Как найти площадь параболы через интеграл

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S(G)=∫abf(x)dx  для непрерывной и неотрицательной функции y=f(x) на отрезке [a;b],

S(G)=-∫abf(x)dx  для непрерывной и неположительной функции y=f(x) на отрезке [a;b].

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y=f(x) или x=g(y).

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Теорема

Пусть функции y=f1(x)  и y=f2(x) определены и непрерывны на отрезке [a;b], причем f1(x)≤f2(x) для любого значения x из [a;b]. Тогда формула для вычисления площади фигуры G, ограниченной линиями x=a, x=b, y=f1(x)  и y=f2(x) будет иметь вид S(G)=∫abf2(x)-f1(x)dx.

Похожая формула будет применима для площади фигуры, ограниченной линиями y=c, y=d, x=g1(y) и x=g2(y): S(G)=∫cd(g2(y)-g1(y)dy.

Доказательство

Разберем три случая, для которых формула будет справедлива.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G1 равна площади фигуры G2. Это значит, что

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Поэтому, S(G)=S(G2)-S(G1)=∫abf2(x)dx-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx.

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S(G)=S(G2)+S(G1)=∫abf2(x)dx+-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx

Графическая иллюстрация будет иметь вид:

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Если обе функции неположительные, получаем: S(G)=S(G2)-S(G1)=-∫abf2(x)dx–∫abf1(x)dx=∫ab(f2(x)-f1(x))dx . Графическая иллюстрация будет иметь вид:

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Перейдем к рассмотрению общего случая, когда  y=f1(x)  и y=f2(x) пересекают ось Ox.

Точки пересечения мы обозначим как  xi, i=1, 2,…, n-1. Эти точки разбивают отрезок [a; b] на n частей xi-1; xi, i=1, 2,…, n, где α=x0<x1<x2<…<xn-1<xn=b. Фигуру G можно представить объединением фигур Gi, i=1, 2,…, n. Очевидно, что на своем интервале Gi попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S(Gi)=∫xi-1xi(f2(x)-f1(x))dx, i=1, 2,…, n

Следовательно, 

S(G)=∑i=1nS(Gi)=∑i=1n∫xixif2(x)-f1(x))dx==∫x0xn(f2(x)-f(x))dx=∫abf2(x)-f1(x)dx

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Формулу S(G)=∫abf2(x)-f1(x)dx можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y=f(x) и x=g(y).

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Пример 1

Необходимо определить площадь фигуры, которая ограничена параболой y=-x2+6x-5 и прямыми линиями y=-13x-12, x=1, x=4.

Решение

Изобразим линии на графике в декартовой системе координат.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

На отрезке [1;4] график параболы y=-x2+6x-5 расположен выше прямой y=-13x-12. В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по  формуле Ньютона-Лейбница:

S(G)=∫14-x2+6x-5–13x-12dx==∫14-x2+193x-92dx=-13×3+196×2-92×14==-13·43+196·42-92·4–13·13+196·12-92·1==-643+1523-18+13-196+92=13

Ответ: S(G)=13

Рассмотрим более сложный пример.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена линиями y=x+2, y=x, x=7.

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x=7. Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y=x и полу параболы y=x+2. Для нахождения абсциссы используем равенства:

y=x+2ОДЗ: x≥-2×2=x+22×2-x-2=0D=(-1)2-4·1·(-2)=9×1=1+92=2∈ОДЗx2=1-92=-1∉ОДЗ

Получается, что абсциссой точки пересечения является x=2.

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y=x+2 , y=x пересекаются в точке (2;2), поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [2;7] график функции y=x расположен выше графика функции y=x+2 . Применим формулу для вычисления площади:

S(G)=∫27(x-x+2)dx=x22-23·(x+2)3227==722-23·(7+2)32-222-23·2+232==492-18-2+163=596

Ответ: S(G)=596

Пример 3

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y=1x и y=-x2+4x-2.

