Как найти площадь половины круга

Шаги

  1. Изображение с названием Find the Area of a Semicircle Step 1

    1

    Найдите радиус полукруга. Чтобы найти площадь полукруга, вам понадобится его радиус. Например, радиус полукруга 5 см.

    • Если вам дан диаметр круга, разделите его на два и получите радиус. Например, если диаметр круга 10 см, то радиус круга вычисляется так: 10/2 = 5, то есть радиус 5 см.[2]
  2. Изображение с названием Find the Area of a Semicircle Step 2

    2

    Найдите площадь полного круга и разделите ее на два. Формула для нахождения площади полного круга: πr2, где «r» — радиус круга. Так как нужно найти площадь полукруга (то есть «половину» площади круга),[3]
    разделите формулу для нахождения площади круга на два. Таким образом, формула для вычисления площади полукруга: πr2/2. Теперь в эту формулу подставьте 5 см и вы найдете площадь полукруга (вместо π подставьте 3,14). Вот как это делается:

    • Площадь = (πr2)/2
    • Площадь = (π x 5 см x 5 см)/2
    • Площадь = (π x 25 см2)/2
    • Площадь = (3,14 x 25 см2)/2
    • Площадь = 39,25 см2
  3. Изображение с названием Find the Area of a Semicircle Step 3

    3

    Не забудьте правильно записать единицы измерения. При вычислении площади необходимо всегда указывать единицы измерения в квадрате (например, см2).[4]
    При вычислении объема единицы измерения нужно указывать в кубе (например, см3).

    Реклама

Советы

  • Площадь круга вычисляется по формуле: (пи)(r^2).
  • Площадь полукруга вычисляется по формуле: (1/2)(пи)(r^2).

Реклама

Предупреждения

  • Будьте внимательны и не подставляйте диаметр в формулу для вычисления площади круга или полукруга. Если в задаче дан диаметр, разделите его на 2, чтобы получить радиус.

Реклама

Об этой статье

Эту страницу просматривали 114 922 раза.

Была ли эта статья полезной?

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Полукруг: как рассчитать периметр, площадь, центроид, упражнения

Содержание:

В полукруг это плоская фигура, ограниченная диаметром окружности и одной из двух плоских дуг окружности, определяемых указанным диаметром.

Таким образом, полукруг окаймлен полуокружность, который состоит из плоской дуги окружности и прямого сегмента, соединяющего концы плоской дуги окружности. Полукруг охватывает полукруг и все точки внутри него.

Мы можем видеть это на рисунке 1, где показан полукруг радиуса R, размер которого вдвое меньше диаметра AB. Обратите внимание, что в отличие от круга, в котором есть бесконечные диаметры, в полукруге только один диаметр.

Как мы видим на следующем изображении, полукруг – это геометрическая фигура, которая широко используется в архитектуре и дизайне:

Элементы и меры полукруга

Элементами полукруга являются:

1.- Плоская дуга окружности A⌒B

3.- Внутренняя часть указывает на полукруг, составленный из дуги A⌒B и отрезка [AB].

Периметр полукруга

Периметр – это сумма контура дуги и прямого сегмента, поэтому:

Периметр = длина дуги A⌒B + длина сегмента [AB]

В случае полукруга радиуса R его периметр P будет задан формулой:

P = π⋅R + 2⋅R = (π + 2) ⋅R

Первый член представляет собой половину периметра окружности радиуса R, а второй – длину диаметра, который в два раза больше радиуса.

Площадь полукруга

Поскольку полукруг – это один из плоских угловых секторов, которые остаются при проведении диаметра по окружности, его площадь A будет равна половине площади круга, содержащего полукруг радиуса R:

A = (π⋅R 2 ) / 2 = ½ π⋅R 2

Центроид полукруга

Центр тяжести полукруга находится на его оси симметрии на высоте, измеренной от его диаметра, умноженного на 4 / (3π) радиуса R.

Это соответствует приблизительно 0,424⋅R, измеренному от центра полукруга и на его оси симметрии, как показано на рисунке 3.

Момент инерции полукруга

Момент инерции плоской фигуры относительно оси, например оси x, определяется как:

Интеграл от квадрата расстояния между точками, принадлежащими фигуре, до оси, дифференциал интегрирования является бесконечно малым элементом площади, взятой в положении каждой точки.

На рисунке 4 показано определение момента инерции IИкс полукруга радиуса R относительно оси X, проходящей через его диагональ:

Момент инерции относительно оси x определяется выражением:

А момент инерции относительно оси симметрии y равен:

Следует отметить, что оба момента инерции совпадают в своей формуле, но важно отметить, что они относятся к разным осям.

Вписанный угол

Угол, вписанный в полукруг, всегда равен 90 °. Независимо от того, где находится точка на дуге, угол между сторонами AB и BC фигуры всегда правильный.

Решенные упражнения

Упражнение 1

Определите периметр полукруга радиусом 10 см.

Решение

Помните, что периметр как функция радиуса определяется формулой, которую мы видели ранее:

P = (2 + 3,14) ⋅ 10 см = 5,14 ⋅ 10 см = 51,4 см.

Упражнение 2.

Найдите площадь полукруга радиусом 10 см.

Решение

Формула площади полукруга:

А = ½ π⋅R 2 = ½ π⋅ (10 см) 2 = 50π см 2 = 50 х 3,14 см 2 = 157 см 2 .

Упражнение 3.

Определите высоту h центра тяжести полукруга радиусом R = 10 см, измеренную от его основания, при том же диаметре полукруга.

Решение

Центроид – это точка равновесия полукруга, и его положение находится на оси симметрии на высоте h от основания (диаметр полукруга):

h = (4⋅R) / (3π) = (4⋅10 см) / (3 x 3,14) = 4,246 см

Упражнение 4.

Найдите момент инерции полукруга относительно оси, совпадающей с его диаметром, зная, что полукруг состоит из тонкого листа. Его радиус 10 см, а масса 100 грамм.

Решение

Формула, которая дает момент инерции полукруга:

Но поскольку задача говорит нам, что это материальный полукруг, то предыдущее соотношение необходимо умножить на поверхностную плотность массы полукруга, которую мы будем обозначать σ.

яИкс = σ (π⋅R 4 ) / 8

Затем мы переходим к определению σ, которое представляет собой не что иное, как массу полукруга, деленную на его площадь.

Площадь была определена в упражнении 2, и результат составил 157 см. 2 . Тогда поверхностная плотность этого полукруга будет:

σ = 100 грамм / 157 см 2 = 0,637 г / см 2

Тогда момент инерции по отношению к диаметру будет рассчитываться следующим образом:

яИкс = (0,637 г / см 2 ) [3,1416 ⋅ (10 см) 4 ] / 8

яИкс = 2502 г⋅см 2

Упражнение 5.

Определить момент инерции полукруга радиусом 10 см из листа материала с поверхностной плотностью 0,637 г / см. 2 вдоль оси, проходящей через его центр тяжести и параллельной его диаметру.

Решение

Чтобы решить это упражнение, необходимо вспомнить теорему Штейнера о моментах инерции параллельных осей, которая гласит:

Момент инерции I относительно оси, находящейся на расстоянии h от центроида, равен сумме момента инерции Ic относительно оси, которая проходит через центроид и параллельна первой, плюс произведение массы на квадрат расстояния между двумя осями.

В нашем случае I известен как момент инерции по отношению к диаметру, который уже был вычислен в упражнении 4. Также известно расстояние h между диаметром и центроидом, которое было вычислено в упражнении 3.

Нам нужно только очистить Ic:

яc= 2502 г⋅см 2 – 100 г ⋅ (4,246 см) 2 в результате чего момент инерции по оси, параллельной диаметру и проходящей через центроид, равен:

Ссылки

  1. Александр, Д. 2013. Геометрия. 5-е. Издание. Cengage Learning.
  2. Открытый справочник по математике. Полукруг. Получено с: mathopenref.com.
  3. Полукруг формул Вселенной. Получено с: universaloformulas.com.
  4. Формулы Вселенной. Площадь полукруга. Получено с: universaloformulas.com.
  5. Википедия. Полукруг. Получено с: en.wikipedia.com.

Стеклоиономер: получение, свойства, виды, применение

12 фруктов и овощей, которые начинаются с буквы J

Площадь круга: как найти, формулы

О чем эта статья:

площадь, 6 класс, 9 класс, ЕГЭ/ОГЭ

Определение основных понятий

Прежде чем погрузиться в последовательность расчетов и узнать, чему равна площадь круга, важно выяснить разницу между понятиями окружности и круга.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.

Если говорить простым языком, окружность — это замкнутая линия, как, например, кольцо и шина. Круг — плоская фигура, ограниченная окружностью, как монетка или крышка люка.

Формула вычисления площади круга

Давайте разберем несколько формул расчета площади круга. Поехали!

Площадь круга через радиус

S = π × r 2 , где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она приблизительно равна 3,14.

Площадь круга через диаметр

S = d 2 : 4 × π, где d — это диаметр.

Площадь круга через длину окружности

S = L 2 ​ : (4 × π), где L — это длина окружности.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Задачи. Определить площадь круга

Мы разобрали три формулы для вычисления площади круга. А теперь тренироваться — поехали!

Задание 1. Как найти площадь круга по диаметру, если значение радиуса равно 6 см.

Диаметр окружности равен двум радиусам.

Используем формулу: S = π × d 2 : 4.

Подставим известные значения: S = 3,14 × 12 2 : 4.

Ответ: 113,04 см 2 .

Задание 2. Найти площадь круга, если известен диаметр, равный 90 мм.

Используем формулу: S = π × d 2 : 4.

Подставим известные значения: S = 3,14 × 90 2 : 4.

Ответ: 6358,5 мм 2 .

Задание 3. Найти длину окружности при радиусе 3 см.

Отношение длины окружности к диаметру является постоянным числом.

Получается: L = d × π.

Так как диаметр равен двум радиусам, то формула длины окружности примет вид: L = 2 × π × r.

Подставим значение радиуса: L = 2 × 3,14 × 3.

Ответ: 18,84 см 2 .

[spoiler title=”источники:”]

http://ru1.warbletoncouncil.org/semicirculo-7039

http://skysmart.ru/articles/mathematic/ploshad-kruga

[/spoiler]

Steps

  1. Image titled Find the Area of a Semicircle Step 1

    1

    Find the radius of the semi-circle. You’ll need the radius to find the area of the semi-circle. Let’s say the radius of the semi-circle is 5 centimeter (2.0 in).

    • If you’re only given the diameter of the circle, you can divide it by two to get the radius. For example, if the diameter of the circle is 10 centimeter (3.9 in), then you can divide it by 2 (10/2) to get 5 centimeter (2.0 in) as the radius.[2]
  2. Image titled Find the Area of a Semicircle Step 2

    2

    Find the area of the full circle and divide it by two. The formula for finding the area of a full circle is πr2, where “r” represents the radius of the circle. Since you’re finding the area of a semi-circle, you’ll be looking for half of the area of a circle,[3]
    which means you have to use the formula for finding the area of a semi-circle and then divide it by two. So, the formula you’ll have to use to find the area of a semi-circle is πr2/2. Now, just plug “5 centimeter (2.0 in)” into the formula to get your answer. You can either use the closest approximation for π with your calculator, substitute 3.14 for π, or you can just leave the symbol in place. Here’s how you do it:

    • Area = (πr2)/2
    • Area = (π x 5 cm x 5 cm)/2
    • Area = (π x 25 cm2)/2
    • Area = (3.14 x 25 cm2)/2
    • Area = 39.25 cm2

    Advertisement

  3. Image titled Find the Area of a Semicircle Step 3

    3

    Remember to state your answer in units squared. Since you’re finding the area of a shape, you’ll have to use units square d (such as cm2) in your answer to indicate that you’re working with a two-dimensional object.[4]
    If you’re calculating volume, then you’ll be working with cubic units (such as cm3).

  4. Advertisement

Add New Question

  • Question

    How do I find the area of a circle?

    Donagan

    Multiply pi by the square of the radius.

  • Question

    Should I follow PEMDAS in the formula?

    Donagan

    You don’t have to worry about PEMDAS, because the formula involves only multiplication and division.

  • Question

    What is the area of a semicircle with the radius of 1.4 m?

    Community Answer

    Given a radius of circle = 1.4m. As we know, the area of semicircle=((pie)*r*r)/2=(3.14*1.4*1.4)/(2)=3.078 m square.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • The area of a semicircle is (1/2)(pi)(r^2).

  • The area of a circle is (pi)(r^2)

Thanks for submitting a tip for review!

Advertisement

  • Be careful not to use the diameter in the formula for finding area! If the diameter is given, then remember to divide it by 2 to get the radius.

Advertisement

About This Article

Article SummaryX

To find the area of a semicircle, start by finding the area of the full circle using the formula πr^2, where r is the radius of the circle. If you don’t know the radius, you can find it by dividing the diameter of the circle by 2. Once you’ve found the area of the full circle, just divide it by 2 to find the area of the semicircle. If you want to learn how to label your answer with the correct units, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 746,065 times.

Did this article help you?

Расчеты полукруга. Полукруг — сегмент круга, хордой которого является диаметр этого круга, и дуга окружности, лежащая между концами диаметра, круг разделен пополам через его центр. Введите одно значение, затем нажмите кнопку «Вычислить».

.

Поделиться расчетом:

Калькулятор полукруга

Радиус(r)

Диаметр(d)

Длина дуги(a)

Периметр(P)

Площадь(S)

Вычислить

Очистить

Формулы

d = 2 r
a = π r
p = π r + 2 r
S = π r2 / 2

Пояснения

Длина дуги
S- площадь, P- периметр

Площадь сегмента круга

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Площадь сегмента круга

Чтобы посчитать площадь сегмента круга воспользуйтесь нашим онлайн калькулятором:

Онлайн калькулятор

По углу и радиусу

Площадь сегмента круга по углу и радиусу
Угол α =
Радиус r =

Площадь сегмента круга

Sск =

0

Округление ответа: Округление числа π:

По длине хорды и высоте сегмента

Площадь сегмента круга по длине хорды и высоте сегмента
Хорда c =
Высота сегмента h =

Площадь сегмента круга

Sск =

0

Округление ответа:

По высоте и радиусу (или диаметру)

Площадь сегмента круга по высоте и радиусу
=
Высота сегмента h =

Площадь сегмента круга

Sск =

0

Округление ответа:

Просто введите данные и получите ответ.

Теория

Площадь сегмента окружности через угол и радиус

Чему равна площадь сегмента окружности Sск, если её радиус r, а угол сегмента α ?

Формула

В градусах:

Sск = 2(π ⋅ α180° – sin α)

В радианах:

Sск = 2(α – sin α)

Пример

К примеру, посчитаем площадь сегмента круга, имеющего радиус r = 2 см, а угол сегмента ∠α = 45°:

Sск = 2(3.14 ⋅ 45180 – sin 45) = 2 ⋅ (0.785 – 0.707) = 0.156 см²

Площадь сегмента окружности через хорду и высоту сегмента

Чему равна площадь сегмента окружности Sск, если длина хорды c, а высота сегмента h ?

Чтобы посчитать площадь сегмента, нам для начала потребуется вычислить радиус окружности r и угол сегмента α. А затем воспользоваться формулой площади сегмента из предыдущего параграфа.

Формула

Радиус круга:

r = c² + 4h²8h

Угол сегмента:

∠α = 2 ⋅ arcsinc2r

Пример

К примеру, посчитаем площадь сегмента круга, имеющего высоту h = 2 см и длину хорды c = 5 см:

r = 5² + 4⋅2²8⋅2 = 25 + 1616 = 2.5625 см∠α = 2 ⋅ arcsin52 ⋅ 2.5625 = 2 ⋅ arcsin 0.9756 ≈ 2.7 radSск = 2.5625²2 ⋅ (2.7 – sin 2.7) = 3.2832 ⋅ (2.7 – 0,427) = 7.46 см²

Площадь сегмента окружности через высоту и радиус (или диаметр)

Чему равна площадь сегмента окружности Sск, если его высота h, а радиус r ?

Если нам известен не радиус, а диаметр, то делим его на 2 и получаем радиус (r = d ÷ 2).

Далее нам остаётся определить угол сегмента α. А затем воспользоваться формулой площади сегмента, описанной выше.

Формула

Угол сегмента:

∠α = 2 ⋅ arccosr – hr

Пример

К примеру, посчитаем площадь сегмента круга, имеющего высоту h = 1 см, а диаметр окружности d = 4 см:

r = 4 ÷ 2 = 2 см

∠α = 2 ⋅ arccos2 – 12 = 2 ⋅ arccos 0.5 = 2.094 radSск = 2 ⋅ (2.094 – sin 2.094) = 2 ⋅ (2.094 – 0.866) = 2.456 см²

См. также

Добавить комментарий