Площадь сегмента круга
- Главная
- /
- Математика
- /
- Геометрия
- /
- Площадь сегмента круга
Чтобы посчитать площадь сегмента круга воспользуйтесь нашим онлайн калькулятором:
Онлайн калькулятор
По углу и радиусу
Угол α =
Радиус r =
Площадь сегмента круга
Sск =
0
Округление ответа: Округление числа π:
По длине хорды и высоте сегмента
Хорда c =
Высота сегмента h =
Площадь сегмента круга
Sск =
0
Округление ответа:
По высоте и радиусу (или диаметру)
=
Высота сегмента h =
Площадь сегмента круга
Sск =
0
Округление ответа:
Просто введите данные и получите ответ.
Теория
Площадь сегмента окружности через угол и радиус
Чему равна площадь сегмента окружности Sск, если её радиус r, а угол сегмента α ?
Формула
В градусах:
Sск = r²2 ⋅ (π ⋅ α180° – sin α)
В радианах:
Sск = r²2 ⋅ (α – sin α)
Пример
К примеру, посчитаем площадь сегмента круга, имеющего радиус r = 2 см, а угол сегмента ∠α = 45°:
Sск = 2²2 ⋅ (3.14 ⋅ 45180 – sin 45) = 2 ⋅ (0.785 – 0.707) = 0.156 см²
Площадь сегмента окружности через хорду и высоту сегмента
Чему равна площадь сегмента окружности Sск, если длина хорды c, а высота сегмента h ?
Чтобы посчитать площадь сегмента, нам для начала потребуется вычислить радиус окружности r и угол сегмента α. А затем воспользоваться формулой площади сегмента из предыдущего параграфа.
Формула
Радиус круга:
r = c² + 4h²8h
Угол сегмента:
∠α = 2 ⋅ arcsinc2r
Пример
К примеру, посчитаем площадь сегмента круга, имеющего высоту h = 2 см и длину хорды c = 5 см:
r = 5² + 4⋅2²8⋅2 = 25 + 1616 = 2.5625 см∠α = 2 ⋅ arcsin52 ⋅ 2.5625 = 2 ⋅ arcsin 0.9756 ≈ 2.7 radSск = 2.5625²2 ⋅ (2.7 – sin 2.7) = 3.2832 ⋅ (2.7 – 0,427) = 7.46 см²
Площадь сегмента окружности через высоту и радиус (или диаметр)
Чему равна площадь сегмента окружности Sск, если его высота h, а радиус r ?
Если нам известен не радиус, а диаметр, то делим его на 2 и получаем радиус (r = d ÷ 2).
Далее нам остаётся определить угол сегмента α. А затем воспользоваться формулой площади сегмента, описанной выше.
Формула
Угол сегмента:
∠α = 2 ⋅ arccosr – hr
Пример
К примеру, посчитаем площадь сегмента круга, имеющего высоту h = 1 см, а диаметр окружности d = 4 см:
r = 4 ÷ 2 = 2 см
∠α = 2 ⋅ arccos2 – 12 = 2 ⋅ arccos 0.5 = 2.094 radSск = 2²2 ⋅ (2.094 – sin 2.094) = 2 ⋅ (2.094 – 0.866) = 2.456 см²
См. также
Сегмент — это геометрическая фигура, которая получается путем отсечение части круга хордой.
Онлайн-калькулятор площади сегмента круга
Находится эта фигура между хордой и дугой круга.
Это отрезок, лежащий внутри круга и соединяющий две произвольно выбранные точки на нем.
При отсечении части круга хордой можно рассмотреть две фигуры: это наш сегмент и равнобедренный треугольник, боковые стороны которого – радиусы круга.
Площадь сегмента можно найти как разность площадей сектора круга и этого равнобедренного треугольника.
Площадь сегмента можно найти несколькими способами. Остановимся на них более подробно.
Формула площади сегмента круга через радиус и длину дуги круга, высоту и основание треугольника
S=12⋅R⋅s−12⋅h⋅aS=frac{1}{2}cdot Rcdot s-frac{1}{2}cdot hcdot a
RR — радиус круга;
ss — длина дуги;
hh — высота равнобедренного треугольника;
aa — длина основания этого треугольника.
Дан круг, его радиус, численно равный 5 (см.), высота, которая проведена к основанию треугольника, равная 2 (см.), длина дуги 10 (см.). Найти площадь сегмента круга.
Решение
R=5R=5
h=2h=2
s=10s=10
Для вычисления площади нам не хватает только основания треугольника. Найдем его по формуле:
a=2⋅h⋅(2⋅R−h)=2⋅2⋅(2⋅5−2)=8a=2cdotsqrt{hcdot(2cdot R-h)}=2cdotsqrt{2cdot(2cdot 5-2)}=8
Теперь можно вычислить площадь сегмента:
S=12⋅R⋅s−12⋅h⋅a=12⋅5⋅10−12⋅2⋅8=17S=frac{1}{2}cdot Rcdot s-frac{1}{2}cdot hcdot a=frac{1}{2}cdot 5cdot 10-frac{1}{2}cdot 2cdot 8=17 (см. кв.)
Ответ: 17 см. кв.
Формула площади сегмента круга по радиусу круга и центральном углу
S=R22⋅(α−sin(α))S=frac{R^2}{2}cdot(alpha-sin(alpha))
RR — радиус круга;
αalpha — центральный угол между двумя радиусами, стягивающий хорду, измеряющийся в радианах.
Найти площадь сегмента круга, если радиус круга равен 7 (см.), а центральный угол 30 градусов.
Решение
R=7R=7
α=30∘alpha=30^{circ}
Переведем сначала угол в градусах в радианы. Поскольку πpi радиан равен 180 градусов, то:
30∘=30∘⋅π180∘=π630^{circ}=30^{circ}cdotfrac{pi}{180^{circ}}=frac{pi}{6} радиан. Тогда площадь сегмента:
S=R22⋅(α−sin(α))=492⋅(π6−sin(π6))≈0.57S=frac{R^2}{2}cdot(alpha-sin(alpha))=frac{49}{2}cdotBig(frac{pi}{6}-sinBig(frac{pi}{6}Big)Big)approx0.57 (см. кв.)
Ответ: 0.57 см. кв.
Не знаете, как выполнить работу с нахождением площади сегмента круга? Наши эксперты помогут вам решить контрольную по геометрии онлайн!
Тест по теме «Площадь сегмента круга»
Оглавление:
- 📝 Как это работает?
- 🤔 Частые вопросы и ответы
- 📋 Похожие материалы
- 📢 Поделиться и комментировать
Формула (формулы) площади круга
Найти площадь круга можно разными способами, в зависимости от известных данных.
По радиусу
Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):
Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).
Через диаметр
Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d – диаметр, а π – константа, равная 3,1415…):
К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).
Через длину окружности
Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L – длина окружности, а π – константа, равная 3,1415…):
Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202 / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).
Какие термины используются для поиска площади круга?
Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.
Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.
Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.
Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.
Радиус — отрезок, который соединяет центр окружности и любую точку на ней.
Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.
Площадь круга и размеры пицц
Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:
Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?
Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:
- 252 + 252 = 625 + 625 = 1250
- 402 = 1600
Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.
Площади усеченных частей круга
А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:
Хорда — отрезок, соединяющий любые две точки окружности.
Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.
Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:
S = sr/2
где S — площадь сектора, r — радиус круга.
Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.
Площадь сегмента можно найти по формулам:
S = r2sinα/ 2
где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.
Часто задаваемые вопросы о площади круга?
И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.
Входит ли окружность (периметр) в площадь круга?
Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.
Какие есть ещё калькуляторы для круга у вас на сайте?
У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.
Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?
Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.
Почему Пи равняется 3,1415926…, а не является «ровным» числом?
Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.
Кто впервые научился вычислять площадь круга?
Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.
Похожие калькуляторы
Возможно вам пригодятся ещё несколько калькуляторов по данной теме:
- Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
- Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
- Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
- Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
- Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
- Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
- Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
- Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
- Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
- Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.
Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!
Есть что добавить?
Напишите своё мнение, комментарий или предложение.
Показать комментарии
Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).
На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота
Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:
Формулы вычисления параметров сегмента
Площадь сегмента:
[1]
Длина дуги:
Длина хорды:
Высота сегмента:
Сегмент
Угол в градусах, образуемый радиусами сектора
Точность вычисления
Знаков после запятой: 2
Однако, как справедливо заметил наш пользователь:«на практике часто случается, что как радиус дуги, так и угол неизвестны» (см. длина дуги ). Для этого случая для расчета площади сегмента и длины дуги можно использовать следующий калькулятор:
Параметры сегмента по хорде и высоте
Точность вычисления
Знаков после запятой: 2
Калькулятор вычисляет радиус круга по длине хорды и высоте сегмента по следующей формуле:
Далее, зная радиус и длину хорды, легко найти угол сегмента по формуле:
Остальные параметры сегмента вычисляются аналогично первому калькулятору, по формулам, приведенным в начале статьи.
Следующий калькулятор вычисляет площадь сегмента по высоте и радиусу:
Площадь сегмента круга по радиусу и высоте
Точность вычисления
Знаков после запятой: 2
Этот калькулятор вычисляет угол из высоты и радиуса по следующей формуле:
далее используется формула [1] для получения площади.
15 вычислений по сегменту круга в одной программе
Последний калькулятор включает в себя все оставшиеся вычисления параметров кругового сегмента:
- длина дуги
- угол
- хорда
- высота
- радиус
- площадь
Выберите два известных аргумента и калькулятор выдаст вам все оставшиеся.
Круговой сегмент – все варианты расчета
Точность вычисления
Знаков после запятой: 2
Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.
В данной публикации мы рассмотрим определение сегмента круга и формулы, с помощью которых можно вычислить его площадь (через радиус и центральный угол кругового сектора). Также разберем примеры решения задач для демонстрации практического применения формул.
-
Определение сегмента круга
-
Формулы нахождения площади кругового сегмента
- Через радиус и центральный угол в градусах
- Через радиус и угол сектора в радианах
- Примеры задачи
Определение сегмента круга
Сегмент круга – это часть круга, которая ограничена дугой окружности и ее хордой.
Хорда – это часть прямой (секущей), которая пересекает круг. Концы хорды соединяются с центром круга, в результате чего образуется равнобедренный треугольник, боковые стороны которого являются радиусом окружности. Если к этом треугольнику добавить сегмент, получится сектор.
На рисунке выше:
- сегмент круга закрашен зеленым цветом;
- отрезок AB – это хорда;
- часть окружности между точками AB – дуга окружности;
- R – радиус круга;
- α – угол сектора.
Формулы нахождения площади кругового сегмента
Через радиус и центральный угол в градусах
α° – угол в градусах.
Примечание: в расчетах используется значение π, приблизительное равное числу 3,14.
Через радиус и угол сектора в радианах
αрад – угол в радианах.
Примеры задачи
Задание 1
Найдите площадь сегмента круга, если его радиус равен 8 см, а центральный угол сектора, стягивающего сегмент, составляет 45 градусов.
Решение
Воспользуемся первой формулой, подставив в нее известные значения:
Задание 2
Площадь кругового сегмента составляет 24 см2, а центральный угол сектора круга, частью которого является сегмент, равняется 1 радиану. Найдите радиус круга.
Решение
В данном случае мы можем получить радиус из формулы, в которой задействован угол в радианах: