается по формуле: P=6*b
Подставляем данные в формулу: P=6*3=18 cm
Теперь можем легко найти площадь боковой поверхности, подставив найденное значение в основную формулу:
S_bok={1/2}*18*7=9*7=63{cm}^2

Также немаловажным моментом является поиск площади основания. Формула площади основания шестиугольной пирамиды выводится из свойств правильного шестиугольника:
S_osn={3sqrt{3}}/2*b^2

Иконка карандаша 24x24Рассмотрим пример расчета площади основания шестиугольной пирамиды, взяв за основу условия из прошлого примера.Из них мы знаем, что сторона основания b = 3 см. Подставим данные в формулу:
S_osn={3sqrt{3}}/{2*3^2}={3sqrt{3}*9}/2=4,5*3sqrt{3}=22,95{cm}^2

Формула площади шестиугольной пирамиды представляет собой сумму площади основания и боковой развертки:
S_poln=S_osn+S_bok

Рассмотрим пример расчета площади шестиугольной пирамиды.

Иконка карандаша 24x24Пусть дана пирамида, в основании которой лежит правильный шестиугольник со стороной b = 4 см. Апофема заданного многогранника равна a = 6 см. Найдите полную площадь.
Мы знаем, что полная площадь состоит из площадей основания и боковой развертки. Поэтому для начала найдем их. Рассчитаем периметр:
P=6*4=24 cm
Теперь найдем площадь боковой поверхности:
S_bok={1/2}*24*6=12*6=72{cm}^2
Далее рассчитываем площадь основания, в котором лежит правильный шестиугольник:
S_osn={3sqrt{3}}/{2*4^2}={3sqrt{3}*16}/2=3sqrt{3}*8=40,8{cm}^2
Теперь можем сложить получившиеся результаты:
S_poln=40,8+72=112,8{cm}^2

В данной публикации мы рассмотрим, как можно вычислить площадь поверхности различных видов правильных пирамид: треугольной, четырехугольной и шестиугольной.

Правильная пирамида – это пирамида, вершина которой проецируется в центр основания, являющегося правильным многоугольником.

  • Формула площади правильной пирамиды

    • 1. Общая формула

    • 2. Площадь правильной треугольной пирамиды

    • 3. Площадь правильной четырехугольной пирамиды

    • 4. Площадь правильной шестиугольной пирамиды

Формула площади правильной пирамиды

Формула площади поверхности правильной пирамиды

1. Общая формула

Площадь (S) полной поверхности пирамиды равняется сумме площади ее боковой поверхности и основания.

Sполн. = Sбок. + Sосн.

Боковой гранью правильной пирамиды является равнобедренный треугольник.

Нахождение площади правильной пирамиды: формулы

Площадь треугольника вычисляется по формулам:

1. Через длину основания (a) и высоту (h):

Формула площади треугольника

2. Через основание (a) и боковую сторону (b):

Формула площади равнобедренного треугольника

Формула площади основания правильной пирамиды зависит от вида многогранника. Далее мы рассмотрим самые популярные варианты.

2. Площадь правильной треугольной пирамиды

2. Площадь правильной треугольной пирамиды

Основание: равносторонний треугольник.

L (апофема) – перпендикулярная линия, опущенная из вершины пирамиды на ребро основания. Т.е. апофема пирамиды является высотой (h) ее боковой грани.

3. Площадь правильной четырехугольной пирамиды

Площадь правильной четырехугольной пирамиды

Основание: квадрат.

Площадь Формула
основание Sосн. = a2
боковая поверхность Sбок. = 2aL
Нахождение площади правильной пирамиды: формулы
полная Sполн. = a2 + 2aL
Нахождение площади правильной пирамиды: формулы

microexcel.ru

4. Площадь правильной шестиугольной пирамиды

Площадь поверхности правильной шестиугольной пирамиды

Основание: правильный шестиугольник

Правильная шестиугольная пирамида — пирамида, в основании которой лежит правильный шестиугольник.

