Как найти площадь произвольного треугольника в прямоугольнике

Площадь прямоугольного треугольника

Онлайн калькулятор – площадь прямоугольного треугольника

Треугольник – это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние.

Треугольники бывают прямоугольный, равнобедренный, равносторонний.

Катет – это прилежащая прямому углу сторона треугольника.

Гипотенуза – это сторона треугольника противолежащая прямому углу.

Формула площади прямоугольного треугольника

Чтобы посчитать площадь прямоугольного треугольника, необходимо знать размеры двух сторон треугольника.

Площадь прямоугольного треугольника расчитывается по формуле:

  • S – площадь треугольника
  • a – катет
  • b – катет
  • c – гипотенуза

Если известены размеры только одного катета и гипотенузы, тогда площадь прямоугольного треугольника можно расчитать по формулам:

Найти площадь прямоугольного треугольника

Онлайн калькулятор

Чтобы вычислить площадь прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • длины катетов a и b
  • длину гипотенузы с и длину любого из катетов (a или b)
  • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
  • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • длину гипотенузы с и один из острых углов (α или β)

Найти площадь прямоугольного треугольника по двум катетам

Теория

Чему равна площадь (S) прямоугольного треугольника если известны оба катета (a и b)?

Формула
Пример

К примеру найдём площадь прямоугольного треугольника у которого сторона a = 2 см, а сторона b = 4 см:

S = 2 ⋅ 4 / 2 = 8 / 2 = 4 см²

Найти площадь прямоугольного треугольника по катету и гипотенузе

Теория

Чему равна площадь (S) прямоугольного треугольника если известны его гипотенуза (c) и один из катетов (a или b)?

Формула

S = ½ ⋅ a ⋅ √ c² – a² = ½ ⋅ b ⋅ √ c² – b²

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 2 см, а гипотенуза c = 5 см:

S = 2 ⋅ √ 5² – 2² / 2 = √ 25 – 4 ≈ 4.58 см²

Найти площадь прямоугольного треугольника по катету и прилежащему к нему острому углу

То есть к катету a прилежащий ∠β, а к катету b∠α

Теория

Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

S = ½ ⋅ a² ⋅ tg(β) = ½ ⋅ b² ⋅ tg(α)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а прилежащий к нему ∠β = 45°:

S = ½ ⋅ 4² ⋅ tg(45) = ½ ⋅ 16 ⋅ 1 = 16 / 2 = 8 см²

Найти площадь прямоугольного треугольника по катету и противолежащему к нему острому углу

То есть к катету a противолежащий ∠α, а к катету b∠β

Теория

Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

S = ½ ⋅ a² ⋅ tg(90 – α) = ½ ⋅ b² ⋅ tg(90 – β)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а противолежащий к нему ∠α = 45°:

S = 4² / 2⋅ tg(45) = 16 / 2 ⋅ 1 = 8 см²

Найти площадь прямоугольного треугольника зная длину гипотенузы и один из острых углов

Теория

Чему равна площадь (S) прямоугольного треугольника если известны длина гипотенузы (c) и один из острых углов?

Формула

S = ½ ⋅ c² ⋅ sin(α) ⋅ cos(α) = ½ ⋅ c² ⋅ sin(β) ⋅ cos(β)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого гипотенуза c = 8 см, а ∠α = 45°:

S = ½ ⋅ 8² ⋅ sin(45) ⋅ cos(45) ≈ ½ ⋅ 64 ⋅ 0.7071067812 ⋅ 0.7071067812 ≈ 16 см²

Площадь прямоугольного треугольника

О чем эта статья:

площадь, 8 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные определения

Прямоугольный треугольник — это треугольник, в котором один угол прямой, то есть равен 90˚.

Гипотенуза — это сторона, противолежащая прямому углу.

Катеты — это стороны, прилежащие к прямому углу.

Чтобы найти площадь прямоугольного треугольника, можно применить любую формулу нахождения площади треугольника — их несколько.

Формула для нахождения площади прямоугольного треугольника через катеты

Чтобы найти площадь, нужно вывести формулу:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию.

Так как в прямоугольном треугольнике катеты перпендикулярны, то один катет — это высота, проведенная ко второму катету.

Отсюда следует, что площадь прямоугольного треугольника равна половине произведения его катетов.

Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через катеты.

S = 1/2 (a × b), где a и b — катеты

Формула для нахождения площади прямоугольного треугольника через гипотенузу

Площадь прямоугольного треугольника равна половине произведения гипотенузы на высоту, проведенную к гипотенузе.

где с — гипотенуза,

Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через гипотенузу.

Формула для нахождения площади прямоугольного треугольника через гипотенузу и острый угол

α, β — острые углы

Формулы нахождения площади прямоугольного треугольника через катет и угол

α, β — острые углы

Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Радиус вписанной окружности выражается через катеты и гипотенузу по формуле:

S прямоугольного треугольника = r (r + c) = c1 × c2

r — радиус вписанной окружности

C1 и С2 — отрезки, полученные делением гипотенузы на две части точкой касания с окружностью

Уверены, что во всем разобрались? Закрепите знания на курсах обучения математике в онлайн-школе Skysmart!

[spoiler title=”источники:”]

http://poschitat.online/ploshad-pryamougolnogo-treugolnika

http://skysmart.ru/articles/mathematic/kak-najti-ploshad-pryamougolnogo-treugolnika

[/spoiler]

Рассмотрим задачи,в которых требуется найти площадь треугольника изображённого на клетчатой бумаге.

Начнем с прямоугольных треугольников.

Задача 1

На клетчатой бумаге с размером клетки 1×1 изображен прямоугольный треугольник.

Найти его площадь.

Решение:

Площадь прямоугольного треугольника будем искать с помощью формулы

    [S = frac{1}{2}ab,]

где a и b — катеты.

Длину катетов считаем по клеточкам.

ploshchad-pryamougolnogo-treugolnika-po-risunku1) a=2, b=5,

    [ S = frac{1}{2} cdot 2 cdot 5 = 5. ]

2) a=6, b=3,

    [ S = frac{1}{2} cdot 6 cdot 3 = 9. ]

Задача 2

ploshchad-treugolnika-po-risunkuНа клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найти его площадь.

Решение:

Чаще всего площадь произвольного треугольника, изображённого на клетчатой бумаге, ищут по формуле

    [S = frac{1}{2}ah_a ,]

где a — сторона треугольника, ha — высота, проведённая к этой стороне.

ploshchad-treugolnika-na-kletchatoj-bumagea  и ha вычисляем по клеточкам (одна из этих величин должна лежать на горизонтальной линии, другая — на вертикальной).

1) a=6, ha=4,

    [ S = frac{1}{2}ah_a = frac{1}{2} cdot 6 cdot 4 = 12. ]

2) a=3, ha=5,

    [ S = frac{1}{2}ah_a = frac{1}{2} cdot 3 cdot 5 = 7,5. ]

А как найти площадь, если ни одна из сторон треугольника не лежит на горизонтальной или вертикальной линии клеток?

Иногда площадь треугольника можно найти как разность площадей других фигур.

Задача 3

najti-ploshchad-treugolnika-po-risunku

На клетчатой бумаге с размером клетки 1×1 изображён треугольник.

Найдите его площадь.

najti-ploshchad-treugolnika-na-bumage

Решение:

Обозначим вершины треугольника, площадь которого мы ищем, через A, B и C.

Площадь треугольника ABC можно найти как разность площадей прямоугольника AMNK и треугольников AKC, AMB и CBN:

    [S_{Delta ABC} = S_{AMNK} - S_{Delta AKC} - S_{Delta AMB} - S_{Delta CBN} .]

Площадь прямоугольника найдём по формуле S=ab.

    [ S_{AMNK} = AM cdot AK = 7 cdot 5 = 35. ]

Площади прямоугольных треугольников найдём по формуле

    [ S = frac{1}{2}ab, ]

где a и b — катеты.

    [S_{Delta AKC} = frac{1}{2}AK cdot KC = frac{1}{2} cdot 5 cdot 1 = 2,5;]

    [S_{Delta AMB} = frac{1}{2}AM cdot MB = frac{1}{2} cdot 7 cdot 3 = 10,5;]

    [S_{Delta CBN} = frac{1}{2}CN cdot BN = frac{1}{2} cdot 6 cdot 2 = 6.]

Отсюда

    [S_{Delta ABC} = 35 - 2,5 - 10,5 - 6 = 16.]

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Площадь треугольника через основание и высоту

{S = dfrac{1}{2} cdot a cdot h}

Задача нахождения площади треугольника довольно распространена не только в науке, но и в быту. Для вас мы разработали калькулятор для нахождения площади любого треугольника – равнобедренного, равностороннего, прямоугольного или обыкновенного (разностороннего) по 22 формулам.

  1. Калькулятор площади треугольника
  2. Площадь треугольника
    1. через основание и высоту
    2. через две стороны и угол между ними
    3. через сторону и два прилежащих угла
    4. через радиус описанной окружности и 3 стороны
    5. через радиус вписанной окружности и 3 стороны
    6. по формуле Герона
  3. Площадь прямоугольного треугольника
    1. через катеты
    2. через гипотенузу и прилежащий угол
    3. через катет и прилежащий угол
    4. через радиус вписанной окружности и гипотенузу
    5. через вписанную окружность
    6. по формуле Герона
    7. через катет и гипотенузу
  4. Площадь равнобедренного треугольника
    1. через основание и сторону
    2. через основание, боковую сторону и угол
    3. через основание и высоту
    4. через боковые стороны и угол между ними
    5. через основание и угол между боковыми сторонами
  5. Площадь равностороннего треугольника
    1. через сторону
    2. через высоту
    3. через радиус описанной окружности
    4. через радиус вписанной окружности
  6. Примеры задач

Площадь треугольника

Треугольник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.

Площадь треугольника через основание и высоту

Площадь треугольника через основание и высоту

{S = dfrac{1}{2} cdot a cdot h}

a – длина основания

h – высота, проведенная к основанию

Площадь треугольника через две стороны и угол между ними

Площадь треугольника через две стороны и угол между ними

{S = dfrac{1}{2} cdot a cdot b cdot sin(alpha)}

a и b – стороны треугольника

α – угол между сторонами a и b

Площадь треугольника через сторону и два прилежащих угла

Площадь треугольника через сторону и два прилежащих угла

{S = dfrac{a^2}{2} cdot dfrac{sin{(alpha)} cdot sin{(beta)}}{sin{(gamma)}}}
{gamma = 180 – (alpha + beta)}

a – сторона треугольника

α и β – прилежащие к стороне a углы

Площадь треугольника через радиус описанной окружности и 3 стороны

Площадь треугольника через радиус описанной окружности и 3 стороны

{S = dfrac{a cdot b cdot c}{4 cdot R}}

a, b и c – стороны треугольника

R – радиус описанной окружности

Площадь треугольника через радиус вписанной окружности и 3 стороны

Площадь треугольника через радиус вписанной окружности и 3 стороны

{S = r cdot dfrac{a + b + c}{2}}

a, b и c – стороны треугольника

r – радиус вписанной окружности

Площадь треугольника по формуле Герона

Площадь треугольника по формуле Герона

{S = sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}}
{p= dfrac{a+b+c}{2}}

a, b и c – стороны треугольника

p – полупериметр треугольника

Площадь прямоугольного треугольника

Прямоугольный треугольник — это треугольник, в котором один угол прямой (равен 90 градусов).

Площадь прямоугольного треугольника через катеты

Площадь прямоугольного треугольника через катеты

{S = dfrac{1}{2} cdot a cdot b}

a и b – стороны треугольника

Площадь прямоугольного треугольника через гипотенузу и прилежащий угол

Площадь прямоугольного треугольника через гипотенузу и прилежащий угол

{S = dfrac{1}{4} cdot c^2 cdot sin{(2 alpha)}}

c – гипотенуза прямоугольного треугольника

α – прилежащий к гипотенузе c угол

Площадь прямоугольного треугольника через катет и прилежащий угол

Площадь прямоугольного треугольника через катет и прилежащий угол

{S = dfrac{1}{2} cdot a^2 cdot tg{(alpha)}}

a – катет прямоугольного треугольника

α – прилежащий к катету a угол

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

{S = r cdot (r+c)}

r – радиус вписанной окружности

c – гипотенуза прямоугольного треугольника

Площадь прямоугольного треугольника через вписанную окружность

Площадь прямоугольного треугольника через вписанную окружность

{S = c_1 cdot c_2}

с1 и с2 – отрезки, полученные делением гипотенузы точкой касания окружности

Площадь прямоугольного треугольника по формуле Герона

Площадь прямоугольного треугольника по формуле Герона

{S = (p-a) cdot (p-b)}
{p= dfrac{a+b+c}{2}}

a, b и c – стороны треугольника

p – полупериметр треугольника

Площадь прямоугольного треугольника через катет и гипотенузу

Площадь прямоугольного треугольника через катет и гипотенузу

{S = dfrac{1}{2} cdot a cdot sqrt{c^2 – a^2}}

a – катет прямоугольного треугольника

c – гипотенуза прямоугольного треугольника

Площадь равнобедренного треугольника

Равнобедренный треугольник — треугольник, в котором две стороны равны между собой по длине.

Площадь равнобедренного треугольника через основание и сторону

Площадь равнобедренного треугольника через основание и сторону

{S = dfrac{b}{4} sqrt{4a^2 – b^2}}

a – боковая сторона равнобедренного треугольника

b – основание равнобедренного треугольника

Площадь равнобедренного треугольника через основание, сторону и угол

Площадь равнобедренного треугольника через основание, сторону и угол

{S = dfrac{1}{2} cdot a cdot b cdot sin{(alpha)}}

a – боковая сторона равнобедренного треугольника

b – основание равнобедренного треугольника

α – угол между основанием и боковой стороной

Площадь равнобедренного треугольника через основание и высоту

Площадь равнобедренного треугольника через основание и высоту

{S = dfrac{1}{2} cdot b cdot h}

b – основание равнобедренного треугольника

h – высота, проведенная к основанию равнобедренного треугольника

Площадь равнобедренного треугольника через боковые стороны и угол между ними

Площадь равнобедренного треугольника через боковые стороны и угол между ними

{S = dfrac{1}{2} cdot a^2 cdot sin(alpha)}

a – боковые стороны равнобедренного треугольника

α – угол между боковыми сторонами

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

{S = dfrac{b^2}{4 cdot tg {( dfrac{alpha}{2} )}}}

b – основание равнобедренного треугольника

α – угол между боковыми сторонами

Площадь равностороннего треугольника

Равносторонний треугольник – треугольник, у которого все стороны равны.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через сторону

{S = dfrac{sqrt{3} cdot a^2}{4}}

a – сторона равностороннего треугольника

Площадь равностороннего треугольника через высоту

Площадь равностороннего треугольника через высоту

{S = dfrac{h^2}{sqrt{3}}}

h – высота равностороннего треугольника

Площадь равностороннего треугольника через радиус описанной окружности

Площадь равностороннего треугольника через радиус описанной окружности

{S = dfrac{3 sqrt{3} cdot R^2}{4}}

R – радиус описанной окружности

Площадь равностороннего треугольника через радиус вписанной окружности

Площадь равностороннего треугольника через радиус вписанной окружности

{S = 3 sqrt{3} cdot r^2}

r – радиус описанной окружности

Примеры задач на нахождение площади треугольника

Задача 1

Найдите площадь треугольника со сторонами 13 14 15.

Решение

Для решения задачи воспользуемся формулой Герона.

S = sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}

Для начала нам необходимо найти полупериметр p:

p= dfrac{a+b+c}{2}p= dfrac{13+14+15}{2}= dfrac{42}{2} = 21

Теперь можем подставить его в формулу Герона и найти ответ:

S = sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)} = sqrt{21 cdot (21-13) cdot (21-14) cdot (21-15)} = sqrt{21 cdot (8) cdot (7) cdot (6)} = sqrt{21 cdot 336} = sqrt{7056} = 84 : см^2

Ответ: 84 см²

Убедимся в правильности решения с помощью калькулятора .

Задача 2

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 100.

Решение

Воспользуемся формулой.

S = dfrac{1}{2} cdot a cdot sqrt{c^2 – a^2} = dfrac{1}{2} cdot 28 cdot sqrt{100^2 – 28^2} = dfrac{1}{2} cdot 28 cdot sqrt{10000 – 784} = dfrac{1}{2} cdot 28 cdot sqrt{9216} = dfrac{1}{2} cdot 28 cdot 96 = 14 cdot 96 = 1344 : см^2

Ответ: 1344 см²

Проверим ответ на калькуляторе .

Задача 3

Найдите площадь прямоугольного треугольника если его катет и гипотенуза равны соответственно 15 и 17.

Решение

Задача аналогична предыдущей, поэтому решение очень похоже.

S = dfrac{1}{2} cdot a cdot sqrt{c^2 – a^2} = dfrac{1}{2} cdot 15 cdot sqrt{17^2 – 15^2} = dfrac{1}{2} cdot 15 cdot sqrt{289 – 225} = dfrac{1}{2} cdot 15 cdot sqrt{64} = dfrac{1}{2} cdot 15 cdot 8 = 15 cdot 4 = 60 : см^2

Ответ: 60 см²

Проверка .

Задача 4

Найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см а острый угол равен 60°.

Решение

Для решения задачи воспользуемся формулой.

S = dfrac{1}{4} cdot c^2 cdot sin{(2 alpha)} = dfrac{1}{4} cdot 40^2 cdot sin{(2 cdot 60°)} = dfrac{1}{4} cdot 1600 cdot sin{(120°)} = 400 cdot dfrac{sqrt{3}}{2} = 200 sqrt{3} : см^2 approx 346.41016 : см^2

Ответ: 200 sqrt{3} : см^2 approx 346.41016 : см^2

Проверка .

Задача 5

Найдите площадь равнобедренного треугольника, если боковая сторона равна 7 см а основание 4 см.

Решение

В этой задаче используем формулу для нахождения площади равнобедренного треугольника через основание и боковую сторону.

S = dfrac{b}{4} sqrt{4a^2 – b^2} = dfrac{4}{4} sqrt{4 cdot 7^2 – 4^2} = sqrt{4 cdot 49 – 16} = sqrt{196 – 16} = sqrt{180} = sqrt{36 cdot 5} = 6sqrt{5} : см^2 approx 13.41641 : см^2

Ответ: 6sqrt{5} : см^2 approx 13.41641

Проверка .

Задача 6

Найдите площадь равнобедренного треугольника, если его основание равно 30, боковая сторона равна 17.

Решение

Решим эту задачу по анологии с предыдущей.

S = dfrac{b}{4} sqrt{4a^2 – b^2} = dfrac{30}{4} sqrt{4 cdot 17^2 – 30^2} = dfrac{30}{4} sqrt{4 cdot 289 – 900} = dfrac{30}{4} sqrt{1156 – 900} = dfrac{30}{4} sqrt{256} = dfrac{30}{4} cdot 16= 30 cdot 4 = 120 : см^2

Ответ: 120 см²

Проверка .

Задача 7

Найдите площадь равностороннего треугольника со стороной 12 см.

Решение

Используем для решения задачи формулу.

S = dfrac{sqrt{3} cdot a^2}{4} = dfrac{sqrt{3} cdot 12^2}{4} = dfrac{sqrt{3} cdot 144}{4} = 36 sqrt{3} : см^2 approx 62.35383 : см^2

Ответ: 36 sqrt{3} : см^2 approx 62.35383 : см^2

Проверка .

Для вычисления площади произвольного треугольника существует просто огромное количество формул.

Всё зависит от того, какие элементы в треугольнике Вам известны.

1) Если известна одна сторона треугольника и высота, проведённая к этой стороне, то площадь легко находится по такой формуле:

S = (1/2) * a * ha

где

S — площадь треугольника;

a — длина некоторой стороны треугольника;

ha — длина высоты, проведённой к этой стороне (именно к стороне a).

2) Если известны две стороны и угол между ними:

S = (1/2) * a * b * sin (C)

где

a, b — длИны известных сторон треугольника;

C — величина угла между этими двумя сторонами.

3) Если известна одна сторона и два прилегающих к ней угла:

S = [c^2 * sin (A) * sin (B)]/[2 * sin (A + B)]

где

c — длина известной стороны треугольника;

A, B — величИны углов, прилегающих к этой стороне.

4) Если известны все три стороны, то применяют формулу Герона:

S = sqrt [p * (p – a) * (p – b) * (p – c)]

где

p — это полупериметр.

Полупериметр находится по формуле

p = (a + b + c)/2.

Общая формула, таким образом, такова:

S = sqrt { [(a + b + c)/2] * [(a + b + c)/2 – a] * [(a + b + c)/2 – b] * [(a + b + c)/2 – c]}

где

a, b, c — длИны сторон треугольника;

sqrt — обозначение квадратного корня.

5) Если известны стОроны и радиус вписанной окружности:

S = pr

или, что то же самое,

S = (a + b + c) * r/2

где

a, b, c — длИны сторон треугольника;

r — радиус окружности, вписанной в треугольник.

6) Если известны стОроны и радиус описанной окружности:

S = (a * b * c)/(4 * R)

где

a, b, c — длИны сторон треугольника;

R — радиус окружности, описанной вокруг треугольника.

7) Если известен радиус описанной окружности и углы:

S = 2 * R^2 * sin (A) * sin (B) * sin (C)

где

R — радиус окружности, описанной вокруг треугольника;

A, B, C — величИны углов треугольника.

8) Если известны радиус вписанной окружности и все три радиуса вневписанных окружностей:

S = sqrt (r * ra * rb * rc)

где

r — радиус вписанной окружности;

ra, rb, rc — радиусы вневписанных окружностей.

Есть и другие.

Подробнее о треугольниках и их площадях читайте здесь.

Добавить комментарий