Как найти площадь прямоугольник через диагонали

Выбирайте формулу, ориентируясь на известные величины.

1. Если известны две соседние стороны

Просто перемножьте две стороны прямоугольника.

  • S — искомая площадь прямоугольника;
  • a и b — соседние стороны.

2. Если известны любая сторона и диагональ

Найдите квадраты диагонали и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте длину известной стороны на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).

3. Если известны любая сторона и диаметр описанной окружности

Найдите квадраты диаметра и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте известную сторону на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • D — диаметр описанной окружности.

4. Если известны любая сторона и радиус описанной окружности

Найдите квадрат радиуса и умножьте результат на 4.

Отнимите от полученного числа квадрат известной стороны.

Найдите корень из результата и умножьте на него длину известной стороны.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • R — радиус описанной окружности.

5. Если известны любая сторона и периметр

Умножьте периметр на длину известной стороны.

Найдите квадрат известной стороны и умножьте полученное число на 2.

От первого произведения отнимите второе и разделите результат на 2.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • P — периметр прямоугольника (равен сумме всех сторон).

6. Если известны диагональ и угол между диагоналями

Найдите квадрат диагонали.

Разделите полученное число на 2.

Умножьте результат на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • d — любая диагональ прямоугольника;
  • α — любой угол между диагоналями прямоугольника.

7. Если известны радиус описанной окружности и угол между диагоналями

Найдите квадрат радиуса окружности, описанной вокруг прямоугольника.

Умножьте полученное число на 2, а потом на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • R — радиус описанной окружности;
  • α — любой угол между диагоналями прямоугольника.

Читайте также 🎓❓📐

  • ТЕСТ:​ ​​Умеете ли вы считать в уме?
  • Как легко и быстро считать проценты в уме
  • Как найти площадь любого треугольника
  • ТЕСТ: Сколько центнеров в тонне? А сантиметров в дециметре? Проверьте, умеете ли вы переводить единицы измерения
  • Как освоить устный счёт школьникам и взрослым

Калькулятор площади прямоугольника

Рассчитайте онлайн площадь прямоугольника, зная его стороны или диагонали.

Что известно

Размерность

Сторона 1

см

Сторона 2

см

Диагональ

см

Угол

гр.

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

🧮 Калькулятор для расчета площади прямоугольника

Калькулятор площади прямоугольника — это онлайн инструмент, который помогает вычислить площадь прямоугольника. Для вычисления площади прямоугольника необходимо умножить длину на ширину. Формула вычисления площади прямоугольника:

S = a x b

где S – площадь прямоугольника, a – длина прямоугольника, b – ширина прямоугольника.

Калькулятор площади прямоугольника обычно позволяет ввести значения длины и ширины прямоугольника и автоматически вычисляет его площадь. Это может быть полезно для решения задач по геометрии или при необходимости быстрого расчета площади прямоугольной поверхности.

С нашим калькулятором площадь прямоугольника можно рассчитать не только используя значение длины и ширины, но и через диагонали и угол между ними. Формула будет выглядеть следующим образом:

S = 0,5 × d2 × 𝑠𝑖𝑛(𝑎)

где S – площадь прямоугольника, d – длина диагоналей прямоугольника, α – угол между диагоналями.

Для чего можно использовать такой калькулятор?

Калькулятор площади прямоугольника

Калькулятор площади прямоугольника может быть полезен в различных ситуациях, например:

  1. При решении задач по геометрии, связанных с прямоугольниками.
  2. При выполнении строительных работ, когда необходимо вычислить площадь прямоугольного участка земли или поверхности для проведения работ.
  3. При работе в области дизайна интерьера и мебели, где необходимо вычислить площадь прямоугольных поверхностей для расчета материалов или определения размеров мебели.
  4. В учебных целях, чтобы лучше понимать связь между диагоналями, углами и площадью прямоугольника.

Калькулятор площади прямоугольника может значительно упростить и ускорить процесс вычисления площади.

Пример

Допустим, у вас есть комната прямоугольной формы, и вы хотите вычислить ее площадь для того, чтобы определить количество краски, необходимое для ее покраски.

Для этого необходимо измерить длину и ширину комнаты с помощью измерительной ленты. Предположим, что длина комнаты составляет 6 метров, а ширина – 4 метра.

Затем можно воспользоваться калькулятором площади прямоугольника, введя значения длины и ширины комнаты в соответствующие поля. Калькулятор автоматически вычислит площадь комнаты, которая в данном случае составляет 24 квадратных метра.

Таким образом, зная площадь комнаты, можно определить, сколько краски понадобится для ее покраски, используя информацию о расходе краски на квадратный метр поверхности. Такой расчет может быть полезен, если вы собираетесь сделать ремонт в своей квартире или доме.

❓Вопросы и ответы

Несколько вопросов и ответы на них по калькулятору площади прямоугольника:

Что такое площадь прямоугольника?

