Как найти площадь полной поверхности додекаэдра

Правильный додекаэдр
(вращающаяся модель, 3D-модель)
(вращающаяся модель, 3D-модель)
Тип правильный многогранник
Свойства выпуклый
Комбинаторика
Элементы
12 граней
30 рёбер
20 вершин
Χ = 2
Грани правильные пятиугольники
Конфигурация вершины 53
Двойственный многогранник правильный икосаэдр

Вершинная фигура

Dodecahedron vertfig.png

Развёртка

Dodecahedron flat.svg

Классификация
Обозначения U23, C26, W5
Символ Шлефли {5,3}
Символ Витхоффа[en] 3 | 2 5
Диаграмма Дынкина CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Группа симметрии Ih, H3, [5,3], (*532)
Группа вращения I, [5,3]+, (532)
Количественные данные
Длина ребра a
Площадь поверхности {displaystyle 3{sqrt {25+10{sqrt {5}}}}a^{2}}
Объём {displaystyle {tfrac {15+7{sqrt {5}}}{4}}a^{3}}
Двугранный угол {displaystyle arccos(-1/5^{1/2})approx 116.565}
Телесный угол при вершине {displaystyle pi -tan ^{-1}left({frac {2}{11}}right)quad approx 2.96}
Логотип Викисклада Медиафайлы на Викискладе

Пра́вильный додека́эдр (др.-греч. δωδεκάεδρον, от δώδεκα — «двенадцать» и ἕδρα — «грань») — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников[1], являющихся его гранями. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра).

Додекаэдр и его описанная сфера

История[править | править код]

Пожалуй, самый древний предмет в форме додекаэдра был найден в северной Италии, около Падуи, в конце XIX века, он датируется 500 г. до н. э. и предположительно использовался этрусками в качестве игральной кости[2][3].

Додекаэдр рассматривали в своих сочинениях древнегреческие учёные. Платон сопоставлял с правильными многогранниками различные классические стихии. О додекаэдре Платон писал, что «…его бог определил для Вселенной и прибегнул к нему в качестве образца»[4]. Евклид в предложении 17 книги XIII «Начал» строит додекаэдр на рёбрах куба[5][6]:132-136. Папп Александрийский в «Математическом собрании» занимается построением додекаэдра, вписанного в данную сферу, попутно доказывая, что вершины додекаэдра лежат в параллельных плоскостях[7][6]:318-319[8].

На территории нескольких европейских стран найдено множество предметов, называемых римскими додекаэдрами, относящихся ко II—III вв. н. э., назначение которых не совсем понятно.

Вскоре после появления кубика Рубика, в 1981 году была запатентована подобная головоломка в форме правильного додекаэдра — мегаминкс. Как и у классического кубика Рубика, к каждому ребру у неё прилегает по три детали[9]. Позднее, как и для кубика Рубика появились такие додекаэдрические головоломки с четырьмя деталями при ребре (гигаминкс), пятью (тераминкс) и т.д. Сложность и время сборки их, как и для кубика Рубика возрастает по мере увеличения числа деталей при ребре.

Основные формулы[править | править код]

Если за длину ребра принять a, то площадь поверхности додекаэдра равна

{displaystyle S=3a^{2}{sqrt {5(5+2{sqrt {5}})}}approx 20{,}65a^{2}.}

Объём додекаэдра

{displaystyle V={frac {a^{3}}{4}}(15+7{sqrt {5}})approx 7{,}66a^{3}.}

Радиус описанной сферы[10]

{displaystyle R={frac {a}{4}}(1+{sqrt {5}}){sqrt {3}}approx 1{,}4012a.}

Радиус полувписанной сферы равен {displaystyle {frac {3+{sqrt {5}}}{4}}aapprox 1{,}309a.}[10]

Радиус вписанной сферы[10]

{displaystyle r={frac {a}{4}}{sqrt {10+{frac {22}{sqrt {5}}}}}approx 1{,}1135a.}

Свойства[править | править код]

  • Все двадцать вершин додекаэдра лежат по пять в четырёх параллельных плоскостях, образуя в каждой из них правильный пятиугольник.
  • Двугранный угол между любыми двумя смежными гранями додекаэдра равен arccos(−1/√5) ≈ 116,565°[10].
  • Сумма плоских углов при каждой из 20 вершин равна 324°, телесный (трёхгранный) угол равен arccos(−11/5√5) ≈ 2,9617 стерадиана.
  • В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра.
  • Додекаэдр имеет три звёздчатые формы.
  • В додекаэдр можно вписать пять кубов. Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все рёбра додекаэдра, то получим пространство пяти пересекающихся кубов. Додекаэдр как таковой исчезнет. Вместо замкнутого многогранника появится открытая геометрическая система пяти ортогональностей. Или симметричное пересечение пяти трёхмерных пространств.
  • Ближайшая параллельная к произвольно выбранной грани плоскость, в которой лежат пять вершин, не принадлежащих выбранной грани, отстоит от этой грани на расстояние радиуса описанной вокруг данной грани окружности. А радиус описанной вокруг этих пяти вершин окружности равен диаметру вписанной в любую из граней окружности. Эти две величины равны, соответственно, {displaystyle {sqrt {frac {5+{sqrt {5}}}{10}}}a} и {displaystyle {frac {{sqrt {5}}+1}{2}}cdot {sqrt {frac {5+{sqrt {5}}}{10}}}a}, где a — длина ребра додекаэдра.

Элементы симметрии додекаэдра[править | править код]

Связь со сферическим замощением[править | править код]

Правильный додэкаэдр также индуцирует замощение сферы правильными пятиугольниками.

Uniform tiling 532-t0.png Dodecahedron stereographic projection.svg
Ортографическая проекция[en] Стереографическая проекция

Интересные факты[править | править код]

  • В 1887 году Эрнст Геккель описал радиолярию Circorrhegma dodecahedra, имеющую форму, близкую к додекаэдру[11].
  • в 1982 году был синтезирован додекаэдран, химическое соединение (C20H20) в форме додекаэдра.
  • В 2003 году при анализе данных космического аппарата WMAP, была выдвинута гипотеза, что Вселенная представляет собой додекаэдрическое пространство Пуанкаре[12][13][14].

В культуре[править | править код]

  • Додекаэдр применяется как генератор случайных чисел (вместе с другими костями) в настольных ролевых играх[15], и обозначается при этом d12 (dice — кости).
  • Изготавливаются настольные календари в форме додекаэдра из бумаги, где каждый из двенадцати месяцев расположен на одной из граней[15].
  • В игре Пентакор мир представлен в виде этой геометрической фигуры[источник не указан 2657 дней].
  • В играх «Sonic the Hedgehog 3» и «Sonic & Knuckles» серии Sonic the Hedgehog вид додекаэдра имеют Изумруды Хаоса[источник не указан 2657 дней].
  • В игре «Destiny» форму додекаэдра имеют энграммы[источник не указан 2657 дней].
  • В игре «Overwatch» персонаж Сигма при основной атаке выпускает по 2 додекаэдра[источник не указан 1134 дня].
  • Пульт управления системой освещения Nanoleaf Smart Remote Control [16].

См. также[править | править код]

  • Пентагондодекаэдр — неправильный додекаэдр
  • Ромбододекаэдр
  • Ромбоикосододекаэдр
  • Двенадцатигранники

Примечания[править | править код]

