Как найти площадь поверхности параллелепипеда решение

Как найти площадь поверхности параллелепипеда

На данной странице калькулятор поможет рассчитать площадь поверхности параллелепипеда онлайн. Для расчета задайте высоту, ширину и длину.

Прямоугольный параллелепипед – это многогранник, у которого все грани являются прямоугольниками.

Через стороны


Площадь поверхности параллелепипеда

a:

b:

c:

Результат


Ответы:

Формула площади поверхности параллелепипеда через его ребра:

a, b, c – ребра параллелепипеда.

Определение прямоугольного параллелепипеда

Прямоугольным параллелепипедом называется трехмерное тело, у которого противоположные грани параллельны и являются прямоугольниками. Проще говоря, прямоугольный параллелепипед представляет собой вытянутый куб.

Онлайн-калькулятор площади поверхности параллелепипеда

Прямоугольный параллелепипед можно охарактеризовать тремя числами — длинами его сторон: aa, bb, cc.

Формула площади поверхности параллелепипеда

Чтобы найти полную площадь поверхности параллелепипеда, нужно сложить площади всех его граней. Граней у параллелепипеда шесть, поэтому:

S=S1+S2+S3+S4+S5+S6S=S_1+S_2+S_3+S_4+S_5+S_6

Но так как противоположные грани прямоугольного параллелепипеда равны между собой, то: S1=S2S_1=S_2, S3=S4S_3=S_4, S5=S6S_5=S_6.

Поскольку гранями данного параллелепипеда являются прямоугольники, то их площади равны соответственно:

S1=S2=abS_1=S_2=ab
S3=S4=bcS_3=S_4=bc
S5=S6=acS_5=S_6=ac

Итак, полная площадь поверхности параллелепипеда:

Площадь поверхности прямоугольного параллелепипеда

S=2(ab+bc+ac)S=2(ab+bc+ac)

Из этой формулы следует, что если a=b=ca=b=c, то получим: S=6a2S=6a^2. Это и есть формула для площади поверхности куба со стороной aa.

Пример 1

Найдите площадь поверхности прямоугольного параллелепипеда со сторонами 2 см.2text{ см.}, 4 см.4text{ см.}, 6 см.6text{ см.}

Решение

a=2a=2
b=4b=4
c=6c=6

S=2(ab+bc+ac)=2(2⋅4+4⋅6+2⋅6)=88 (см. кв.)S=2(ab+bc+ac)=2(2cdot4+4cdot6+2cdot6)=88text{ (см. кв.)}

Ответ: 88 см. кв.88text{ см. кв.}

Пример 2

Найдите площадь поверхности прямоугольного параллелепипеда высотой 3 см.3text{ см.}, в основании которого лежит квадрат со стороной 1 см.1text{ см.}

Решение

a=b=1a=b=1
c=3c=3

S=2(ab+bc+ac)=2(1+3+3)=14 (см. кв.)S=2(ab+bc+ac)=2(1+3+3)=14text{ (см. кв.)}

Ответ: 14 см. кв.14text{ см. кв.}

Не знаете, где заказать задачу по геометрии? Обратитесь к нашим экспертам в данной области!

Тест по теме «Площадь поверхности параллелепипеда»

Площадь поверхности прямоугольного параллелепипеда

{S_{полн} = 2(ab+bc+ac)}

Прямоугольный параллелепипед

Чтобы найти площадь поверхности параллелепипеда необходимо знать длины трех его ребер. Для вычисления площади поверхности прямоугольного параллелепипеда используется формула, в которой сумма попарных произведений ребер параллелепипеда умножается на 2. По другому формулу можно трактовать как произведение площадей трех граней параллелепипеда (так как произведение ребер – это площадь грани). Кроме того на странице вы найдете калькулятор, с помощью которого в режиме онлайн можно найти площадь полной и боковой поверхности прямоугольного параллелепипеда.

В дополнение на сайте можно найти объем параллелепипеда.

Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники.

Ребро — сторона прямоугольного параллелепипеда. Длина, ширина и высота – это ребра прямоугольного параллелепипеда.

Содержание:
  1. калькулятор площади поверхности прямоугольного параллелепипеда
  2. формула площади поверхности прямоугольного параллелепипеда
  3. формула площади боковой поверхности прямоугольного параллелепипеда
  4. примеры задач

Формула площади поверхности прямоугольного параллелепипеда

Площадь поверхности прямоугольного параллелепипеда

{S_{полн} = 2(ab+bc+ac)}

a – длина прямоугольного параллелепипеда

b – ширина прямоугольного параллелепипеда

c – высота прямоугольного параллелепипеда

Формула площади боковой поверхности прямоугольного параллелепипеда

Площадь боковой поверхности прямоугольного параллелепипеда

{S_{бок} = 2(ac+bc)}

a – длина прямоугольного параллелепипеда

b – ширина прямоугольного параллелепипеда

c – высота прямоугольного параллелепипеда

Примеры задач на нахождение площади поверхности прямоугольного параллелепипеда

Задача 1

Найдите площадь поверхности прямоугольного параллелепипеда измерения которого равны 2 4 и 5.

Решение

Для нахождения площади поверхности воспользуемся первой формулой. Подставим в нее значения длины, ширины и высоты параллелепипеда и произведем вычисления.

S_{полн} = 2(ab+bc+ac) = 2(2 cdot 4 + 4 cdot 5 + 2 cdot 5) = 2(8 + 20 + 10) = 2(38) = 76 : см^2

Ответ: 76 см²

Проверим ответ с помощью калькулятора .

Задача 2

Найдите площадь поверхности прямоугольного параллелепипеда, если его измерения равны 3см 5см и 6см.

Решение

Задача аналогична предыдущей, поэтому повторим действия, подставив новые значения измерений параллелепипеда.

S_{полн} = 2(ab+bc+ac) = 2(3 cdot 5 + 5 cdot 6 + 3 cdot 6) = 2(15 + 30 + 18) = 2(63) = 126 : см^2

Ответ: 126 см²

Для проверки ответа используем калькулятор .

Задача 3

Найдите площадь поверхности прямоугольного параллелепипеда измерения которого равны 9м 24м 11м.

Решение

Еще одна типовая задача. Для ее решения также воспользуемся первой формулой.

S_{полн} = 2(ab+bc+ac) = 2(9 cdot 24 + 24 cdot 11 + 9 cdot 11) = 2(216 + 264 + 99) = 2(579) = 1158 : см^2

Ответ: 1158 см²

Проверка .

Задача 4

Найдите площадь боковой поверхности прямоугольного параллелепипеда у которого a=4см, b=5см, c=7см.

Решение

В этой задаче нам необхожимо найти площадь боковой поверхности. Поэтому мы будем использовать для ее решения вторую формулу.

S_{бок} = 2(ac+bc) = 2(4 cdot 7 + 5 cdot 7) = 2(28 + 35) = 2(63) = 126 : см^2

Ответ: 126 см²

Как всегда ответ можно проверить с помощью калькулятора .

В данной публикации мы рассмотрим, как можно вычислить площадь поверхности прямоугольного параллелепипеда и разберем пример решения задачи для закрепления материала.

  • Формула вычисления площади

  • Пример задачи

Формула вычисления площади

Площадь (S) поверхности прямоугольного параллелепипеда вычисляется следующим образом:

S = 2 (ab + bc + ac)

Площадь поверхности прямоугольного параллелепипеда

Формула получена следующим образом:

  1. Гранями прямоугольного параллелепипеда являются прямоугольники, причем противоположные грани равны между собой:
    • два основания: со сторонами a и b;
    • четыре боковые грани: со стороной a/b и высотой c.
  2. Сложив площади всех граней, каждая из которых равна произведению сторон разной длины, получаем: S = ab + ab + bc + bc + ac + ac = 2 (ab + bc + ac).

Пример задачи

Вычислите площадь поверхности прямоугольного параллелепипеда, если известно, что его длина равна 6 см, ширина – 4 см, а высота – 7 см.

Решение:
Воспользуемся формулой выше, подставив в нее известные значения:
S = 2 ⋅ (6 см ⋅ 4 см + 6 см ⋅ 7 см + 4 см ⋅ 7 см) = 188 см2.

Площадь поверхности параллелепипеда: онлайн-калькулятор

Для нахождения площади полной поверхности параллелепипеда необходимо рассчитать сумму площадей трех его граней и удвоить результат. Чтобы не совершать действия вручную и получить верный ответ быстро, воспользуйтесь нашим сервисом.

Наша компания помогает разобраться в задачах по алгебре и геометрии. Сервис работает без регистрации и оплаты. Автоматизированная программа производит последовательные вычисления, которые доступны для просмотра. Такая система позволяет избежать ошибок во время промежуточных действий.

Вычисление площади поверхности параллелепипеда. Онлайн-калькулятор

В программу заложен расчет площади поверхности параллелепипеда по формуле:

где a, b, h – ребра фигуры.

Для школьников сервис с основными математическими вычислениями – это возможность самостоятельно подготовиться к поступлению в ВУЗ. Число запросов на расчет не ограничивается, поэтому тренироваться в решении задач можно до полного усвоения темы. Формула в решении в совокупности с готовым чертежом ускоряет запоминание материала. Совершение вычислений не требуется оплачивать. Бесплатная помощь ученикам позволяет сэкономить на репетиторах и повысить успеваемость по математике.  

Также сервис используют:

  • студенты для подстраховки на зачетах и экзаменах. Готовое решение поможет быстро сориентироваться в задании.
  • преподаватели во время проверки работ учеников. Также сервис дает возможность разнообразить план урока и подготовить для каждого ученика индивидуальное задание.
  • инженеры и специалисты технических профессий, чтобы исключить погрешности в расчетах и оптимизировать рабочий процесс.

В разделе калькуляторов вы также найдете программы для нахождения площадей других фигур.

Добавить комментарий