Как найти площадь прямого треугольника зная катеты

 

Основные определения

Прямоугольный треугольник — это треугольник, в котором один угол прямой, то есть равен 90˚.

Гипотенуза — это сторона, противолежащая прямому углу.

Катеты — это стороны, прилежащие к прямому углу.

Прямоугольный треугольник

Чтобы найти площадь прямоугольного треугольника, можно применить любую формулу нахождения площади треугольника — их несколько.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Формула для нахождения площади прямоугольного треугольника через катеты

Чтобы найти площадь, нужно вывести формулу:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию.

S = 1/2 (a × h)

Так как в прямоугольном треугольнике катеты перпендикулярны, то один катет — это высота, проведенная ко второму катету.

Отсюда следует, что площадь прямоугольного треугольника равна половине произведения его катетов.

Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через катеты.

S = 1/2 (a × b), где a и b — катеты

Площадь прямоугольного треугольника

Формула для нахождения площади прямоугольного треугольника через гипотенузу

Площадь прямоугольного треугольника равна половине произведения гипотенузы на высоту, проведенную к гипотенузе.

S = 1/2 (c × h)

где с — гипотенуза,

h — высота.

Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через гипотенузу.

найти площадь прямоугольного треугольника через гипотенузу

Формула для нахождения площади прямоугольного треугольника через гипотенузу и острый угол

с — гипотенуза

a, b — катеты

α, β — острые углы

Формула для нахождения площади прямоугольного треугольника через гипотенузу

Формулы нахождения площади прямоугольного треугольника через катет и угол

a и b — катеты

α, β — острые углы

Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Радиус вписанной окружности выражается через катеты и гипотенузу по формуле:

r = (a + b − c) / 2

a и b — катеты

с — гипотенуза

S прямоугольного треугольника = r (r + c) = c1 × c2

r — радиус вписанной окружности

с — гипотенуза

C1 и С2 — отрезки, полученные делением гипотенузы на две части точкой касания с окружностью

Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности

Уверены, что во всем разобрались? Закрепите знания
на курсах обучения математике в онлайн-школе Skysmart!

Найти площадь прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Найти площадь прямоугольного треугольника

Чтобы посчитать площадь прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы вычислить площадь прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • длины катетов a и b
  • длину гипотенузы с и длину любого из катетов (a или b)
  • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
  • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • длину гипотенузы с и один из острых углов (α или β)

Найти площадь прямоугольного треугольника по двум катетам

Катет a =
Катет b =
S =

0

Просто введите длины двух катетов, и получите ответ.

Теория

Чему равна площадь (S) прямоугольного треугольника если известны оба катета (a и b)?

Формула

S = ½ ⋅ a ⋅ b

Пример

К примеру найдём площадь прямоугольного треугольника у которого сторона a = 2 см, а сторона b = 4 см:

S = 2 ⋅ 4 / 2 = 8 / 2 = 4 см²

Найти площадь прямоугольного треугольника по катету и гипотенузе

Гипотенуза c =
Катет (a или b) =
S =

0

Введите длины гипотенузы и одного из катетов, и получите ответ.

Теория

Чему равна площадь (S) прямоугольного треугольника если известны его гипотенуза (c) и один из катетов (a или b)?

Формула

S = ½ ⋅ a ⋅ c² – a² = ½ ⋅ b ⋅ c² – b²

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 2 см, а гипотенуза c = 5 см:

S = 2 ⋅ 5² – 2² / 2 = 25 – 4 ≈ 4.58 см²

Найти площадь прямоугольного треугольника по катету и прилежащему к нему острому углу

Катет (a или b) =
Прилежащий угол (β или α) = °
S =

0

Введите длину одного из катетов и прилежащий к нему острый угол в градусах.

То есть к катету a прилежащий ∠β, а к катету b∠α

Теория

Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

S = ½ ⋅ a² ⋅ tg(β) = ½ ⋅ b² ⋅ tg(α)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а прилежащий к нему ∠β = 45°:

S = ½ ⋅ 4² ⋅ tg(45) = ½ ⋅ 16 ⋅ 1 = 16 / 2 = 8 см²

Найти площадь прямоугольного треугольника по катету и противолежащему к нему острому углу

Катет (a или b) =
Противолежащий угол (α или β) = °
S =

0

Введите длину одного из катетов и противолежащий к нему острый угол в градусах.

То есть к катету a противолежащий ∠α, а к катету b∠β

Теория

Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

S = ½ ⋅ a² ⋅ tg(90 – α) = ½ ⋅ b² ⋅ tg(90 – β)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а противолежащий к нему ∠α = 45°:

S = 4² / 2⋅ tg(45) = 16 / 2 ⋅ 1 = 8 см²

Найти площадь прямоугольного треугольника зная длину гипотенузы и один из острых углов

Гипотенуза c =
Угол (α или β) = °
S =

0

Введите длину гипотенузы и один из острых угол в градусах.