  1. Селиванов Д. Ф.,. Тело геометрическое // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  2. Stefano De’ Stefani. Intorno un dodecaedro quasi regolare di pietra a facce pentagonali scolpite con cifre, scoperto nelle antichissime capanne di pietra del Monte Loffa (итал.) // Atti del Reale Istituto veneto di scienze, lettere ed arti : diario. — 1885-86. — P. 1437—1459. См. также изображение этого предмета в конце тома, стр. 709 файла со сканом
  3. Amelia Carolina Sparavigna. An Etruscan Dodecahedron. — arXiv:1205.0706.
  4. Платон. «Тимей»
  5. Euclid’s Elements. Book XIII. Proposition 17. Дата обращения: 1 июня 2014. Архивировано 19 мая 2014 года.
  6. 1 2 Начала Евклида. Книги XI—XV. — М.Л.: Государственное издательство технико-теоретической литературы, 1950. — Помимо перевода на русский язык сочинения Евклида это издание в комментариях содержит перевод предложений Паппа о правильных многогранниках.
  7. Оригинальный текст на древнегреческом языке с параллельным переводом на латинский язык: Liber III. Propos. 58 // Pappi Alexandrini Collectionis. — 1876. — Т. I. — С. 156—163.
  8. Roger Herz-Fischler. A Mathematical History of the Golden Number (англ.). — Courier Dover Publications, 2013. — P. 117—118.
  9. Хорт В. Отчаянные головоломки. Мегаминкс — каверзный додекаэдр // Наука и жизнь. — 2018. — № 1. — С. 104—109. В этой статье, помимо прочего, приведён алгоритм сборки мегаминкса.
  10. 1 2 3 4 Доказательство приведено в: Cobb, John W. The Dodecahedron (англ.) (2005—2007). Дата обращения: 1 июня 2014. Архивировано 4 марта 2016 года.
  11. http://www.biodiversitylibrary.org/page/10685137#page/111/mode/1up таблице XVII] Архивная копия от 7 июня 2014 на Wayback Machine четвёртого тома его монографии о радиоляриях она обозначена номером 2
  12. The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps (англ.). Дата обращения: 31 октября 2012. Архивировано 7 декабря 2013 года.
  13. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background (англ.). Дата обращения: 31 октября 2012. Архивировано 7 декабря 2013 года.
  14. Jeffrey Weeks. The Poincare Dodecahedral Space and the Mystery of the Missing Fluctuations (англ.). Архивировано 4 ноября 2012 года.
  15. 1 2 A. T. White. Graphs of Groups on Surfaces: Interactions and Models. — Elsevier, 2001. — P. 45. — 378 p. — ISBN 0-080-50758-1, 978-0-080-50758-3.
  16. Products » Nanoleaf Remote | USA » Consumer IoT & LED Smart Lighting Products (амер. англ.). Nanoleaf | USA. Дата обращения: 25 ноября 2021. Архивировано 25 ноября 2021 года.

Ссылки[править | править код]

  • Логотип Викисклада На Викискладе есть медиафайлы по теме Правильный додекаэдр

    Вы здесь:

  • Главная
  • Додекаэдр

Додекаэдр

додекаэдр

Древние греки дали многограннику имя по числу граней. «Додека» означает двенадцать, «хедра» – означает грань (додекаэдр – двенадцатигранник).

Поэтому на вопрос – “что такое додекаэдр?”, можно дать следующее определение: “Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых – правильный пятиугольник“.

Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел.
Додекаэдр имеет следующие характеристики:

  • Тип грани – правильный пятиугольник;
  • Число сторон у грани – 5;
  • Общее число граней – 12;
  • Число рёбер, примыкающих к вершине – 3;
  • Общее число вершин – 20;
  • Общее число рёбер – 30.

Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.
Додекаэдр имеет центр симметрии – центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Математические характеристики додекаэдра

Додекаэдр вписанный в сферуДодекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы додекаэдра

Радиус описанной сферы додекаэдра

где a – длина стороны.

Сфера вписанная в додекаэдр

Сфера может быть вписана внутрь додекаэдра.

Радиус вписанной сферы додекаэдра

Радиус вписанной сферы додекаэдра

Площадь поверхности додекаэдра

Площадь поверхности додекаэдра

Площадь поверхности додекаэдра.

Для наглядности площадь поверхности додекаэдра можно представить в виде площади развёртки.

Площадь поверхности можно определить как площадь одной из сторон додекаэдра (это площадь правильного пятиугольника) умноженной на 12. Либо воспользоваться формулой:

Площадь поверхности додекаэдра

Объем додекаэдра

Объем додекаэдра определяется по следующей формуле:

Объем додекаэдра

Популярное

Звезда надежды

Звезда — это образ божественной идеи, божественной воли, согласно которой возник и начал вращаться в Пространстве и жить наш Свет, Мир.

