Как найти площадь поверхности усеченной пирамиды
На данной странице калькулятор поможет рассчитать площадь поверхности пирамиды онлайн. Для расчета задайте периметры оснований и апофему.
Усеченная пирамида — многогранник, образованный пирамидой и её сечением, параллельным основанию.
Апофема – опущенный перпендикуляр из вершины на ребро основания.
Боковая поверхность через периметры и апофему
Формула площади боковой поверхности усеченной пирамиды через периметры и апофему:
p1 – периметр верхнего основания; p2 – периметр нижнего основания; l – апофема усеченной пирамиды.
Этот онлайн-калькулятор поможет узнать не только площадь усеченной пирамиды, но и 18 дополнительных значений. Для этого должны быть известны всего 4 значения, такие как: длины сторон верхнего и нижнего основания, общее количество граней, а также один показатель на выбор из следующих: длина ребра, высота, апофема или площадь боковой поверхности усеченной пирамиды. Введя все необходимые значения и нажав на кнопку расчета, можно будет узнать объем усеченной пирамиды, площадь, высоту, угол сторон основания, длину всех ребер и другие величины. Благодаря развернутым формулам в ответах разобраться в расчетах по величинам фигуры не составит труда.
Введите данные:
Сторона верхнего основания (a) *
Сторона нижнего основания (b) *
Количество граней усеченной пирамиды (n) *
Значение ключевого показателя *
Округление:
* – обязательно заполнить
В основаниях правильной усеченной пирамиды лежат правильные равносторонние многоугольники, зная длину стороны которых можно рассчитать периметр, площадь, радиусы вписанных и описанных окружностей и даже внутренний угол таких многоугольников.
γ=180°(n-2)/n
P=n(a+b+d)
S_a=(na^2)/(4 tan〖(180°)/n〗 )
S_b=(nb^2)/(4 tan〖(180°)/n〗 )
r_a=a/(2 tan〖(180°)/n〗 )
r_b=b/(2 tan〖(180°)/n〗 )
R_a=a/(2 sin〖(180°)/n〗 )
R_b=a/(2 sin〖(180°)/n〗 )
Площадь боковой поверхности усеченной пирамиды зависит не только от сторон оснований пирамиды, но и от ее апофемы, поэтому имея данные о сторонах и боковой площади, можно вычислить апофему, преобразовав данную формулу.
S_(б.п.)=nf (a+b)/2
f=(2S_(б.п.))/n(a+b)
Затем, зная апофему усеченной пирамиды, можно найти боковое ребро через прямоугольную трапецию, которая образована ими по боковой грани пирамиды. В основаниях такой трапеции лежат половины сторон оснований пирамиды, поэтому в прямоугольном треугольнике внутри трапеции боковое ребро будет вычисляться по теореме Пифагора. (рис. 50.2)
d=√(f^2+(b/2-a/2)^2 )=√(f^2+(b-a)^2/4)
Чтобы найти высоту усеченной пирамиды, необходимо рассмотреть такую же трапецию внутри усеченной пирамиды, тогда в ней высота будет равна аналогичному радикалу через радиусы вписанных в основания окружностей и апофему. (рис. 50.3)
h=√(f^2-(r_b-r_a )^2 )
Чтобы рассчитать углы при основаниях усеченной пирамиды и апофеме, можно воспользоваться в этой же трапеции/прямоугольном треугольнике тригонометрическими отношениями и принципом суммы углов трапеции.
cosβ=(r_b-r_a)/f
α=180°-β
Углы при основаниях и апофеме усеченной пирамиды можно вычислить в трапеции, которую боковое ребро образует с высотой пирамиды подобным образом, через радиусы вписанных в основания окружностей. (рис. 50.4)
cosδ=(R_b-R_a)/2d
ε=180°-δ
Так как площадь полной поверхности правильной усеченной пирамиды состоит из площади боковой поверхности и двух площадей оснований, то нужно просто добавить к уже имеющейся площади боковой поверхности найденные основания.