Площадь прямоугольника — это мера, определяющая, сколько плоской поверхности занимает данный прямоугольник.

Для чего нужен калькулятор площади прямоугольника?

Калькулятор площади прямоугольника может использоваться во многих ситуациях, например, при строительных работах, в дизайне интерьера, при решении задач по геометрии и в повседневной жизни.

Что такое диагональ прямоугольника?

Диагональ прямоугольника — это отрезок, соединяющий противоположные вершины прямоугольника.

Что такое прямоугольник?

Прямоугольник — это геометрическая фигура, которая имеет четыре угла, все из которых прямые (равны 90 градусам), и противоположные стороны параллельны друг другу и имеют равные длины.

По определению, прямоугольник является частным случаем параллелограмма, у которого все углы прямые.

​​Можно ли использовать такой калькулятор для измерения площади других четырехугольников?

Нет, калькулятор площади прямоугольника может быть использован только для измерения площади прямоугольника, который имеет две параллельные стороны и все углы равны 90 градусов.

Для измерения площади других четырехугольников, таких как квадрат, ромб, трапеция, параллелограмм или прямоугольная трапеция, необходимо использовать соответствующий калькулятор для каждой фигуры, который учитывает специфические формулы и свойства этих фигур.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Площадь прямоугольника через диагональ

В прямоугольнике диагонали равны между собой. Если известен угол α между диагоналями (длина диагоналей равна d), то площадь прямоугольника можно найти по формуле:

Sпр = 0,5 * d² * sinα.

Например, если угол между диагоналями равен 30°, а диагонали равны 5 см, то площадь будет равна:

Sпр = 0,5 * 25 * 0,5 = 6,25 см.


Если неизвестен угол между диагоналями, то будет нужно найти стороны прямоугольника. А затем воспользоваться формулой:

Sпр = a * b.

Как известно, диагональ прямоугольника делит его на 2 равных прямоугольных треугольника. Поэтому задача сводится к тому, чтобы найти катеты прямоугольного треугольника через гипотенузу.

Кроме длины диагонали требуется знать либо одну из сторон прямоугольника, либо отношение сторон, либо угол между стороной и диагональю.

1) Если известна диагональ (пусть она будет равна d) и одна из сторон (например, b), то выражаем неизвестную сторону из формулы:

a² + b² = c² -> a = √(c² – b²).

Sпр = a * b = √(c² – b²) * b.

Например, если диагональ d = 5 см и сторона b = 3 см, то a = √(25 – 9) = √16 = 4 см.

Площадь прямоугольника равна 3 * 4 = 12 см.

2) Если известно отношение сторон, то задача сводится к нахождению обеих сторон через составление уравнения.

Например, если стороны относятся как 2:3, а диагональ равна 13 см, то можно составить уравнение:

(2x)² + (3x)² = 4x² + 9x² = 169.

13x² = 169.

x = √13.

Значит, a = 2√13 см и b = 3√13 см.

Площадь прямоугольника равна 2√13 * 3√13 = 6 * 13 = 78 см.

3) Если известна диагональ и один из прилежащих к диагонали углов, то нужно воспользоваться формулами:

a = d * cosβ (β – прилежащий угол) и b = d * sinα (α – противолежащий угол).

Например, d = 10 см и угол α = 30°.

a = 10 * cos30° = 10√3 / 3.

b = 10 * sin30° = 5 см.

Площадь прямоугольника равна 5 * (10√3 / 3) ≈ 28,33 см.

Рассчитать площадь прямоугольника с подробным решением. Калькулятор находит площадь по формуле через длину и ширину прямоугольника. Основные способы и объяснение формул, по которым вы сможете самостоятельно решить свои задачи.

Онлайн-калькулятор площади прямоугольника

Вначале давайте разберемся с определением. У прямоугольника есть 4 стороны. Каждая сторона равна противоположной и параллельна ей. Здесь важно понимать, что все 4 стороны не могут быть равны, иначе получится квадрат. В прямоугольнике будут 2 одинаковые стороны одной длины и 2 одинаковые другой.

площадь прямоугольника

Все 4 угла, находящиеся внутри прямоугольника, — прямые. То есть каждый угол равен 90°.

прямой угол

Формула площади прямоугольника через его стороны

Чтобы найти площадь SS прямоугольника, нужно перемножить две его стороны: сторону aa умножаем на сторону bb.

S=a⋅b.S = a cdot b.

Пример

У нас есть прямоугольник ABCDABCD. Одна его сторона ABAB равна 55 см, вторая BCBC равна 33 см. Нам нужно найти его площадь SS.

решение примера

Решение:

Чтобы найти площадь SS, нужно умножить сторону ABAB на сторону BCBC и получаем: S=5⋅3S = 5 cdot 3.