Мозаика Эшера

Одинаковым узором, повторяющимся на каждой грани многогранника, можно создать чередующуюся комбинацию рисунков на объемном геометрическом теле.

Многогранники для Новогодней сказки

Сделать новогодний праздник красивым и необычным, чтобы дети видели в нём сказку, а гости восхищались, можно только своими руками. Бумажные многогранники –…

Статья в журнале Наука и Жизнь

Один из самых известных в нашей стране журналов – популяризаторов науки опубликовал на своих страницах материал об издании «Волшебные грани».

Выбрать один продукт

В настоящее время покупатель столкнулся с настолько широким ассортиментом товаров, что сил на то чтобы сделать рациональный выбор уже не хватает.
И реклама иногда только усиливает…

Правильные многогранники

Существует всего пять правильных многогранников:

  • Тетраэдр
  • Куб (Гексаэдр)
  • Октаэдр
  • Икосаэдр
  • Додекаэдр

Если какое-то из этих названий звучит для тебя как древний эльфийский язык, обязательно прочитай эту статью!

Давай посмотрим, как они выглядят, и разберем основные формулы – площади поверхности, объема, радиусов вписанной и описанной сферы.

А также решим задачу №8.

О том, как рисовать пространственные фигуры на плоскости, можно прочитать в нашей статье: «Изображение пространственных фигур. Визуальный гид».

Поехали!

Правильные многогранники — подробнее

Многогранник называется правильным, если:

  • он выпуклый;
  • все его грани являются правильными многоугольниками;
  • в каждой его вершине сходится одинаковое число его ребер.

Пять правильных многогранников

Тетраэдр

Тетраэдр состоит из четырёх равносторонних треугольников.

Фигура имеет 4 грани, 4 вершины и 6 ребер(a).

Площадь поверхности тетраэдра:

( displaystyle S={{a}^{2}}sqrt{3})

Объем тетраэдра:

( displaystyle V=frac{{{a}^{3}}}{12}sqrt{2})

Радиус описанной вокруг тетраэдра сферы:

( displaystyle R=frac{a}{4}sqrt{6})

Радиус вписанной в тетраэдр сферы:

( displaystyle R=frac{a}{12}sqrt{6})

Куб (Гексаэдр)

Куб состоит из шести квадратов.

 Фигура имеет 6 граней, 8 вершин и 12 ребер (a).

Площадь поверхности куба:

( displaystyle S=6{{a}^{2}})

Объем куба:

( displaystyle V={{a}^{3}})

Радиус описанной вокруг куба сферы:

( displaystyle R=frac{a}{2}sqrt{3})

Радиус вписанной в куб сферы:

( displaystyle r=frac{a}{2})

Октаэдр

Октаэдр составлен из восьми равносторонних треугольников.

Фигура имеет 8 граней, 6 вершин и 12 ребер (a).

Площадь поверхности октаэдра:

( displaystyle S=2{{a}^{2}}sqrt{3})

Объем октаэдра:

( displaystyle V=frac{{{a}^{3}}}{3}sqrt{2})

Радиус описанной вокруг октаэдра сферы:

( displaystyle R=frac{a}{2}sqrt{2})

Радиус вписанной в октаэдр сферы:

( displaystyle r=frac{a}{6}sqrt{6})

Икосаэдр

Икосаэдр составлен из двадцати равносторонних треугольников.

Фигура имеет 20 граней, 12 вершин и 30 ребер (a).

Площадь поверхности икосаэдра:

( displaystyle S=5{{a}^{2}}sqrt{3})

Объем икосаэдра:

( displaystyle V=frac{5{{a}^{3}}}{12}left( 3+sqrt{5} right))

Радиус описанной вокруг икосаэдра сферы:

( displaystyle R=frac{a}{4}sqrt{2left( 5+sqrt{5} right)})

Радиус вписанной в икосаэдр сферы:

( displaystyle r=frac{a}{4sqrt{3}}left( 3+sqrt{5} right))

Додекаэдр

Додекаэдр составлен из двенадцати равносторонних пятиугольников.

Фигура имеет 12 граней, 20 вершин и 30 ребер (a).

Площадь поверхности додекаэдра:

( displaystyle S=3{{a}^{2}}sqrt{5left( 5+2sqrt{5} right)})

Объем додекаэдра:

( displaystyle V=frac{{{a}^{3}}}{4}left( 15+7sqrt{5} right))

Радиус описанной вокруг додекаэдра сферы:

( displaystyle R=frac{a}{4}left( 1+sqrt{5} right)sqrt{3})

Радиус вписанной в додекаэдр сферы:

( displaystyle r=frac{a}{4}sqrt{10+frac{22}{sqrt{5}}})

Решение задачи №8 на тему «Правильные многогранники»

Задача:

В кубе ( displaystyle ABCD{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}) с ребром ( displaystyle sqrt{12}) найдите ( displaystyle A{{C}_{1}}).

Решение:

( displaystyle d=asqrt{3}),

где ( displaystyle d) – диагональ куба,( displaystyle a) – сторона куба.( displaystyle A{{C}_{1}}) – это и есть диагональ куба.

Тогда ( displaystyle A{{C}_{1}}=asqrt{3}=sqrt{12}cdot sqrt{3}=sqrt{36}=6).

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Помогите найти формулы площади боковой и полной поверхности октаэдра, додекаэдра и икосаэдра

Светлана Денисюк



Ученик

(208),
закрыт



12 лет назад

Журналист

Гуру

(2964)


12 лет назад

все три указанных тобой многогранника являются правильными,
причем все они имеют гранью треугольник –
вывод, считаем площадь треугольника и умножаем на количество граней,
например. для икосаэдра
S= 20 * S (одной грани)

Источник: мехмат

Общая площадь поверхности додекаэдра Калькулятор

Search
Дом математика ↺
математика Геометрия ↺
Геометрия 3D геометрия ↺
3D геометрия Платоновы тела ↺
Платоновы тела Додекаэдр ↺
Додекаэдр Площадь поверхности додекаэдра ↺
Площадь поверхности додекаэдра Общая площадь поверхности додекаэдра ↺

Длина ребра додекаэдра — это длина любого из ребер додекаэдра или расстояние между любой парой смежных вершин додекаэдра.Длина ребра додекаэдра [le]

+10%

-10%

Общая площадь поверхности додекаэдра – это общее количество плоскостей, заключенных во всей поверхности додекаэдра.Общая площадь поверхности додекаэдра [TSA]

⎘ копия

Общая площадь поверхности додекаэдра Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Длина ребра додекаэдра: 10 метр –> 10 метр Конверсия не требуется

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

2064.57288070676 Квадратный метр –> Конверсия не требуется




12 Общая площадь поверхности додекаэдра Калькуляторы




8 Площадь додекаэдра Калькуляторы

Общая площадь поверхности додекаэдра формула

Общая площадь поверхности додекаэдра = 3*sqrt(25+(10*sqrt(5)))*Длина ребра додекаэдра^2

TSA = 3*sqrt(25+(10*sqrt(5)))*le^2

Что такое додекаэдр?

Додекаэдр представляет собой симметричную и замкнутую трехмерную форму с 12 одинаковыми пятиугольными гранями. Это платоново тело, имеющее 12 граней, 20 вершин и 30 ребер. В каждой вершине встречаются три пятиугольные грани, а в каждом ребре встречаются две пятиугольные грани. Из всех пяти платоновых тел с одинаковой длиной ребра додекаэдр будет иметь наибольшее значение объема и площади поверхности.

Что такое Платоновые тела?

В трехмерном пространстве Платоново тело представляет собой правильный выпуклый многогранник. Он строится из конгруэнтных (одинаковых по форме и размеру), правильных (все углы равны и все стороны равны) многоугольных граней с одинаковым числом граней, сходящихся в каждой вершине. Пять тел, отвечающих этому критерию, — это тетраэдр {3,3}, куб {4,3}, октаэдр {3,4}, додекаэдр {5,3}, икосаэдр {3,5}; где в {p, q} p представляет количество ребер на грани, а q представляет количество ребер, встречающихся в вершине; {p, q} — символ Шлефли.

Добавить комментарий