S_(п.п.)=S_(б.п.)+S_(осн.1,2)=S_(б.п.)+n(a^2/(4 tan〖(180°)/n〗 )+b^2/(4 tan〖(180°)/n〗 ))
Объем правильной усеченной пирамиды равен одной трети высоты, умноженной на сложенные вместе площади оснований и квадратный корень из их произведения.
V=1/3 h(S_осн1+S_осн2+√(S_осн1 S_осн2 ))
Усечённой пирамидой ABCDA1B1C1D1 называется часть пирамиды SABCD, заключённая между её основанием и секущей плоскостью, параллельной основанию.
Основаниями усечённой пирамиды называются параллельные грани ABCD и A1B1C1D1 (ABCD – нижнее основание, A1B1C1D1 – верхнее основание).
Высотой усечённой пирамиды называется отрезок прямой, перпендикулярный её основаниям и заключённый между их плоскостями.
Усечённая пирамида называется правильной, если её основания – правильные многоугольники и прямая, соединяющая центры оснований, перпендикулярна плоскости оснований.
Апофемою правильной усечённой пирамиды называют высоту её боковой грани.
Свойства усечённой пирамиды.
Основания – подобные многоугольники.
Боковые грани – трапеции.
Отношение высоты к высоте пирамиды, из которой она получена, равно отношению разности сторон одной грани к длине нижнего основания этой самой грани.
Поверхность усечённой пирамиды.
Площадь боковой поверхности усечённой пирамиды равна сумме площадей её боковых граней.
Полная поверхность усечённой пирамиды равна сумме площади боковой поверхности и площадей оснований.
Боковая поверхность правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему.
где Р и Р1 – периметры оснований, m – апофема усечённой пирамиды.
Правильная четырёхугольная усечённая пирамида.
Правильная треугольная усечённая пирамида.
Правильная шестиугольная усечённая пирамида.
ЗАДАЧА:
В правильной четырёхугольной усечённой пирамиде стороны оснований равны 5 и 11 дм, а диагональ пирамиды – 12 дм. Определите боковую поверхность пирамиды.
РЕШЕНИЕ:
В усечённой пирамиде АС1 имеем
А1В1 = В1С1 = С1D1 = D1А1 = 5 дм,
АВ = ВС = СD = DА = 11 дм и
А1С = 12 дм.
Найти боковую поверхность.
Из вершины А1 проведём А1N ⊥ AB и А1M ⊥ AC, тогда А1N – апофема пирамиды.
Боковая поверхность
Sбок = 1/2 (P + P1) × A1N.
где P = 4AB = 44
дм, а
P1 = 4A1B1 = 20
дм.
В квадратах АВСD и А1В1С1D1 по иіх сторонам определяем диагонали
АС = 11√͞͞͞͞͞2 (дм),
A1С1 = 5√͞͞͞͞͞5 (дм).
Рассмотрев равнобедренную трапецию АА1С1С, находим
и соответственно
Тогда из прямоугольного ∆ А1MC находим высоту пирамиды
Из равнобедренного прямоугольного ∆ AMN (∠ ANM = 90°), гипотенуза которого AM = 3√͞͞͞͞͞2 (дм), находим сторону
Апофему данной пирамиды найдём из прямоугольного
Подставляя найденные значения P, P1 и A1N в формулу боковой поверхности пирамиды, получим:
Sбок = 1/2 (44 + 20)×5 = 160 (дм2).
ОТВЕТ:
S = 160 дм2 = 1,6 м2.
ЗАДАЧА:
Высота правильной четырёхугольной усечённой пирамиды
равна 4
см. Стороны оснований равны 2
см и
8 см. Найдите площадь диагональных сечений.
РЕШЕНИЕ:
Начертим чертёж.
