В данной публикации мы рассмотрим, как найти радиус описанной вокруг прямого цилиндра сферы, а также площадь ее поверхности и объем шара, ограниченного этой сферой.
Нахождение радиуса сферы/шара
Около любого цилиндра можно описать сферу (или другими словами, вписать цилиндр в шар) – но только одну.
- Центром такой сферы будет являться центр цилиндра, в нашем случае – это точка O.
- O1 и O2 – центры оснований цилиндра.
- O1O2 – высота цилиндра (h).
- OO1 = OO2 = h/2.
Можно заметить, что радиус описанной сферы (OE), половина высоты цилиндра (OO1) и радиус его основания (O1E) образовывают прямоугольный треугольник OO1E.
Воспользовавшись теоремой Пифагора мы можем найти гипотенузу этого треугольника, которая одновременно является радиусом сферы, описанной около заданного цилиндра:
Зная радиус сферы можно вычислить площадь (S) ее поверхности и объем (V) ограниченного сферой шара:
- S = 4 ⋅ π ⋅ R2
- S = 4/3 ⋅ π ⋅ R3
Примечание: π округленно равняется 3,14.
Решение
Из рисунка, указанного в условии, видно, что, с одной стороны, диаметр шара является диаметром окружности основания цилиндра, а с другой стороны, является высотой цилиндра. Пусть радиус шара равен R, тогда его диаметр равен 2R, значит, высота цилиндра H равна 2R. Находим площадь полной поверхности цилиндра: S полн. пов. цил. = 2S осн. цил. + S бок. пов. цил. = 2pi R^2 + 2pi RH.
2pi R^2 + 2pi RH = 2pi R^2 + 2pi Rcdot 2R = 6pi R^2. По условию 24 = 6pi R^2. Отсюда pi R^2 = 4. Так как S пов. шара = 4pi R^2, то искомая площадь равна 4cdot 4 = 16.
Ответ
16
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Шар, вписанный в цилиндр, касается оснований цилиндра в их центрах, а боковой поверхности цилиндра — по параллельной основаниям окружности большого круга (то есть радиус этой окружности равен радиусу шара).
Если шар вписан в цилиндр, то цилиндр описан около шара.
В цилиндр можно вписать шар тогда и только тогда, когда цилиндр равносторонний, то есть его высота равна диаметру. Радиус вписанного в цилиндр шара R равен радиусу цилиндра r:
R=r.
Решение задач на шар, вписанный в цилиндр, чаще всего сводится к рассмотрению осевого сечения комбинации тел.
Это сечение представляет собой квадрат с вписанной в него окружностью. Сторона квадрата равна высоте цилиндра и диаметру шара:
H=2R
Найдем отношение объема цилиндра к объему вписанного в него шара. Объем шара
Объем цилиндра
Отсюда отношение объема шара к объему описанного около него цилиндра
Теперь найдем отношение площади поверхности цилиндра к площади вписанного шара. Площадь поверхности шара (площадь сферы)
Площадь полной поверхности цилиндра равна сумме площадей оснований и боковой поверхности:
Отсюда отношение площади поверхности вписанного шара к площади поверхности цилиндра
Задать свой вопрос
*более 50 000 пользователей получили ответ на «Решим всё»
Задача 51295 Около шара описан цилиндр площадь полной…
Условие
ango2004
2020-05-22 17:18:23
Около шара описан цилиндр площадь полной поверхности которого равна 12 найдите площадь поверхности шара
математика
5719
Решение
sova
2020-05-22 17:21:55
★
Значит, в квадрат вписана окружность
2R=H
S_(полн. цилиндра)=S_(бок)+2S_(осн)=2π*R*H+2π*R^2
Н=2R
=2π*R*(2R)+2π*R^2=6πR^2
По условию
S_(полн. цилиндра)=12
6πR^2=12
[b]πR^2=2[/b]
S_(шара)=4π*R^2=4*([red]π*R^2[/red])=4*2=[b]8[/b]
Написать комментарий
Меню
- Решим всё
- Найти задачу
- Категории
- Статьи
- Тесты
- Архив задач
Присоединяйся в ВК
Все формулы для площадей полной и боковой поверхности тел
1. Площадь полной поверхности куба
a – сторона куба
Формула площади поверхности куба,(S):
2. Найти площадь поверхности прямоугольного параллелепипеда
a, b, c – стороны параллелепипеда
Формула площади поверхности параллелепипеда, (S):
3. Найти площадь поверхности шара, сферы
R – радиус сферы
π ≈ 3.14
Формула площади поверхности шара (S):
4. Найти площадь боковой и полной поверхности цилиндра
r – радиус основания
h – высота цилиндра
π ≈ 3.14
Формула площади боковой поверхности цилиндра, (Sбок):
Формула площади всей поверхности цилиндра, (S):
5. Площадь поверхности прямого, кругового конуса
R – радиус основания конуса
H – высота
L – образующая конуса
π ≈ 3.14
Формула площади боковой поверхности конуса, через радиус (R) и образующую (L), (Sбок):
Формула площади боковой поверхности конуса, через радиус (R) и высоту (H), (Sбок):
Формула площади полной поверхности конуса, через радиус (R) и образующую (L), (S):
Формула площади полной поверхности конуса, через радиус (R) и высоту (H), (S):
6. Формулы площади поверхности усеченного конуса
R – радиус нижнего основания
r – радиус верхнего основания
L – образующая усеченного конуса
π ≈ 3.14
Формула площади боковой поверхности усеченного конуса, (Sбок):
Формула площади полной поверхности усеченного конуса, (S):
7. Площадь поверхности правильной пирамиды через апофему
L – апофема (опущенный перпендикуляр OC из вершины С, на ребро основания АВ)
P – периметр основания
Sосн – площадь основания
Формула площади боковой поверхности правильной пирамиды (Sбок):
Формула площади полной поверхности правильной пирамиды (S):
8. Площадь боковой поверхности правильной усеченной пирамиды
m – апофема пирамиды, отрезок OK
P – периметр нижнего основания, ABCDE
p – периметр верхнего основания, abcde
Формула площади боковой поверхности правильной усеченной пирамиды, (S):
9. Площадь поверхности шарового сегмента
R – радиус самого шара
h – высота сегмента
π ≈ 3.14
Формула площади поверхности шарового сегмента, (S):
10. Площадь поверхности шарового слоя
h – высота шарового слоя, отрезок KN
R – радиус самого шара
O – центр шара
π ≈ 3.14
Формула площади боковой поверхности шарового слоя, (S):
11. Площадь поверхности шарового сектора
R – радиус шара
r – радиус основания конуса = радиус сегмента
π ≈ 3.14
Формула площади поверхности шарового сектора, (S):