Решение

Нанесем линии на график.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1x  и -x2+4x-2. При условии, что x не равно нулю, равенство 1x=-x2+4x-2становится эквивалентным уравнению третьей степени -x3+4×2-2x-1=0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х=1: -13+4·12-2·1-1=0.

Разделив выражение -x3+4×2-2x-1 на двучлен x-1, получаем: -x3+4×2-2x-1⇔-(x-1)(x2-3x-1)=0

Оставшиеся корни мы можем найти из уравнения x2-3x-1=0:

x2-3x-1=0D=(-3)2-4·1·(-1)=13×1=3+132≈3.3 ; x2=3-132≈-0.3

Мы нашли интервал x∈1; 3+132, на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S(G)=∫13+132-x2+4x-2-1xdx=-x33+2×2-2x-ln x13+132==-3+13233+2·3+1322-2·3+132-ln3+132—133+2·12-2·1-ln 1=7+133-ln3+132

Ответ: S(G)=7+133-ln3+132

Пример 4

Необходимо вычислить площадь фигуры, которая ограничена кривыми y=x3, y=-log2x+1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y=-log2x+1 из графика y=log2x, если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у=0.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y=x3 и y=0 пересекаются в точке (0;0). Так получается потому, что х=0 является единственным действительным корнем уравнения x3=0.

x=2 является единственным корнем уравнения -log2x+1=0, поэтому графики функций y=-log2x+1  и y=0 пересекаются в точке (2;0).

x=1 является единственным корнем уравнения x3=-log2x+1. В связи с этим графики функций y=x3 и y=-log2x+1 пересекаются в точке (1;1). Последнее утверждение может быть неочевидным, но уравнение x3=-log2x+1 не может иметь более одного корня, так как функция y=x3 является строго возрастающей, а функция y=-log2x+1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x∈0; 1, а вторая ниже красной линии на отрезке x∈1;2. Это значит, что площадь будет равна S(G)=∫01x3dx+∫12(-log2x+1)dx.

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x∈0; 2, а вторая между красной и синей линиями на отрезке x∈1; 2. Это позволяет нам найти площадь следующим образом:

S(G)=∫02x3dx-∫12×3-(-log2x+1)dx

В этом случае для нахождения площади придется использовать формулу вида S(G)=∫cd(g2(y)-g1(y))dy.  Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y.

Разрешим уравнения y=x3 и -log2x+1 относительно x: 

y=x3⇒x=y3y=-log2x+1⇒log2x=1-y⇒x=21-y

Получим искомую площадь:

S(G)=∫01(21-y-y3)dy=-21-yln 2-y4401==-21-1ln 2-144–21-0ln 2-044=-1ln 2-14+2ln 2=1ln 2-14

Ответ: S(G)=1ln 2-14

Пример 5

Необходимо вычислить площадь фигуры, которая ограничена линиями y=x, y=23x-3, y=-12x+4.

Решение

Красной линией нанесем на график линию, заданную функцией y=x. Синим цветом нанесем линию y=-12x+4, черным цветом обозначим линию y=23x-3.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Отметим точки пересечения.

Найдем точки пересечения графиков функций y=x и y=-12x+4 :

x=-12x+4ОДЗ: x≥0x=-12x+42⇒x=14×2-4x+16⇔x2-20x+64=0D=(-20)2-4·1·64=144×1=20+1442=16; x2=20-1442=4Проверка:x1=16=4, -12×1+4=-12·16+4=-4⇒x1=16 не является решением уравненияx2=4=2, -12×2+4=-12·4+4=2⇒x2=4 является решением уравниния ⇒(4; 2) точка пересечения y=x и y=-12x+4

Найдем точку пересечения графиков функций y=x  и y=23x-3:

x=23x-3ОДЗ: x≥0x=23x-32⇔x=49×2-4x+9⇔4×2-45x+81=0D=(-45)2-4·4·81=729×1=45+7298=9, x245-7298=94Проверка:x1=9=3, 23×1-3=23·9-3=3⇒x1=9 является решением уравнения ⇒(9; 3) точка пересечания y=x и y=23x-3×2=94=32, 23×1-3=23·94-3=-32⇒x2=94 не является решением уравнения

