Как найти площадь параллелограмма если известна высота

Как найти площадь параллелограмма — три основных формулы

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта статья на еще одну математическую тему. Мы расскажем, как правильно посчитать площадь параллелограмма. Эту тему подробно изучают только в 8-м классе. И это говорит, что она не такая простая.

Параллелограмм

Но для начала давайте все-таки напомним, какая фигура называется параллелограммом.

Параллелограмм – это разновидность четырехугольников, у которого противоположные стороны параллельны друг другу.

Классический параллелограмм выглядит вот так:

Как выглядит

Впервые об этой фигуре подробно написал древнегреческий математик Евклид в своем известном произведении «Начала». Он же рассказал и о двух частных случаях параллелограмма, которые нам сегодня хорошо известны.

Это и прямоугольник, у которого противоположные стороны не только параллельны друг другу, но и пересекаются под прямым углом. И квадрат, у которого помимо параллельности противоположных сторон, все стороны еще и равны между собой.

Фигуры

И наконец, не лишним будет вспомнить, что подразумевается под термином «площадь».

Площадь геометрической фигуры – это размер плоскости, которая находится внутри сторон фигуры.

Ну а теперь объединим эти два понятия и расскажем, как надо считать площадь параллелограмма.

Формулы для расчета площади параллелограмма

Есть три основных формулы для вычисления площади параллелограмма:

  1. если известна длина стороны и высота, проведенная к ней;
  2. если известны длины сторон и углы между ними;
  3. если известны длины диагоналей и угол между ними.

Теперь о каждом из этих способов подробнее.

Как найти площадь параллелограмма, если известны сторона и высота

Возьмем для примера такой параллелограмм:

Пример

В нем указаны две высоты – BE и BF. Напомню, что высота — это отрезок, который опускается из вершины на противоположную сторону под прямым углом.

В данном случае площадь считается весьма просто. Надо всего лишь перемножить длину высоты и длину стороны, к которой она проведена.

Формула

И то же самое касается, если знать длины стороны DC и высоты BF. Тогда для вычисления площади достаточно их перемножить.

Кстати, у этой формулы есть весьма интересное доказательство. Так как у параллелограмма противоположные стороны параллельны и равны, то можно взять треугольник ABE и переставить его к стороне CD. Вот так это будет выглядеть:

Вычисление

В результате мы получим прямоугольник, у которого нам известны длины обеих сторон (высота параллелограмма превратилась в одну из сторон). А как известно, площадь прямоугольника равна произведению его сторон.

Формула площади параллелограмма, если известны стороны и угол

Площадь параллелограмма можно посчитать, если известны длины обеих его сторон и величина острого угла между ними.

Высота

Собственно, этот способ вытекает из предыдущего, Просто по исходным данным нужно вычислить высоту параллелограмма, а уже потом по ней посчитать площадь.

Согласно тригонометрии, синус острого угла в прямоугольнике равен отношению противоположного катета к гипотенузе. В нашем примере таким катетом является высота, а гипотенузой сторона «а». И получается:

Расчет

Соответственно, чтобы посчитать значение высоты надо:

Вычисление

И наша конечная формула для расчета площади будет выглядеть следующим образом:

Считаем

Как найти площадь параллелограмма через диагонали

Этот способ используется крайне редко, но знать его все равно нужно. Во всяком случае, на экзаменах у школьников такие примеры вполне могут встретиться.

Диагональ

В данном случае для вывода формулы используются весьма непростые математические вычисления. И мы не будем ими вас загружать. А просто покажем конечный результат:

Математические вычисления

Соответственно, здесь d1 и d2 – длины диагоналей, а y – острый угол между ними.

Вот и все, что мы хотели рассказать о вычислении площади параллелограмма.

В этой статье будет раскрыта одна из математических тематик. Вы узнаете, как найти площадь параллелограмма. Данную тематику преподают в восьмом классе. Тем, кто не разобрался с ней, будет полезна эта статья.

Содержание

  • Как найти площадь параллелограмма – свойства фигуры
  • Расчет площади параллелограмма, если известны стороны, высота
  • Расчет площади параллелограмма по диагоналям
  • Расчет площади параллелограмма, если известны стороны, угол
  • Видео: Площадь параллелограмма

В школе бывает так, что учитель объясняет урок, а дети не понимают. Потому дальше выходит, что ребенок не усваивает не только одну тему, а и те, что идут дальше. Особенно в геометрии. Ведь многие доказательства выводятся на основании правил и предыдущих теорем. Дальше узнаем, как найти площадь параллелограмма. Но изначально для того, чтобы узнать площадь, следует знать определение, что такое параллелограмм. Эта фигура представляет собой четырехугольник с параллельными сторонами и равными противоположными углами. Теперь давайте найдем площадь фигуры разными методами.

Как найти площадь параллелограмма – свойства фигуры

Итак, параллелограмм выглядит следующим образом:

Параллелограмм

Параллелограмм

Еще древнегреческий ученый математики Евклид описал несколько свойств данной фигуры в книге «Начала». А точнее две характеристики параллелограмма:

  • фигуру можно сравнить и с прямоугольником, ведь все напротив лежащие стороны ее параллельны, равны, еще и пересекаются под углами 90°.
  • также правило применимо и к квадрату, ромбу, отличие лишь в углах.

ВАЖНО: Прежде, чем приступить к доказательству, определимся с термином – площадь. Площадью называется размер самой фигуры, точнее плоскость занятая ею, что ограничивается самими сторонами данной фигуры.

Эти свойства недаром описаны выше, благодаря им будет легче узнать, как рассчитывать S – площадь фигуры.

Имеется несколько базовых формул, чтобы вычислить S – площадь параллелограмма:

  1. Когда даны: высота и длина параллелограмма
  2. Когда даны: длина одной и другой стороны фигуры, углы фигуры
  3. Когда даны: размеры обеих диагоналей, один из углов их пересечения.

Теперь о каждом из этих способов подробнее.

Расчет площади параллелограмма, если известны стороны, высота

Чтобы рассчитать величину S фигуры (площадь параллелограмма), следует знать все ее свойства. Выше уже были рассмотрены эти правила. Итак, первая формула – это нахождение площади фигуры по стороне и высоте. Пусть ВН – высота, а АВ – сторона. Высоту проводят на основание под углом 90º.

Теорема о площади параллелограмма

Теорема о площади параллелограмма

Выше предоставлено доказательство данной аксиомы. Из него видно, что S = a • h. Кстати, площадь измеряют в квадратных единицах.

S = АВ • ВН, для начала вывода теоремы следует рассмотреть треугольники, образовавшиеся в результате проведения высот к одному и тому же основанию. Они между собой будут равны. Ну и тогда площадь прямоугольника образовавшегося будет равна площади параллелограмма. А ранее было доказано, что в S прямоугольника = a • h. Именно поэтому и параллелограмм будет иметь такую же формулу для вычисления площади.

Расчет площади параллелограмма по диагоналям

Найти площадь параллелограмма можно различными методами. И этот вариант является распространенным. Для того, чтобы рассчитать S следует знать величину угла и длины диагоналей параллелограмма. Эта аксиома тоже важна в геометрии, зная ее вы с легкостью сможете решить задачи на контрольных и самостоятельных работах.

Формулы площади

Формулы площади

Для доказательства следует рассмотреть два равных треугольника, что получились при разделении параллелограмма на две части.

Параллелограмм

Параллелограмм

По трем сторонам. Значит и углы в этих треугольниках равны, смотрите рисунок выше. А площадь треугольника равняется половине произведения стороны a на высоту h. А высота в данных треугольниках – это и есть диагональ параллелограмма. Отсюда и выходит, что S параллелограмма равняется площади этих двух треугольников или 1/2 sin α на произведение диагоналей.

  • S = 1/2 • sin α • d1 • d2

Что и требовалось найти.

Расчет площади параллелограмма, если известны стороны, угол

Если вы знаете чему равны длины обеих сторон, угол, то сможете найти и S параллелограмма. Площадь параллелограмма в этом случае равна:

  • S = b • a • sin∠α.

Для того, чтобы доказать данную аксиому, достаточно по формулам найти высоту фигуры и подставить найденные данные в известную формулу параллелограмма.

Доказательство теоремы

Доказательство теоремы

По правилам геометрии, если рассматривать треугольники, то sin угла будет равен отношению противолежащего h – катета к гипотенузе. А вот катет, это и есть высота фигуры. Вот и выходит:

  • sin β = h/a

Из этого равенства можно высчитать, чему равняется высота:

  • h = sin β • a

Теперь остается подставить все элементы в формулу и выйдет следующее:

  • S параллелограмма = h • b • sin β

Видео: Площадь параллелограмма

Определение параллелограмма

Параллелограмм — это четырехугольник, в котором противоположные стороны равны и параллельны.

Онлайн-калькулятор площади параллелограмма

Параллелограмм обладает некоторыми полезными свойствами, которые упрощают решение задач, связанных с этой фигурой. Например, одно из свойств заключается в том, что противоположные углы параллелограмма равны.

Рассмотрим несколько способов и формул с последующим решением простых примеров.

Формула площади параллелограмма по основанию и высоте

Данный способ нахождения площади является, наверно, одним из основных и простых, так как он практически идентичен формуле по нахождению площади треугольника за небольшим исключением. Для начала разберем обобщенный случай без использования чисел.

Пусть дан произвольный параллелограмм с основанием aa, боковой стороной bb и высотой hh, проведенной к нашему основанию. Тогда формула для площади этого параллелограмма:

S=a⋅hS=acdot h

aa — основание;
hh — высота.

Разберем одну легкую задачу, чтобы потренироваться в решении типовых задач.

Пример

площадь параллелограмма

Найти площадь параллелограмма, в котором известно основание, равное 10 (см.) и высота, равная 5 (см.).

Решение

a=10a=10
h=5h=5

Подставляем в нашу формулу. Получаем:
S=10⋅5=50S=10cdot 5=50 (см. кв.)

Ответ: 50 (см. кв)

Формула площади параллелограмма по двум сторонам и углу между ними

В этом случае искомая величина находится так:

S=a⋅b⋅sin⁡(α)S=acdot bcdotsin(alpha)

a,ba, b — стороны параллелограмма;
αalpha — угол между сторонами aa и bb.

Теперь решим другой пример и воспользуемся вышеописанной формулой.

Пример

площадь параллелограмма

Найти площадь параллелограмма если известна сторона aa, являющаяся основанием и с длиной 20 (см.) и периметр pp, численно равный 100 (см.), угол между смежными сторонами (aa и bb) равен 30 градусам.

Решение

a=20a=20
p=100p=100
α=30∘alpha=30^{circ}

Для нахождения ответа нам неизвестна лишь вторая сторона данного четырехугольника. Найдем ее. Периметр параллелограмма дается формулой:
p=a+a+b+bp=a+a+b+b
100=20+20+b+b100=20+20+b+b
100=40+2b100=40+2b
60=2b60=2b
b=30b=30

Самое сложное позади, осталось только подставить наши значения для сторон и угла между ними:
S=20⋅30⋅sin⁡(30∘)=300S=20cdot 30cdotsin(30^{circ})=300 (см. кв.)

Ответ: 300 (см. кв.)

Формула площади параллелограмма по диагоналям и углу между ними

S=12⋅D⋅d⋅sin⁡(α)S=frac{1}{2}cdot Dcdot dcdotsin(alpha)

DD — большая диагональ;
dd — малая диагональ;
αalpha — острый угол между диагоналями.

Пример

площадь параллелограмма

Даны диагонали параллелограмма, равные 10 (см.) и 5 (см.). Угол между ними 30 градусов. Вычислить его площадь.

Решение

D=10D=10
d=5d=5
α=30∘alpha=30^{circ}

S=12⋅10⋅5⋅sin⁡(30∘)=12.5S=frac{1}{2}cdot 10 cdot 5 cdotsin(30^{circ})=12.5 (см. кв.)

Ответ: 12.5 (см. кв.)

Решение контрольной работы по геометрии онлайн – от профильных экспертов Студворк!

Тест по теме «Площадь параллелограмма»

Площадь параллелограмма через сторону и высоту

{S = a cdot h}

Найти площадь параллелограмма

На этой странице вы можете рассчитать площадь параллелограмма с помощью калькулятора по трем формулам. Просто введите известные вам данные – основание, высоту, стороны, диагонали и углы между ними и получите ответ.

Параллелограмм – это четырёхугольник, у которого противоположные стороны попарно параллельны (лежат на параллельных прямых).

Содержание:
  1. калькулятор площади параллелограмма
  2. формула площади параллелограмма через сторону и высоту
  3. формула площади параллелограмма через две стороны и угол между ними
  4. формула площади параллелограмма через диагонали и угол между ними
  5. примеры задач

Формула площади параллелограмма через сторону и высоту

Площадь параллелограмма через сторону и высоту

{S = a cdot h}

a – сторона параллелограмма

h – высота параллелограмма

Формула площади параллелограмма через две стороны и угол между ними

Площадь параллелограмма через две стороны и угол между ними

{S=a cdot b cdot sin(alpha)}

a, b – стороны параллелограмма

α – угол между сторонами a и b

Формула площади параллелограмма через диагонали и угол между ними

Площадь параллелограмма через диагонали и угол между ними

{S = dfrac{1}{2} cdot d_1 cdot d_2 cdot sin(alpha)}

d1, d2 – диагонали параллелограмма

α – угол между диагоналями

Примеры задач на нахождение площади параллелограмма

Задача 1

Найдите площадь параллелограмма, стороны которого равны 9 см и 12 см, а угол между ними 60 градусов.

Решение

Для решения задачи нам подойдет вторая формула, так как из условия нам известны стороны параллелограмма и угол между ними. Подставим значения в формулу и произведем расчет.

S = a cdot b cdot sin(alpha) = 9 cdot 12 cdot sin(60) = 108 cdot sin(60) = 108 cdot 0.866 approx 93.53074 : см^2

Ответ: 108 cdot 0.866 approx 93.53074 : см^2

Мы можем проверить ответ с помощью калькулятора .

Задача 2

Найдите площадь параллелограмма, если две его стороны равны 8 см и 12 см, а угол между ними равен 30 градусов.

Решение

Задача похожа на предыдущую, поэтому ее решение будет выглядеть аналогично.

S = a cdot b cdot sin(alpha) = 8 cdot 12 cdot sin(30) = 96 cdot sin(30) = 96 cdot 0.5 = 48 : см^2

Ответ: 48 см²

И снова проверить ответ нам поможет калькулятор .

Задача 3

Найдите площадь параллелограмма, сторона которого равна 12 см, а высота проведенная к ней 8 см.

Решение

В этом случае нам известны сторона параллелограмма и высота, поэтому воспользуемся первой формулой.

S = a cdot h = 12 cdot 8 = 96 : см^2

Ответ: 96 см²

И снова проверить ответ нам поможет калькулятор .

Как найти площадь параллелограмма

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как найти площадь параллелограмма

Чтобы найти площадь параллелограмма воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

параллелограмм

Параллелограмм – это четырёхугольник, у которого противоположные стороны параллельны друг другу.

Узнать чему равна площадь параллелограмма (S) можно зная (либо-либо):

  • длину стороны a и длину высоты h
  • длины сторон a и b, и угол α
  • длины сторон a и b, и угол β
  • длины сторон a и b, и длину любой из диагоналей (d1 или d2)
  • длины диагоналей d1 и d2, и угол между ними γ

Подставьте значения в соответствующие поля и получите результат.

Зная длину стороны a и длину высоты h

Чему равна площадь параллелограмма если сторона

a = ,

а высота

h = ?

Ответ: S =

0

Чему равна площадь параллелограмма S если известны длина стороны a и длина высоты h, проведенной к этой стороне?

Формула

S = a⋅h

Пример

Если сторона параллелограмма a = 8 см, а высота h = 4 см, то:

S = 8 ⋅ 4 = 32 см2

Зная длины сторон a и b, и угол α

Чему равна площадь параллелограмма если сторона

a = ,

сторона

b = ,

а угол между ними

α = °

?
Ответ: S =

0

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними α?

Формула

S = a⋅b⋅sinα

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠α = 50° то:

S = 8 ⋅ 5 ⋅ sin 50 = 40 ⋅ 0.766 ≈ 30.64 см2

Зная длины сторон a и b, и угол β

Чему равна площадь параллелограмма если сторона

a = ,

сторона

b = ,

а угол между ними

β = °

?
Ответ: S =

0

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними β?

Формула

S = a⋅b⋅sin(180 – β)

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠β = 130° то:

S = 8 ⋅ 5 ⋅ sin(180-130) = 40 ⋅ 0.766 ≈ 30.64 см2

Зная длины сторон a и b, и длину диагонали (d1 или d2)

Чему равна площадь параллелограмма если сторона

a = ,

сторона

b = ,

а диагональ

d =

?
Ответ: S =

0

Чему равна площадь параллелограмма S если известны длины сторон a и b, и длина любой из диагоналей d?

Формула

S = 2p⋅(p-a)⋅(p-b)⋅(p-d), где p=(a+b+d)/2

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а диагональ d = 11 см то:

p = (8 + 5 +11)/2 = 12

S = 212⋅(12-8)⋅(12-5)⋅(12-11) = 2⋅12⋅4⋅7⋅1 = 2⋅336 = 36.66 см2

Зная длины диагоналей d1 и d2, и угол между ними γ

Чему равна площадь параллелограмма если диагональ

d1 = ,

диагональ

d2 = ,

а угол между ними

γ = °

?
Ответ: S =

0

Чему равна площадь параллелограмма S если известны длины диагоналей d1 и d2, и угол между ними γ?

Формула

S = ½⋅d1⋅d2⋅sinγ

Пример

Если диагональ параллелограмма d1 = 11 см, диагональ d2 = 7 см, а ∠γ = 45° то:

S = ½ ⋅ 11 ⋅ 7 ⋅ sin 45 = 38.5 ⋅ 0.7071 ≈ 27.22 см2

См. также

Добавить комментарий