Теория

Чему равна площадь (S) прямоугольного треугольника если известны длина гипотенузы (c) и один из острых углов?

Формула

S = ½ ⋅ c² ⋅ sin(α) ⋅ cos(α) = ½ ⋅ c² ⋅ sin(β) ⋅ cos(β)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого гипотенуза c = 8 см, а ∠α = 45°:

S = ½ ⋅ 8² ⋅ sin(45) ⋅ cos(45) ≈ ½ ⋅ 64 ⋅ 0.7071067812 ⋅ 0.7071067812 ≈ 16 см²

Прямоугольный треугольник, так же как и любой другой треугольник, имеет три стороны и три угла. Разница только в том, что один угол прямой, т. е. 90 градусов и два остальных, острых угла в сумме составляют, тоже 90 градусов.
Две стороны, которые формируют прямой угол, называют катетами, а третья сторона напротив прямого угла, называется – гипотенуза


1. Если известны только катеты

Прямоугольный треугольник

ab – катеты треугольника

Формула площади треугольника через катеты ( S ) :

Формула площади через катеты

2. Если известны острый угол и гипотенуза или катет

Треугольник через сторону и угол

c – гипотенуза

a, b – катеты

αβ – острые углы

Формулы площади прямоугольного треугольника через гипотенузу и угол ( S ) :

Формула площади через гипотенузу и угол

Формула площади прямоугольного треугольника через гипотенузу и угол

Формулы площади прямоугольного треугольника через катет и угол ( S ) :

Формула площади  через катет a и угол

площади прямоугольного треугольника через катет b и угол


Для справкиКак известно, сумма острых углов в прямоугольном треугольнике равна 90 градусов, а если

Сумма острых углов прямоугольного треугольника равна 90 градусов

то справедливы следующие тождества:

синус косинус

синус косинус


3. Если известны радиус вписанной окружности и гипотенуза

Треугольник  радиус вписанной окружности и угол

c – гипотенуза

c1c2 – отрезки полученные делением гипотенузы, точкой касания окружности

r – радиус вписанной окружности

О – центр вписанной окружности

Формулы площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу ( S ) :

Формула площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Подробности

Опубликовано: 07 сентября 2011

Обновлено: 13 августа 2021

Площадь прямоугольного треугольника онлайн

С помощю этого онлайн калькулятора можно найти площадь прямоугольного треугольника. Для нахождения площади прямоугольного треугольника введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Содержание

  • Площадь прямоугольного треугольника по двум катетам
  • Площадь прямоугольного треугольника по катету и гипотенузе
  • Площадь прямоугольного треугольника по гипотенузе и углу
  • Площадь прямоугольного треугольника по катету и прилежащему углу
  • Площадь прямоугольного треугольника по катету и противолежащему углу
  • Площадь прямоугольного треугольника по гипотенузе и вписанной окружности
  • Площадь прямоугольного треугольника по отрезкам, на которые делит гипотенузу вписанная окружность

Площадь прямоугольного треугольника по двум катетам

Как известно, площадь треугольника равна половине произведения его основания на высоту (см. страницу Площадь треугольника онлайн).В прямоугольном треугольнике катеты перпендикулярны друг другу. Поэтому можно один из них считать как основание, а другой − как высоту.

На рисунке 1 можем считать a как основание, а b − как высоту. Тогда площадь прямоугольного треугольника равна:

Пример 1. Известны катеты прямоугольного треугольника: Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (1). Подставляя значения в (1), получим:

Ответ:

Площадь прямоугольного треугольника по катету и гипотенузе

Пусть в прямоугольном треугольнике известны катет a и гипотенуза c (Рис.2):

Найдем площадь треугольника. Из формулы Пифагора имеем:

Подставляя (2) в (1), получим формулу вычисления площади прямоугольного треугольника по катету и гипотенузе:

Пример 2. Известны катет и гипотенуза прямоугольного треугольника: Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (3). Подставляя значения в (3), получим:

Ответ:

Площадь прямоугольного треугольника по гипотенузе и углу

Пусть в прямоугольном треугольнике известны гипотенуза с и угол α (Рис.3):

Найдем площадь прямоугольного треугольника. Из теоремы синусов имеем:

или

Подставим (4) в (1):

Из формулы произведения тригонометрических функций имеем:

Подставим в (6) ( small beta=alpha ):

Применяя (7) относительно формулы (5), получим:

Пример 3. Известны гипотенуза и прилегающий угол прямоугольного треугольника: . Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (8). Подставляя значения в (8), получим:

Ответ:

Площадь прямоугольного треугольника по катету и прилежащему углу

Пусть в прямоугольном треугольнике известны катет a и прилежащий угол α (Рис.4):

Найдем площадь прямоугольного треугольника. Тангенс угла α прямоугольного треугольника равна:

Откуда

Подставляя (9) в (1), получим формулу площади прямоугольного треугольника по катету и прилежащему углу:

Пример 4. Известны катет и прилегающий угол прямоугольного треугольника: . Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (10). Подставляя значения в (10), получим:

Ответ:

Площадь прямоугольного треугольника по катету и противолежащему углу

Пусть в прямоугольном треугольнике известны катет a и противолежащий угол α (Рис.5):

Найдем площадь прямоугольного треугольника. Коангенс угла α прямоугольного треугольника равна:

Откуда

Подставляя (12) в (1), получим формулу площади прямоугольного треугольника по катету и противожащему углу:

Пример 5. Известны катет и противолежащий угол прямоугольного треугольника: . Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (13). Подставляя значения в (13), получим:

Ответ:

Площадь прямоугольного треугольника по гипотенузе и вписанной окружности

Пусть в прямоугольном треугольнике известны гипотенуза с и радиус вписанной окружности r (Рис.6):

Найдем площадь прямоугольного треугольника. Соединим центр окружности O c вершинами A, B и с точками D, E, F.

Треугольники AOD, AOF, BOD, BOE прямоугольные, поскольку Прямоугольные треугольники AOD и AOF равны по гипотенузе и катету (сторона AO общая, OD=OF):

Прямоугольные треугольники BOD и BOE равны по гипотенузе и катету (сторона BO общая, OD=OE):

Запишем формулы площадей прямоугольных треугольников AOD и BOD и квадрата OECF:

Тогда, учитывая (14) и (15), площадь прямоугольного треугольника ABC равна:

Подставляя (16), (17) в (18), получим:

или

Пример 6. Известны гипотенуза и радиус вписанной окружности прямоугольного треугольника: Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (19). Подставляя значения в (19), получим:

Ответ:

Площадь прямоугольного треугольника по отрезкам, на которые делит гипотенузу вписанная окружность

Пусть в прямоугольном треугольнике известны отрезки AD и DB (Рис.6). Найдем площадь прямоугольного треугольника выраженные через эти отрезки. Площадь прямоугольного треугольника через катеты имеет вид:

Учитывая, что , (20) примет вид:

То есть

Сравнивая формулы (19) и (21) можем записать:

Таким образом формула площади прямоугольного треугольника по отрезкам, на которые делит гипотенузу вписанная окружность имеет следующий вид:

Пример 7. Известны отрезки гипотенузы разделенные вписанной окружностью прямоугольного треугольника (Рис.6) Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (22). Подставляя значения в (22), получим:

Ответ:

Смотрите также:

  • Площадь треугольника онлайн
  • Площадь равностороннего треугольника онлайн
  • Площадь равнобедренного треугольника онлайн

Основные определения

Прямоугольный треугольник – это такой треугольник, в котором один из углов равен 90° (прямой угол).

Катеты – стороны, прилежащие к прямому углу 90°.

Гипотенуза – сторона, противолежащая прямому углу.

Чтобы найти площадь прямоугольного треугольника, можно воспользоваться несколькими формулами.

Формула площади прямоугольного треугольника через катеты

(S = {{a*b} over 2})

a, b – катеты

Формула площади прямоугольного треугольника через гипотенузу

(S =1/2(c*h))

(c) – длина гипотенузы,

(h) – высота.

В прямоугольном треугольнике высота находится по формуле:

(h = frac{a*b}{c})

(a) – длина одного катета,

(b) – длина второго катета.

Формула площади прямоугольного треугольника через острый угол и гипотенузу

Если известны острый угол и гипотенуза, то посчитать площадь можно так:

(S = frac{c^2*sinalpha*cosalpha}{2}= frac{c^2*sin(2alpha)}{4})

(S = frac{c^2*sinbeta*cosbeta}{2}= frac{c^2*sin(2beta)}{4})

(c) – гипотенуза

(alpha) и (beta) – острые углы

Формула площади прямоугольного треугольника через катет и острый угол

Если известен один катет и острый угол, то рассчитываем площадь так:

(S = {{a^2*tgbeta} over 2})

(S = {{b^2*tgalpha} over 2})

(a)(b) – катеты

Формула площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу

(S = r (r+c))

(r) – радиус вписанной окружности

(с) – гипотенуза

Добавить комментарий