Найдем точку пересечения линий y=-12x+4  и y=23x-3:

-12x+4=23x-3⇔-3x+24=4x-18⇔7x=42⇔x=6-12·6+4=23·6-3=1⇒(6; 1) точка пересечения y=-12x+4 и y=23x-3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Тогда площадь фигуры равна:

S(G)=∫46x–12x+4dx+∫69x-23x-3dx==23×32+x24-4×46+23×32-x23+3×69==23·632+624-4·6-23·432+424-4·4++23·932-923+3·9-23·632-623+3·6==-253+46+-46+12=113

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Тогда решим уравнение линии относительно x, а только после этого применим формулу вычисления площади фигуры.

y=x⇒x=y2 красная линияy=23x-3⇒x=32y+92 черная линияy=-12x+4⇒x=-2y+8 синяя линия

Таким образом, площадь равна:

S(G)=∫1232y+92–2y+8dy+∫2332y+92-y2dy==∫1272y-72dy+∫2332y+92-y2dy==74y2-74y12+-y33+3y24+92y23=74·22-74·2-74·12-74·1++-333+3·324+92·3–233+3·224+92·2==74+2312=113

Как видите, значения совпадают.

Ответ: S(G)=113

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта



Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая  определяет ось , прямые  параллельны оси  и парабола  симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке   график функции  расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями  и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями ,  и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ:  – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы  и прямой , поскольку здесь будут находиться пределы интегрирования.  Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой  всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
 – именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке  некоторая непрерывная функция  больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось  задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу  либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую  можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке  над осью  расположен график прямой ;
2) на отрезке  над осью  расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , ,  и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс  зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой  и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
 – нижний предел интегрирования,  – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция  (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

1.9. Объём тела вращения

1.7. Геометрический смысл определённого интеграла

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).Вычисление площадей фигур, ограниченных заданными линиями

Определенный интеграл ʃаb f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл  ʃаb f(x)dx.

Таким образом, S(G) = ʃаb f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃаb f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х3; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃаb f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х3,
{у = 1.

Таким образом, имеем х1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = SDACE – SDABE = ʃ12 x3 dx – 1 = x4/4|12 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.Вычисление площадей фигур, ограниченных заданными линиями

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃаb(√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫49 (√x – 2)dx = ∫4√x dx –∫49 2dx = 2/3 x√х|4– 2х|4= (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции уmin = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х3 – 4х = 0 или х(х2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х1 = 0, х2 = 2, х3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ02 (x3 – 4x)dx|.

Имеем: ʃ02 (x3 – 4х)dx =(x4/4 – 4х2/2)|02= -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.Вычисление площадей фигур, ограниченных заданными линиями

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х2 – 2х + 1, прямыми  х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у0 = 2 · 22 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Гу =  2х2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение  2х2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

xb = -b/2a;

xb = 2/4 = 1/2;

yb = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: SОAВD = SOABC – SADBC.

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле SADBC = 1/2 · DC · BC. Таким образом,

SADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

Далее:

SOABC = ʃ02(2x2 – 2х + 1)dx = (2x3/3 – 2х2/2 + х)|02 = 10/3 (кв. ед.).

Окончательно получим: SОAВD = SOABC – SADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями. Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Разберем готовые ответы к примерам на нахождение площади плоской фигуры, которая ограничена кривыми через двойные интегралы.
Задание не сложные, а вся схема нахождения площади требует всего трех вещей:
знание элементарных функций и умение искать точки их пересечения;
понимание как через криволинейные интегралы искать площадь, умение правильно расставлять пределы;
хорошых знаний теории вычисления интегралов, поскольку к этому все сводится.