Обозначения

  • $SABCDEF$ — правильная шестиугольная пирамида
  • $O$ — центр основания пирамиды
  • $a$ — длина стороны основания пирамиды
  • $h$ — длина бокового ребра пирамиды
  • $S_{text{осн.}}$ — площадь основания пирамиды
  • $V_{text{пирамиды}}$ — объем пирамиды

Площадь основания пирамиды

В основаниях пирамиды находится правильный шестиугольник со стороной $a$. По свойствам правильного шестиугольника, площадь основания пирамиды равна $$ S_{text{осн.}}=frac{3sqrt{3}}{2}cdot a^2 $$

Правильный шестиугольник в основании пирамиды

По свойствам правильного шестиугольника, треугольники AOB, BOC, COD, DOE, EOF, FOA являются правильными треугольниками. Отсюда следует, что $$ AO=OD=EO=OB=CO=OF=a $$ Проводим отрезок AE, пересекающийся с отрезком CF в точке M. Треугольник AEO равнобедренный, в нём $AO=OE=a, angle EOA=120^{circ}$. По свойствам равнобедренного треугольника $$ AE=acdotsqrt{2(1-cos EOA)}=sqrt{3}cdot a $$ Аналогичным образом приходим к заключению, что $ AC=CE=sqrt{3}cdot a $, $FM=MO=frac{1}{2}cdot a$.

Находим $SO$

Прямая $SO$ является высотой пирамиды, поэтому $angle SOF=90^{circ}$. Треугольник $SOF$ прямоугольный, в нем $FO=a, FS=h$. По свойствам прямоугольного треугольника $$ SO=sqrt{FS^2-FO^2}=sqrt{h^2-a^2} $$

Объем пирамиды

Объем пирамиды вычисляется как треть произведения площади ее основания на ее высоту. Высотой правильной пирамиды является отрезок $SO$. В основании правильной шестиугольной призмы находится правильный шестиугольник, площадь которого нам известна. Получаем $$ V_{text{пирамиды}}=frac{1}{3}cdot S_{text{осн.}}cdot SO=frac{sqrt{3}}{2}cdot a^2 cdot sqrt{h^2-a^2} $$

Находим $ST$ и $TO$

Пусть точка $T$ является серединой ребра $AF$. Треугольник $AOF$ правильный, поэтому, по свойствам правильного треугольника $$ TO=frac{sqrt{3}}{2}cdot a $$ Треугольник $STO$ прямоугольный, высота $SO$ равна $sqrt{h^2-a^2}$. По теореме Пифагора $$ ST=sqrt{SO^2+TO^2}=sqrt{h^2-frac{1}{4}cdot a^2} $$

Площадь основания шестиугольной пирамиды Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Длина ребра основания шестиугольной пирамиды: 10 метр –> 10 метр Конверсия не требуется

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

259.807621135332 Квадратный метр –> Конверсия не требуется




4 Шестиугольная пирамида Калькуляторы

Площадь основания шестиугольной пирамиды формула

Площадь основания шестиугольной пирамиды = (3*sqrt(3))/2*Длина ребра основания шестиугольной пирамиды^2

ABase = (3*sqrt(3))/2*le(Base)^2

Что такое шестиугольная пирамида?

Шестиугольная пирамида представляет собой пирамиду с шестиугольным основанием и шестью равнобедренными треугольными гранями, которые пересекаются в геометрической точке (вершине). Он имеет 7 граней, в том числе 6 равнобедренных треугольных граней и шестиугольное основание. Кроме того, у него 7 вершин и 12 ребер.

Есть ли у пирамиды параллельные грани?

Пирамиды также называют многогранниками, поскольку их грани представляют собой многоугольники. Боковые грани всегда представляют собой треугольники с общей вершиной. Вершина пирамиды (острие, вершина) не находится в одной плоскости с основанием. Все сечения пирамиды, параллельные основанию, будут аналогичны основанию.

Добавить комментарий