Ответ: S=15S = 15 см2.

Формула площади прямоугольника через диагонали

Площадь прямоугольника можно также рассчитать, зная длину диагоналей и острый угол между ними:

S=12d2sin⁡α.S = frac {1}{2}d^2 sin alpha.

Помним, длины диагоналей в прямоугольнике равны и при пересечении делятся пополам.

Пример

Дан прямоугольник ABCDABCD. Его диагональ ACAC равна 88 см, а острый угол между диагоналями 30°30°. Найдите площадь фигуры.

решение примера 2

Используем приведенную выше формулу и получаем:
S=12⋅82⋅sin⁡30∘=12⋅64⋅12=644=16S = frac{1}{2} cdot 8^2 cdot sin 30^{circ} = frac{1}{2} cdot 64 cdot frac{1}{2} = frac{64}{4} = 16

Ответ: S=16S = 16 см2.

Не знаете, как решить задачу по геометрии онлайн? Оформите заказ на Студворк!

Тест по теме «Площадь прямоугольника»


Download Article


Download Article

When you’re working with rectangles, you can find out a lot of information about them just by knowing a few key points of information. If you’ve been given the length of the diagonal and at least one side, you can calculate the area of the whole shape with just a few equations. Always use a calculator to check your math, and don’t forget to add your units onto the answer!

  1. Image titled Find the Area of a Rectangle Using the Diagonal Step 1

    1

    Mark the diagonal on the rectangle. If you have a visual of your rectangle, it will be a lot easier to figure out the area given a diagonal. Draw out a rectangle (it doesn’t have to match the proportions given, just a rectangle shape will do) and mark out a diagonal line to create 2 triangles.[1]

    • You’ll be able to see the 2 triangles that make up the rectangle now.
  2. Image titled Find the Area of a Rectangle Using the Diagonal Step 2

    2

    Advertisement

  3. Image titled Find the Area of a Rectangle Using the Diagonal Step 3

    3

  4. Image titled Find the Area of a Rectangle Using the Diagonal Step 4

    4

  5. Image titled Find the Area of a Rectangle Using the Diagonal Step 5

    5

    Plug the new number into A=ltimes w. To find the area of your entire rectangle, you need to solve for Area = length x width, or A = l x w. Now that you’ve used the Pythagorean Theorem to find the second side length, you can solve for the area. Don’t forget your units![5]

  6. Advertisement

  1. Image titled Find the Area of a Rectangle Using the Diagonal Step 6

    1

    Mark the diagonal and side length on your rectangle. If you have a visual in front of you, it will be much easier to see how you’re solving your equation. Draw a simple rectangle with a ruler and create a diagonal line across it to make 2 triangles.[6]

    • It’s not mandatory to draw your triangle, but it can help you, especially if you’re just starting out.
  2. Image titled Find the Area of a Rectangle Using the Diagonal Step 7

    2

    Enter the length and diagonal into {displaystyle A=ltimes {sqrt {d^{2}-l^{2}}}}. Simply plug the length and the diagonal into the formula above. Remember, the diagonal is always longer than the length of the rectangle. [7]

    • For example, if the length is 8 inches and the diagonal is 10 inches, the formula would be {displaystyle A=8times {sqrt {10^{2}-8^{2}}}}.
  3. Image titled Find the Area of a Rectangle Using the Diagonal Step 8

    3

  4. Advertisement

Add New Question

  • Question

    If the diagonal of a rectangle is10cm then what is its area?

    Community Answer

    You don’t have enough information to solve.

  • Question

    A rectangle with diagonal of 20 cm has sides in the ratio 2:1. How do I find the area of rectangle?

    Donagan

    Such a rectangle would have its sides and diagonal in the ratio of 2:1:√5 (per the Pythagorean theorem). The ratio of √5 to the diagonal (20) is equal to the ratio of 2 to the longer side (or the ratio of 1 to the shorter side). Thus √5 : 20 = 2 : x, where x is the longer side. Expressed as fractions, that’s √5 / 20 = 2 / x. Cross-multiplying: (√5)(x) = (20)(2). Dividing by √5: x = 40 / √5 = 40 / 2.236 = 17.9 cm. The shorter side is half that, or 8.94 cm.

  • Question

    If the side = 48 meters and the diagonal = 50 meters, how do I find the area of the rectangle?

    Donagan

    Let s be the shorter side. Then (by the Pythagorean Theorem) s² + 48² = 50². So s² + 2304 = 2500. Then s² = 196, and s = 14 m. The area is 48 x 14 = 672 square meters.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • If all you know is the length of the diagonal, you can calculate the area of a square, but not a rectangle.

  • To find the area of a rectangle, you need to know the diagonal and at least one side length.

  • You can also use an online calculator, like Omni Calculator, to check your work.

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 138,708 times.

Did this article help you?

Добавить комментарий