ЗАДАНИЕ 4.1 Найти площадь плоской фигуры, которая образована линиями:
x=4-y2, x+2y=4.
Решение: Фигура ограничена x=4-y2 – параболой с вершиной в точке O(4;0) и ветками влево;
но x+2y=4 – прямой, которая отрезается на осях в точках (4;0) и (0;2).
Найдем точки пересечения графиков функций из системы уравнений:

При ее решении получим две точки

График параболы и прямой приведен на рисунку

двойной интеграл
Запишем пределы интегрирования:
D: 0≤x≤4,
Здесь имеем y=√(4-x) – уравнение верхней части параболы x=4-y^2;
Вычислим площадь фигуры нахождением двойного интеграла:
площадь плоской фигуры
Площадь равна 1,33 единиц квадратных.

ЗАДАНИЕ 4.2 Найти площадь плоской фигуры, которая образована кривыми:
y=2-x, y2=4x+4.
Решение: y^2=4x+4 – парабола с вершиной в точке O (-1;0) и ветками вправо;
y=2-x, x+y=2 – прямая, которая отрезается на осях в точках (2;0) и (0;2).
Складываем систему уравнений для нахождения точек пересечения графиков заданных кривых:

При решении получим две точки

График области интегрирования имеет вид

площадь фигуры
Пределы в области D:
-6≤x≤2, 0,25y2-1≤y≤2-y.
Находим площадь фигуры через криволинейный интеграл:
площадь плоской фигуры
Кратный интеграл не трудно интегрировать.

ЗАДАНИЕ 4.3 Найти площадь плоской фигуры, которая образована линиями:
x2+y2=4, x2+y2=4x.
Решение: Область интегрирования ограничена x2+y2=4 – кругом с центром в точке O1(0;0) и радиусом R=2;
x2+y2=4x, x2-4x+4+y2=4, (x-2)2+y2=22 – круг с центром в точке O1(2;0) и радиусом R=2.
Найдем точки пересечения графиков заданных функций из системы уравнений:

отсюда

График фигуры, площадь которой ищем приведен на рисунку 
двойной интеграл
Расставим пределы в области D
(поскольку область симметрична относительно прямой y=0, то будем рассматривать ее половину, а результат умножим на 2):
D: 0≤y≤√3,
Здесь записали:
– уравнение левого полукруга (x-2)2+y2=4;
– уравнение правого полукруга x2+y2=4.
Вычислим площадь фигуры через двойной интеграл:
площадь интегрированием
При интегрировании получили арксинусы, дальше подставили пределы интегрирования и округлили конечные значения.

ЗАДАНИЕ 4.4 Найти площадь плоской фигуры, которая образована кривыми:
x2+y2=2x, x2+y2=4x, y=x, y=0.
Решение: Начнем вычисление с анализа того, что собой представляет фигура, площадь которой нужно найти.
Сведем уравнения к простому виду
x2+y2=2x, x2-2x+1 +y2=1, (x-1)2+y2=12 – круг с центром в точке O1(1;0) и радиусом R=1.
x2+y2=4x, x2-4x+4+y2=4, (x-2)2+y2=22 – круг с центром в точке O1(2;0) и радиусом R=2.
y=x – прямая, которая является биссектрисой первой и третьей четверти. 
Рисунок к задаче илюстрирует площадь которой фигуры нужно найти
двойной интеграл
Поскольку поверхность ограничена кругами, то целесообразно перейти к полярным координатам.

Найдем якобиан перехода:

Запишем заданные функции в полярной системе координат:

отсюда

отсюда
y=0, тогда
y=x, тогда
Это нам нужно, чтобы знать пределы в новой системе координат.
Пределы интегрирования в полярной системе координат:

Вычислением кратного интеграла находим площадь фигуры, ограниченной заданными кривыми:
площадь фигуры, интеграл
Конечное значение площади можно еще округлить.
Из этого примера Вы ознакомились как искать площадь в полярной системе координат.
В следующей статье разберем еще несколько примеров на нахождение площади фигур интегрированием.

  1. Определенный интеграл

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.

  1. Вычислить
    интеграл:
    .

РЕШЕНИЕ:

Для
вычисления определенного интеграла
используем формулу Ньютона-Лейбница:

Сначала
находим первообразную для подинтегральной
функции:

.

Так
как в формуле Ньютона-Лейбница можно
использовать любую первообразную, то
возьмем такую первообразную, для которой
.

Получим:

.

Заметим,
что сначала в первообразную подставляется
верхний предел интегрирования а затем
нижний. В отличие от неопределенного
интеграла, при вычислении которого
получается семейство функций, определенный
интеграл равен конкретному числу.

  1. Вычислить
    интеграл:
    .

РЕШЕНИЕ:

По
формуле Ньютона-Лейбница:

  1. Вычислить
    интеграл:
    .

РЕШЕНИЕ:

Используем
замену переменной:
.
Тогда.
Один из синусов войдет в дифференциал.
Останется.
Меняем пределы интегрирования: на нижнем
пределе,
следовательно.
Верхний предел:.

Имеем:

По
свойству определенного интеграла, можно
поменять местами пределы интегрирования
(это делается для удобства вычислений,
чтобы нижний предел был меньше верхнего),
при этом поменяется знак перед интегралом:

Заметим,
что при использовании замены переменной
в определенном интеграле ненужно
возвращаться к старой переменной, как
это делалось при вычислении неопределенных
интегралов, поскольку одновременно с
заменой переменной мы меняем пределы
интегрирования.

  1. Вычислить
    интеграл:
    .

РЕШЕНИЕ:

Снова
используем замену переменной в
определенном интеграле:

5.
Вычислить интеграл:
.

РЕШЕНИЕ:

Используем
метод интегрирования по частям:

ЗАДАЧИ
ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.

    1. Вычислить
      определенный интеграл:

а)б)в)г)

д)е)ж)з)и)

    1. Вычислить
      определенный интеграл, используя
      замену переменной:

а)б)в)г)д)

е)ж)з)и)к)

    1. Вычислить
      определенный интеграл, используя
      интегрирование по частям:

а)
б)в)г)д)

е)ж)з)

  1. Приложения определенного интеграла

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.

  1. Найти
    площадь фигуры, ограниченной линиями:
    и.

РЕШЕНИЕ:

Первая
линия представляет собой параболу с
вершиной в точке (0;4) и ветвями, направленными
вниз. Вторая линия тоже парабола, ветви
которой направлены вверх. Изобразим
эти линии:

Площадь
фигуры, заключенной между двумя линиями
и,
на отрезкегде,
вычисляется по формуле:

.

В
нашей задаче:
и.

Чтобы
найти пределы интегрирования a
и b,
нужно определить абсциссы точек
пересечения этих двух линий. Находим
их, решая систему уравнений:

Имеем:

Следовательно,
.

Находим
площадь фигуры:

(кв. единиц)

  1. Найти
    площадь фигуры, ограниченной линиями:
    ,,,.

РЕШЕНИЕ:

Первая
линия представляет собой логарифмическую
кривую. Линии
исовпадают с осямиисоответственно. Линияпараллельна оси.

Изобразим
эти линии:

Из рисунка
видно, что удобнее решать эту задачу,
проецируя криволинейную трапецию на
ось ординат. В противном случае ее
придется разбивать на две фигуры. Тогда
формула для вычисления площади будет
иметь вид:

.

В
нашей задаче
.
Следовательно.

Пределы
интегрирования
и.

Получим:

(кв. единицы)

  1. Найти
    площадь фигуры, ограниченной линиями:
    ,,и расположенной в первой четверти.

РЕШЕНИЕ:

Кривая
– гипербола, кривая– парабола с вершиной в начале координат.– прямая, параллельная оси абсцисс.

Изобразим
эти линии:

Искомая
площадь
выразится как разность площадей:

.

Каждая
из этих площадей может быть найдена
через соответствующий определенный
интеграл.

Площадь
– это площадь под линиейна отрезкеDF.
Найдем пределы интегрирования (абсциссы
точек D
и F,
которые совпадают
с абсциссами точек A
и B).

Точка
А
– точка пересечения прямой и гиперболы:

Точка
В
– точка пересечения прямой и параболы:

Тогда

(кв. единиц).

Площадь
– это площадь под гиперболойна отрезкеDE.
Найдем абсциссу точки E,
которая совпадает
с абсциссой точки F.

Точка
F
– точка пересечения параболы и гиперболы:

Тогда

(кв. единиц)

Площадь
– это площадь под параболойна отрезкеEF:

(кв. единиц)

Находим
искомую площадь:

(кв.
единицы)

  1. Найти
    объем тела, полученного от вращения
    вокруг оси абсцисс фигуры, ограниченной
    линиями:,.

РЕШЕНИЕ:

Линия
представляет собой параболу с вершиной
в точке (-2;0) и ветвями, направленными
вправо.
прямая, являющаяся биссектрисой первого
и третьего координатных углов.

Изобразим
эти линии:

Вращаемая
фигура – криволинейный треугольник
ОАВ.
Объем тела, полученного от вращения
вокруг оси
криволинейной трапеции, образованной
линияминаходится по формуле:

.

В нашем
случае искомый объем выразится через
разность:

Найдем
эти объемы.

– объем тела,
образованного вращением вокруг оси
абсцисс фигуры, ограниченной сверху
параболой
на отрезкеАС.
Найдем абсциссу точки С,
которая совпадает
с абсциссой точки В:

.

Так
как под знаком интеграла должна стоять
функция, зависящая от х, то из исходной
функции
выражаем:.
Тогда

(куб. единиц)

Аналогично
находим объем
.
Это тело образовано вращением вокруг
оси абсцисс фигуры, ограниченной сверху
прямойна отрезкеOD.
Тогда

(куб. единиц).

Тогда
искомый объем будет равен:

(куб.
единиц).

5.
Вычислить объем тела, полученного от
вращения вокруг оси ординат фигуры,
ограниченной линиями:
,.

РЕШЕНИЕ:

Линия
представляет собой параболу с вершиной
в точке (1;-1) и ветвями, направленными
вверх.– ось абсцисс.

Изобразим
эти линии:

Так
как вращение происходит вокруг оси
ординат, то формула для вычисления
объема принимает вид:

.

Тогда
искомый объем
выразится как разность:

.

Найдем
эти объемы. Для этого найдем уравнения
кривых ОА
и ОВ
в виде
:

.

Решаем
это квадратное уравнение, считая
параметром:

Таким
образом,


уравнение линии АВ.


уравнение линии ОВ.

Тогда

Находим
искомый объем:

ЗАДАЧИ
ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ:

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      параболой
      ,
      прямымии осью ординат.

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      ветвью гиперболы
      ,
      прямымии осью абсцисс.

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      параболой
      ,
      прямойи осями координат.

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      параболой
      и осью абсцисс.

    1. Вычислить
      площадь фигуры, ограниченной параболами
      ,
      прямыми.

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      параболой
      ,
      прямой.

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      параболой
      ,
      прямой.

    1. Вычислить
      площадь фигуры, ограниченной линиями:
      ,
      прямыми.

    1. Вычислить
      объем тела, полученного от вращения
      вокруг оси абсцисс фигуры, ограниченной
      линиями: гиперболой
      и прямыми.

    1. Вычислить
      объем тела, полученного от вращения
      вокруг оси ординат фигуры, ограниченной
      кривой
      и отрезкомоси ординат.

    1. Вычислить
      объем тела, полученного от вращения
      вокруг оси абсцисс фигуры, ограниченной
      линиями: параболойи прямыми,
      где.

    1. Вычислить
      объем тела, полученного от вращения
      вокруг оси абсцисс фигуры, ограниченной
      параболами:
      .

    1. Вычислить
      объем тела, полученного от вращения
      вокруг оси абсцисс фигуры, ограниченной
      линиями: кривой
      и прямыми.

    1. Вычислить
      объем тела, полученного от вращения
      вокруг оси ординат фигуры, ограниченной
      линиями: кривой
      и прямыми.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий