Из настоящей статьи Вы научитесь находить площадь фигуры в пространстве, которая задана параметрическими кривыми.
Для этого Вам нужно знать минимум формул и хорошые знания из интегрирования.
Если имеем x=x(t), y=y(t) – параметрическое уравнение кусково-гладкой простой замкнутой кривой на промежутке [0;T], что проходит против часовой стрелки и ограничивает слева от себя фигурой то ее площадь S находим за формулой
Данный цикл задач в первую очередь облегчит учебу студентам мех-мату Львовского национального университета имени Ивана Франко при прохождении практикума из математического анализа.
Студенты всех Вузов могут набираться практики на подобных интегралах, и изучать методику вычисления площади.
Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. “Практикум из математического анализа” (рядом стоит номер из сборника Б. П. Демидовича).
Для запоминания основных моментов схема интегрирования и нахождения площадей из примера в пример будет повторяться. По возможности сами решения будут проиллюстрированы подинтегральными кривыми.
Прибор 2.100 (2413) Найти площадь фигуры, которая ограничена кривыми, заданными в параметрической форме x=a(t-sin(t)), y=a(1-cos(t)) на промежутке [0;2*Pi] и y=0.
Вычисление: Циклоида – плоская трансцендентная кривая, которая определяется кинематически как траектория фиксированной точки круга радиуса a, что катится без скольжения по прямой.
Найдем производные по переменной t заданных функций:
x’=a(1-cos(t));
y’=a*sin(t).
Пределы интегрирования известны по условию – [0;2*Pi].
Запишем подинтегральную функцию за формулой x’*y-x*y’ (поскольку кривая (циклоида) проходит за ходом часовой стрелки):
Вычислим площадь фигуры ограниченной одною аркой циклоиды:
Определенные интегралы методом интегрирования частями вычисляются достаточно быстро.
Также не забывайте, что площадь измеряется в единицах квадратных.
Пример 2.101 (2414) Вычислить площадь фигуры, которая ограничена параметрическими кривыми x=2t-t2, y=2t2-t3.
Вычисление: Вычислим производные по переменной t функций:
x’=2-2t;
y’=4t-3t2.
Найдем пределы интегрирования – точки пересечения кривой, которая ограничивает заданную фигуру:
x=0 при t1=0, t2=2 и
y=0 при t1=0, t2=2 .
Поэтому имеем период ровный T=2.
Запишем подинтегральную функцию по формуле x’*y-x*y’ (поскольку кривая проходит против часовой стрелки):
Вычислим площадь фигуры, которая ограничена заданной кривой:
Здесь, как видите, интеграл найти вообще просто, подобные примеры на практических из математического анализа Вы возможно вычисляли огромное количество раз.
Пример 2.102 (2417.1) Найти площадь фигуры, которая ограничена параметрическими кривыми
Вычисление: Продифференцируем функции по переменной t:
Запишем пределы интегрирования (нужно предварительно исследовать функцию):
T=[0;2*Pi].
Запишем подинтегральную функцию за формулой x’*y
Вычислим площадь фигуры по формуле для параметрических кривых:
Определенный интеграл достаточно простой в плане вычислений.
Пример 2.103 (2415) Найти площадь фигуры, ограниченной кривыми
x=a(cos(t)+t*sin(t)), y=a(sin(t)-t*cos(t)) (развертка круга) и x=a, .
Вычисление: Найдем производные функций по переменной t:
Пределы интегрирования выписываем из начального условия – [0;2*Pi].
Выведем подинтегральную функцию за формулой x’*y-x*y’
Вычислим площадь фигуры, которая ограничена заданной кривой и прямыми:
Следует заметить, что при интегрировании по углу не учитывается площадь треугольника S1, что заштрихована серым.
Без построения графика функции учесть необходимость находить дополнительную площадь достаточно трудно.
Пример 2.104 (2416) Найти площадь фигуры, ограниченной кривыми
x=a(2*cos(t)-cos(2t)), y=a(2*sin(t)-sin(2t)).
Вычисление: Вычислим производные по переменной t функций:
Запишем пределы интегрирования:
Сложим уравнение подинтегральной функции по формуле x’*y-x*y’
Через определенный интеграл вычисляем площадь фигуры, которая ограничена заданной кривой:
Интеграл не сложный, а конечная формула простая для расчетов площади.
Пример 2.105 (2417) Найти площадь фигуры, ограниченной параметрическими кривыми (эволюта эллипса)
Вычисление: Эволюта – множество точек центров кривизны кривой.
По отношению к своей эволюте любая кривая является эвольвентой (інволютою, то есть разверткой этой кривой).
Найдем производные функций по переменной t :
Пределы интегрирования равны:
Запишем подинтегральную функцию по формуле
x’*y-x*y’:
Интегрированием за периодом находим площадь фигуры, которая ограничена заданной кривой:
Пример 2429 Возведя уравнение к параметрическому виду, найти площади фигуры, ограниченной кривой (астроида).
Вычисление: Перепишем уравнение астроиды в виде
Пусть x=a*cos3(t), y=a*sin3(t).
Нетрудно подставить и убедиться, что это именно та подстановка которая будет уравнением астроиды в параметрической форме.
Далее по аналогии с примером 2.105 будем иметь
В следующих публикациях Вы найдете больше примеров на нахождение площади фигуры с помощью определенного интеграла.
Если фигура
ограничена кривой, заданной параметрическими
уравнениями
,
прямымии осью9рис. 5), то площадь ее вычисляется по
формулам:
(42)
а пределы
интегрирования находятся из уравнений
на отрезка.
Порядок вычисления аналогичен п. 2.9.1.
Пример. Найти
площадь фигуры, ограниченной линиями,
заданными уравнениями:.
Решение.
Построим кривую, заданную параметрическими
уравнениями (рис. 5). Для этого вычислим
значения
ии поместим их в табл. 5.
ОТРЕДАКТИРОВАТЬ
Таблица 5
Вспомогательная таблица для построения параметрически заданной кривой
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Мы подставляли
значения
из верхней строки таблицы в параметрические
уравнения и последовательно получали
значенияи.
Построим также и прямую(см. рис. 6). Найдем пределы интегрирования.
Приравняем,
отсюда.
Посколькуизменяется отдо.
Так как фигура, площадь которой мы хотим
навйти, симметрична относительно оси,
то можно интегрировать отдо.
А результат затем удвоить. Подставляем
в формулу (42)::
.
Для вычисления
интеграла воспользуемся формулами
(22)-(27) из п. 1.7:
.
2.9.3. Площадь фигуры, ограниченной кривой, заданной в полярных координатах
Пусть кривая задана
в полярных координатах уравнением
и двумя лучамии,
тогда ее площадь (рис. 7) вычисляется по
формуле:
.
(43)
Порядок вычислений
аналогичен п. 2.9.1.
Пример. Найти
площадь фигуры, ограниченной линией
,
перейдя предварительно к полярным
координатам.
Решение. Переход
от декартовых к полярным координатам
осуществляется по формулам:Подставив эти выражения в уравнение
кривой, получим:или.
Отсюда получаем уравнение кривой в
полярных координатах:.
Поскольку в правой
части уравнения стоит неотрицательная
величина, то полярный угол может принимать
любые значения
.
В силу периодичности функциивычислим подробно таблицу значений для
аргументов в промежутке(табл. 6).
Таблица 6
Вспомогательная таблица для построения кривой, заданной в полярных координатах
Построим эту кривую
( четырехлепестковую розу). В силу
симметрии фигуры достаточно проинтегрировать
по
отдо,
а затем результат умножить на 8.
Применим формулу
(43):
.
Для вычисления интеграла воспользуемся
формулой понижения степени (15) из п. 1.7:.
Вычислить интеграл
непосредственно зачастую весьма
непросто. Поэтому создаются специальные
таблицы интегралов. При затруднениях
в вычислении того или иного интеграла,
полученного при решении конкретной
технической задачи, можно ими
воспользоваться. Есть класс так называемых
«неберущихся» интегралов, т.е. класс
функций, первообразные для которых не
являются элементарными. Тем не менее,
интегралы от таких функций часто
встречаются в математике и приложениях.
Так, в теории вероятностей мы встретимся
с функцией
,
выражающейся через такой «неберущийся»
интеграл. Такого рода интегралы
встречаются в электротехнике, оптике
и т.д.
Для вычисления
таких интегралов разработаны специальные
методы. Например, формулы прямоугольников,
трапеций, Симпсона или с помощью рядов.
Определенный
интеграл применяется в математике для
нахождения длин дуг кривых, объемов
различных тел, площади поверхности тел
вращения и др. Широко применяется
определенный интеграл в механике и
физике. Это вычисление статических
моментов, моментов инерции плоских дуг
кривых и фигур, координат центра тяжести,
а также вычисление работы, давления и
многого другого.
Приложение.
-
Вычисление
длины кривой, заданной явным уравнением.
Если кривая задана
явным уравнением в прямоугольных
декартовых координатах
,
то
.
(1)
Пример.
Вычислить
длину дуги куска графика логарифмической
функции
.
Решение. Подставляя
в формулу (1)
,
получим:
.
-
Вычисление
длины кривой, заданной параметрическим
уравнением.
Если кривая задана
параметрическим уравнением в прямоугольных
декартовых координатах
,
то.
(2)
Пример.
Найти длину
дуги четверти астроиды
между точкамии.
Решение. Найдем
вначале пределы интегрирования из
уравнений:
,.
Отсюда.
Вычислим также элементы подкоренного
выражения:.
Преобразуем подынтегральное выражение,
используя основное тригонометрическое
тождество:.
Подставив полученное выражение и пределы
интегрирования в формулу (2), окончательно
получаем выражение для длины дуги
четверти астроиды:
.
-
Вычисление
длины кривой, заданной уравнением в
полярных координатах.
Если кривая задана
уравнением в полярных координатах
,
то.
(3)
Пример.
Вычислить
длину дуги одного витка логарифмической
спирали
,
где.
Решение. Подставим
ив формулу (3), получим:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Вычисление площадей фигур в различных системах координат
Площадь плоской фигуры в декартовых координатах
Напомним, что мы назвали криволинейной трапецией фигуру, ограниченную осью абсцисс, прямыми и и графиком функции . В этом пункте выведем формулу для вычисления площади криволинейной трапеции.
Теорема 3. Если функция неотрицательна на отрезке и непрерывна на нем, то соответствующая ей криволинейная трапеция квадрируема, причем ее площадь выражается формулой
(4)
Доказательство. Криволинейная трапеция ограничена тремя отрезками и графиком непрерывной функции . Как было показано в пункте 2 такая фигура квадрируема. Чтобы вычислить площадь этой трапеции, построим для нее внешние и внутренние ступенчатые фигуры (см. рис. 26).
Тогда, с одной стороны, имеем:
где — площадь внутренней ступенчатой фигуры, —площадь внешней ступенчатой фигуры, и . С другой стороны, по определению интеграла можно записать:
Таким образом, числа и разделяют одни и те же числовые множества: . Но, как было показано при изучении определенного интеграла, эти множества разделяются лишь одним числом, и потому . Теорема доказана.
Аналогично доказывается, что если фигура ограничена снизу графиком функции , сверху графиком функции , а слева и справа прямыми (рис. 30), то ее площадь выражается формулой
Наглядный смысл формулы (4) состоит в том, что криволинейную трапецию можно рассматривать как объединение «бесконечно тонких полосок» с основаниями и высотами .
Пусть теперь функция непрерывна на отрезке и принимает на нем только неположительные значения. Выразим с помощью определенного интеграла площадь соответствующей криволинейной трапеции .
Рассмотрим фигуру , симметричную фигуре относительно оси . Эта фигура (рис. 31) представляет собой криволинейную трапецию, ограниченную сверху графиком непрерывной на отрезке функции , которая на принимает только неотрицательные значения. По доказанному выше
. Но
Значит,
Как мы видим, в рассматриваемом случае интеграл дает значение площади криволинейной трапеции с точностью до знака. Если же функция меняет знак на отрезке в конечном числе точек, то значение интеграла дает алгебраическую сумму площадей соответствующих криволинейных трапеций, ограниченных частями графика функции , отрезками оси и, быть может, отрезками, параллельными оси (рис. 32).
Пример 1. Найти площадь фигуры, ограниченной кривой , осью абсцисс и прямыми (рис. 33).
Решение. Имеем: (кв. ед.).
Пример 2. Вычислить площадь фигуры, ограниченной дугой параболы и отрезком прямой (рис. 34).
Решение. Из рисунка видно, что трапеция, площадь которой нужно найти, расположена симметрично относительно оси абсцисс и, следовательно, искомая площадь равна
Пример 3. Найти площадь фигуры, ограниченной графиками функций (рис. 35).
Решение. Искомая площадь равна разности площадей криволинейного треугольника и прямоугольного треугольника
Пример 4. Вычислить площадь фигуры, ограниченной петлей кривой .
Решение. Из уравнения кривой видно, что она расположена симметрично относительно оси . Следовательно, можно сначала вычислить половину искомой площади (рис. 36). Рекомендуем читателю подробно исследовать и построить данную кривую.
Записав уравнение кривой в виде , найдем точки пересечения ее с осью , положив . Учитывая сказанное, найдем площадь половины петли:
Воспользовавшись формулой из таблицы при , получим:
Значит, окончательно имеем:
Площадь фигуры, ограниченной кривой, заданной параметрически
Пусть кривая задана в параметрической форме
где функция монотонна на отрезке , причем , и имеет на этом отрезке непрерывную производную. Так как , то по формуле замены переменной под знаком определенного интеграла получаем:
Итак, площадь фигуры, ограниченной кривой, заданной параметрически, вычисляется по формуле:
(5)
Пример 5. Вычислить площадь эллипса, заданного параметрически
Решение. Выберем ту часть эллипса (рис. 37), которая расположена в первом квадранте. Точке соответствует значение , а точке — значение . Поэтому
Площадь фигуры, заданной в полярных координатах
Вычислить площадь сектора, ограниченного лучами и , выходящими из точки , и непрерывной кривой (рис. 38). Выберем полярную систему координат, полюсом которой является точка . Пусть — полярное уравнение кривой , а и — углы между полярной осью и лучами и соответственно. При этом пусть функция непрерывна на .
Разобьем данный сектор на частей лучами
и рассмотрим k-й частичный сектор (рис. 39). Пусть — наименьшее значение функции в , a — наибольшее значение функции в этом отрезке.
Построим два круговых сектора с радиусами и . Обозначим через величину угла рассматриваемого частичного сектора. Тогда площадь частичного криволинейного сектора будет заключена между площадями вписанного и описанного частичных круговых секторов
Построим аналогичным образом внутренние и внешние круговые секторы для всех частичных криволинейных секторов. Объединяя их, получим внутреннюю и внешнюю фигуры.
Площадь внутренней фигуры, состоящей из круговых секторов, равна , а площадь внешней фигуры равна — . Эти выражения являются нижней и верхней суммами Дарбу и для интеграла . Так как функция непрерывна, то непрерывна, а потому и интегрируема функция . Поэтому для любого найдется такое разбиение отрезка , что . Из теоремы 2 пункта 2 следует, что заданный криволинейный сектор квадрируем. При этом для его площади выполняются неравенства
(6)
В то же время по определению определенного интеграла
(7)
В силу единственности разделяющего числа из неравенств (6) и (7) следует, что
(8)
Пример 6. Вычислить площадь, ограниченную одним лепестком розы (рис. 40).
Решение. Значениям и соответствует Поэтому
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Вычисление площади фигуры, ограниченной параметрически заданной кривой
Когда мы выясняли геометрический смысл определенного интеграла, у нас получилась формула, с помощью которой можно найти площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми x = a , x = b , а также непрерывной (неотрицательной или неположительной) функцией y = f ( x ) . Иногда удобнее задавать функцию, ограничивающую фигуру, в параметрическом виде, т.е. выражать функциональную зависимость через параметр t . В рамках данного материала мы покажем, как можно найти площадь фигуры, если она ограничена параметрически заданной кривой.
После объяснения теории и выведения формулы мы разберем несколько характерных примеров на нахождение площади таких фигур.
Основная формула для вычисления
Допустим, что у нас имеется криволинейная трапеция, границами которой являются прямые x = a , x = b , ось O x и параметрически заданная кривая x = φ ( t ) y = ψ ( t ) , а функции x = φ ( t ) и y = ψ ( t ) являются непрерывными на интервале α ; β , α β , x = φ ( t ) будет непрерывно возрастать на нем и φ ( α ) = a , φ ( β ) = b .
Чтобы вычислить площадь трапеции при таких условиях, нужно использовать формулу S ( G ) = ∫ α β ψ ( t ) · φ ‘ ( t ) d t .
Мы вывели ее из формулы площади криволинейной трапеции S ( G ) = ∫ a b f ( x ) d x методом подстановки x = φ ( t ) y = ψ ( t ) :
S ( G ) = ∫ a b f ( x ) d x = ∫ α β ψ ( t ) d ( φ ( t ) ) = ∫ α β ψ ( t ) · φ ‘ ( t ) d t
Учитывая монотонное убывание функции x = φ ( t ) на интервале β ; α , β α , нужная формула принимает вид S ( G ) = – ∫ β α ψ ( t ) · φ ‘ ( t ) d t .
Если функция x = φ ( t ) не относится к основным элементарным, то нам понадобится вспомнить основные правила возрастания и убывания функции на интервале, чтобы определить, будет ли она возрастающей или убывающей.
Решение задач на вычисление площади фигуры, которая ограничена параметрически заданной кривой
В этом пункте мы разберем несколько задач на применение формулы, выведенной выше.
Условие: найдите площадь фигуры, которую образует линия, заданная уравнениями вида x = 2 cos t y = 3 sin t .
Решение
У нас есть параметрически заданная линия. Графически ее можно отобразить в виде эллипса с двумя полуосями 2 и 3 . См на иллюстрацию:
Попробуем найти площадь 1 4 полученной фигуры, которая занимает первый квадрант. Область находится в интервале x ∈ a ; b = 0 ; 2 . Далее умножим полученное значение на 4 и найдем площадь целой фигуры.
Вот ход наших вычислений:
x = φ ( t ) = 2 cos t y = ψ ( t ) = 3 sin t φ α = a ⇔ 2 cos α = 0 ⇔ α = π 2 + πk , k ∈ Z , φ β = b ⇔ 2 cos β = 2 ⇔ β = 2 πk , k ∈ Z
При k , равном 0 , мы получим интервал β ; α = 0 ; π 2 . Функция x = φ ( t ) = 2 cos t на нем будет монотонно убывать (подробнее см. статью об основных элементарных функциях и их свойствах). Значит, можно применить формулу вычисления площади и найти определенный интеграл, используя формулу Ньютона-Лейбница:
– ∫ 0 π 2 3 sin t · 2 cos t ‘ d t = 6 ∫ 0 π 2 sin 2 t d t = 3 ∫ 0 π 2 ( 1 – cos ( 2 t ) d t = = 3 · t – sin ( 2 t ) 2 0 π 2 = 3 · π 2 – sin 2 · π 2 2 – 0 – sin 2 · 0 2 = 3 π 2
Значит, площадь фигуры, заданной исходной кривой, будет равна S ( G ) = 4 · 3 π 2 = 6 π .
Ответ: S ( G ) = 6 π
Уточним, что при решении задачи выше можно было взять не только четверть эллипса, но и его половину – верхнюю или нижнюю. Одна половина будет расположена на интервале x ∈ a ; b = – 2 ; 2 . В этом случае у нас бы получилось:
φ ( α ) = a ⇔ 2 cos α = – 2 ⇔ α = π + π k , k ∈ Z , φ ( β ) = b ⇔ 2 cos β = 2 ⇔ β = 2 π k , k ∈ Z
Таким образом, при k равном 0 , мы получили β ; α = 0 ; π . Функция x = φ ( t ) = 2 cos t на этом интервале будет монотонно убывать.
После этого вычисляем площадь половины эллипса:
– ∫ 0 π 3 sin t · 2 cos t ‘ d t = 6 ∫ 0 π sin 2 t d t = 3 ∫ 0 π ( 1 – cos ( 2 t ) d t = = 3 · t – sin ( 2 t ) 2 0 π = 3 · π – sin 2 · π 2 – 0 – sin 2 · 0 2 = 3 π
Важно отметить, что можно взять только верхнюю или нижнюю часть, а правую или левую нельзя.
Можно составить параметрическое уравнение данного эллипса, центр которого будет расположен в начале координат. Оно будет иметь вид x = a · cos t y = b · sin t . Действуя так же, как и в примере выше, получим формулу для вычисления площади эллипса S э л и п с а = πab .
Задать окружность, центр которой расположен в начале координат, можно с помощью уравнения x = R · cos t y = R · sin t , где t является параметром, а R – радиусом данной окружности. Если мы сразу воспользуемся формулой площади эллипса, то то у нас получится формула, с помощью которой можно вычислить площадь круга с радиусом R : S к р у г а = πR 2 .
Разберем еще одну задачу.
Условие: найдите, чему будет равна площадь фигуры, которая ограничена параметрически заданной кривой x = 3 cos 3 t y = 2 sin 3 t .
Решение
Сразу уточним, что данная кривая имеет вид вытянутой астроиды. Обычно астроида выражается с помощью уравнения вида x = a · cos 3 t y = a · sin 3 t .
Теперь разберем подробно, как построить такую кривую. Выполним построение по отдельным точкам. Это самый распространенный метод, который применим для большинства задач. Более сложные примеры требуют проведения дифференциального исчисления, чтобы выявить параметрически заданную функцию.
У нас x = φ ( t ) = 3 cos 3 t , y = ψ ( t ) = 2 sin 3 t .
Данные функции являются определенными для всех действительных значений t . Для sin и cos известно, что они являются периодическими и их период составляет 2 пи. Вычислив значения функций x = φ ( t ) = 3 cos 3 t , y = ψ ( t ) = 2 sin 3 t для некоторых t = t 0 ∈ 0 ; 2 π π 8 , π 4 , 3 π 8 , π 2 , . . . , 15 π 8 , получим точки x 0 ; y 0 = ( φ ( t 0 ) ; ψ ( t 0 ) ) .
Составим таблицу итоговых значений:
t 0 | 0 | π 8 | π 4 | 3 π 8 | π 2 | 5 π 8 | 3 π 4 | 7 π 8 | π |
x 0 = φ ( t 0 ) | 3 | 2 . 36 | 1 . 06 | 0 . 16 | 0 | – 0 . 16 | – 1 . 06 | – 2 . 36 | – 3 |
y 0 = ψ ( t 0 ) | 0 | 0 . 11 | 0 . 70 | 1 . 57 | 2 | 1 . 57 | 0 . 70 | 0 . 11 | 0 |
t 0 | 9 π 8 | 5 π 4 | 11 π 8 | 3 π 2 | 13 π 8 | 7 π 4 | 15 π 8 | 2 π |
x 0 = φ ( t 0 ) | – 2 . 36 | – 1 . 06 | – 0 . 16 | 0 | 0 . 16 | 1 . 06 | 2 . 36 | 3 |
y 0 = ψ ( t 0 ) | – 0 . 11 | – 0 . 70 | – 1 . 57 | – 2 | – 1 . 57 | – 0 . 70 | – 0 . 11 | 0 |
После этого отметим нужные точки на плоскости и соединим их одной линией.
Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3 :
φ ( α ) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ ( β ) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z
Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ ( t ) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:
– ∫ 0 π 2 2 sin 3 t · 3 cos 3 t ‘ d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · ( 1 – sin 2 t ) d t = 18 ∫ 0 π 2 sin 4 t d t – ∫ 0 π 2 sin 6 t d t
У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n ( x ) = – cos x · sin n – 1 ( x ) n + n – 1 n J n – 2 ( x ) , где J n ( x ) = ∫ sin n x d x .
∫ sin 4 t d t = – cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = – cos t · sin 3 t 4 + 3 4 – cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = – cos t · sin 3 t 4 – 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = – cos t · sin 3 t 4 – 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = – cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = – cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96
Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t – ∫ 0 π 2 sin 6 t d t = 18 3 π 16 – 15 π 96 = 9 π 16 .
Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .
Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .
Вычислить площадь фигуры ограниченной линиями заданными параметрическими уравнениями
Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!
Контакты
Администратор, решение задач
Роман
Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym
Решение задач
Андрей
facebook:
dniprovets25
Вычисление площадей фигур в различных системах координат
Площадь плоской фигуры в декартовых координатах
Напомним, что мы назвали криволинейной трапецией фигуру, ограниченную осью абсцисс, прямыми и и графиком функции . В этом пункте выведем формулу для вычисления площади криволинейной трапеции.
Теорема 3. Если функция неотрицательна на отрезке и непрерывна на нем, то соответствующая ей криволинейная трапеция квадрируема, причем ее площадь выражается формулой
Доказательство. Криволинейная трапеция ограничена тремя отрезками и графиком непрерывной функции . Как было показано в пункте 2 такая фигура квадрируема. Чтобы вычислить площадь этой трапеции, построим для нее внешние и внутренние ступенчатые фигуры (см. рис. 26).
Тогда, с одной стороны, имеем:
где — площадь внутренней ступенчатой фигуры, —площадь внешней ступенчатой фигуры, и . С другой стороны, по определению интеграла можно записать:
Таким образом, числа и разделяют одни и те же числовые множества: . Но, как было показано при изучении определенного интеграла, эти множества разделяются лишь одним числом, и потому . Теорема доказана.
Аналогично доказывается, что если фигура ограничена снизу графиком функции , сверху графиком функции , а слева и справа прямыми (рис. 30), то ее площадь выражается формулой
Наглядный смысл формулы (4) состоит в том, что криволинейную трапецию можно рассматривать как объединение «бесконечно тонких полосок» с основаниями и высотами .
Пусть теперь функция непрерывна на отрезке и принимает на нем только неположительные значения. Выразим с помощью определенного интеграла площадь соответствующей криволинейной трапеции .
Рассмотрим фигуру , симметричную фигуре относительно оси . Эта фигура (рис. 31) представляет собой криволинейную трапецию, ограниченную сверху графиком непрерывной на отрезке функции , которая на принимает только неотрицательные значения. По доказанному выше
Как мы видим, в рассматриваемом случае интеграл дает значение площади криволинейной трапеции с точностью до знака. Если же функция меняет знак на отрезке в конечном числе точек, то значение интеграла дает алгебраическую сумму площадей соответствующих криволинейных трапеций, ограниченных частями графика функции , отрезками оси и, быть может, отрезками, параллельными оси (рис. 32).
Пример 1. Найти площадь фигуры, ограниченной кривой , осью абсцисс и прямыми (рис. 33).
Решение. Имеем: (кв. ед.).
Пример 2. Вычислить площадь фигуры, ограниченной дугой параболы и отрезком прямой (рис. 34).
Решение. Из рисунка видно, что трапеция, площадь которой нужно найти, расположена симметрично относительно оси абсцисс и, следовательно, искомая площадь равна
Пример 3. Найти площадь фигуры, ограниченной графиками функций (рис. 35).
Решение. Искомая площадь равна разности площадей криволинейного треугольника и прямоугольного треугольника
Пример 4. Вычислить площадь фигуры, ограниченной петлей кривой .
Решение. Из уравнения кривой видно, что она расположена симметрично относительно оси . Следовательно, можно сначала вычислить половину искомой площади (рис. 36). Рекомендуем читателю подробно исследовать и построить данную кривую.
Записав уравнение кривой в виде , найдем точки пересечения ее с осью , положив . Учитывая сказанное, найдем площадь половины петли:
Воспользовавшись формулой из таблицы при , получим:
Значит, окончательно имеем:
Площадь фигуры, ограниченной кривой, заданной параметрически
Пусть кривая задана в параметрической форме
где функция монотонна на отрезке , причем , и имеет на этом отрезке непрерывную производную. Так как , то по формуле замены переменной под знаком определенного интеграла получаем:
Итак, площадь фигуры, ограниченной кривой, заданной параметрически, вычисляется по формуле:
Пример 5. Вычислить площадь эллипса, заданного параметрически
Решение. Выберем ту часть эллипса (рис. 37), которая расположена в первом квадранте. Точке соответствует значение , а точке — значение . Поэтому
Площадь фигуры, заданной в полярных координатах
Вычислить площадь сектора, ограниченного лучами и , выходящими из точки , и непрерывной кривой (рис. 38). Выберем полярную систему координат, полюсом которой является точка . Пусть — полярное уравнение кривой , а и — углы между полярной осью и лучами и соответственно. При этом пусть функция непрерывна на .
Разобьем данный сектор на частей лучами
и рассмотрим k-й частичный сектор (рис. 39). Пусть — наименьшее значение функции в , a — наибольшее значение функции в этом отрезке.
Построим два круговых сектора с радиусами и . Обозначим через величину угла рассматриваемого частичного сектора. Тогда площадь частичного криволинейного сектора будет заключена между площадями вписанного и описанного частичных круговых секторов
Построим аналогичным образом внутренние и внешние круговые секторы для всех частичных криволинейных секторов. Объединяя их, получим внутреннюю и внешнюю фигуры.
Площадь внутренней фигуры, состоящей из круговых секторов, равна , а площадь внешней фигуры равна — . Эти выражения являются нижней и верхней суммами Дарбу и для интеграла . Так как функция непрерывна, то непрерывна, а потому и интегрируема функция . Поэтому для любого найдется такое разбиение отрезка , что . Из теоремы 2 пункта 2 следует, что заданный криволинейный сектор квадрируем. При этом для его площади выполняются неравенства
В то же время по определению определенного интеграла
В силу единственности разделяющего числа из неравенств (6) и (7) следует, что
Пример 6. Вычислить площадь, ограниченную одним лепестком розы (рис. 40).
[spoiler title=”источники:”]
http://yukhym.com/ru/integrirovanie-funktsii/ploshchad-figury-ogranichennoj-parametricheskimi-krivymi.html
http://mathhelpplanet.com/static.php?p=ploshchadi-figur-v-razlichnykh-sistemakh-koordinat
[/spoiler]