Диагональные сечения
AA1C1D и BB1D1D– равные равнобедренные трапеции с высотой ОО1 = h = 4 см и с основаниями
– диагоналями оснований АС и А1С1 та ВD и В1D1 соответственно. ABCD – квадрат, а поэтому
AC2 = AD2 + CD2 =
= 82 + 82 = 128,
AC = √͞͞͞͞͞128 = 8√͞͞͞͞͞2 (cм).
A1B1C1D1 – квадрат, а поэтому
A1C12 = A1D12 + C1D12 = 22 + 22 = 8,
A1C1 = √͞͞͞͞͞8 = 2√͞͞͞͞͞2 (cм).
ОТВЕТ: 20√͞͞͞͞͞2 (cм2)
ЗАДАЧА:
В правильной четырёхугольной усечённой пирамиде высота
равна 2
см, а стороны оснований – 3 см и 5
см. Найдите диагональ этой пирамиды.
РЕШЕНИЕ:
Начертим чертёж.
Диагональным сечением данной пирамиды
является равнобедренная трапеция АА1С1С.
Так как
А1С1 и АС –
диагонали квадратов, А1В1С1D1 и ABCD, то
А1С1 = А1В1 ∙ √͞͞͞͞͞2 = 3√͞͞͞͞͞2 (см) и
АС = АВ ∙ √͞͞͞͞͞2 = 5√͞͞͞͞͞2 (см).
Проведём
А1К ⊥
АС
и С1Н ⊥ АС. Тогда А1С1НК – прямоугольник
и А1С1 =
КН. Так что, прямоугольные треугольники АА1К и СС1Н равны по гипотенузе и катету.
Тогда,
АК = СН = 1/2 (АС – А1С1) =
= 1/2 (5√͞͞͞͞͞2 – 3√͞͞͞͞͞2) = √͞͞͞͞͞2 (см).
Тогда,
СК = АС – АК = 5√͞͞͞͞͞2 – √͞͞͞͞͞2 =
4√͞͞͞͞͞2 (см),
и по
теореме Пифагора в ∆ А1СК:
ОТВЕТ: 6 см
ЗАДАЧА:
В правильной четырёхугольной пирамиде плоскость, проведённая
параллельно основанию, делит высоту пирамиды пополам. Найдите сторону основания,
если площадь сечения равна 36 см2.
РЕШЕНИЕ:
Пусть SABCD – данная правильная пирамида,
основание – квадрат
ABCD, SO – высота, O –
точка пресечения диагоналей квадрата, φ – плоскость сечения, О1 –
точка пересечения φ и SO, φ ∥ (ABC), S = 36 cм2.
Поскольку φ ∥ (ABC),
то прямые пересечения 𝜑 и боковых граней параллельны соответственно рёбрам
основания:
A1B1 ∥ AB, B1C1 ∥ BC, C1D1 ∥ CD,
A1D1 ∥ AD, 𝜑 ⊥ SO,
можно рассмотреть гомотетию с центром S и коэффициентом
которая преобразует квадрат ABCD в квадрат
А1В1С1D1, стороны которого в два раза меньше, а
SABCD = 4SА1В1С1D1 = 4 ∙ 36 (см2).
SABCD = a2 = 4 ∙
36,
a = 2 ∙ 6
= 12 (см).
ОТВЕТ: 12 см
Задания к уроку 10
- Задание 1
- Задание 2
- Задание 3
Другие уроки:
- Урок 1. Прямые и плоскости в пространстве
- Урок 2. Прямая призма
- Урок 3. Наклонная призма
- Урок 4. Правильная призма
- Урок 5. Параллелепипед
- Урок 6. Прямругольный параллелепипед
- Урок 7. Куб
- Урок 8. Пирамида
- Урок 9. Правильная пирамида
- Урок 11. Цилиндр
- Урок 12. Вписанная и описанная призмы
- Урок 13. Конус
- Урок 14. Усечённый конус
- Урок 15. Вписанная и описанная пирамиды
- Урок 16. Сфера и шар
- Урок 17. Комбинация тел