Как найти площадь прямоугольника если неизвестен периметр

Выбирайте формулу, ориентируясь на известные величины.

1. Если известны две соседние стороны

Просто перемножьте две стороны прямоугольника.

  • S — искомая площадь прямоугольника;
  • a и b — соседние стороны.

2. Если известны любая сторона и диагональ

Найдите квадраты диагонали и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте длину известной стороны на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).

3. Если известны любая сторона и диаметр описанной окружности

Найдите квадраты диаметра и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте известную сторону на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • D — диаметр описанной окружности.

4. Если известны любая сторона и радиус описанной окружности

Найдите квадрат радиуса и умножьте результат на 4.

Отнимите от полученного числа квадрат известной стороны.

Найдите корень из результата и умножьте на него длину известной стороны.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • R — радиус описанной окружности.

5. Если известны любая сторона и периметр

Умножьте периметр на длину известной стороны.

Найдите квадрат известной стороны и умножьте полученное число на 2.

От первого произведения отнимите второе и разделите результат на 2.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • P — периметр прямоугольника (равен сумме всех сторон).

6. Если известны диагональ и угол между диагоналями

Найдите квадрат диагонали.

Разделите полученное число на 2.

Умножьте результат на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • d — любая диагональ прямоугольника;
  • α — любой угол между диагоналями прямоугольника.

7. Если известны радиус описанной окружности и угол между диагоналями

Найдите квадрат радиуса окружности, описанной вокруг прямоугольника.

Умножьте полученное число на 2, а потом на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • R — радиус описанной окружности;
  • α — любой угол между диагоналями прямоугольника.

Читайте также 🎓❓📐

  • ТЕСТ:​ ​​Умеете ли вы считать в уме?
  • Как легко и быстро считать проценты в уме
  • Как найти площадь любого треугольника
  • ТЕСТ: Сколько центнеров в тонне? А сантиметров в дециметре? Проверьте, умеете ли вы переводить единицы измерения
  • Как освоить устный счёт школьникам и взрослым

Самый простой способ – перемножить две стороны. Но иногда эти две стороны неизвестны.

11 408

Как найти площадь прямоугольника – 9 формул с примерами

Умножьте его ширину на высоту. Это самый простой способ найти площадь прямоугольника. Например, если ширина прямоугольника равна 4 см, а высота – 2 см, то площадь будет равна 4*2 = 8 см.

По диагонали и стороне

Должна быть известна диагональ и любая из сторон. Действия:

  1. Найти квадрат диагонали, то есть умножить ее на саму себя.
  2. Найти квадрат известной стороны.
  3. Из квадрата диагонали вычесть квадрат стороны.
  4. Найти квадратный корень получившейся разности.
  5. Умножить его на известную сторону.

Ищем площадь по диагонали и стороне

Пример. Сторона прямоугольника равна 3 см, а диагональ – 5 см. Найдите площадь.

  1. Квадрат стороны = 3*3 = 9 см.
  2. Квадрат диагонали = 5*5 = 25 см.
  3. Вычитаю из квадрата диагонали квадрат стороны: 25-9 = 16 см.
  4. Нахожу квадратный корень получившейся разности. Корень из 16 = 4 см.
  5. Умножаю корень разности на известную сторону: 16*9 = 144 см.

Ответ: 144 см.

Обратите внимание

Диагональ в прямоугольнике – это гипотенуза, потому что она всегда находится напротив угла в 90 градусов. Найти диагональ можно по формуле нахождения гипотенузы, например, поделив катет угла A на синус угла A.

По стороне и диаметру описанной окружности

Вокруг любого прямоугольника можно описать окружность. Вам надо знать диаметр этой окружности и любую из сторон прямоугольника.

Действия:

  1. Найдите квадрат диаметра – умножьте диаметр на диаметр.
  2. Найдите квадрат известной стороны.
  3. Отнимите от квадрата диаметра квадрат стороны.
  4. Найдите квадратный корень разности.
  5. Умножьте квадратный корень на известную сторону.

По одной стороне и диаметру окружности

Пример. Найдите площадь прямоугольника, если диаметр описанной окружности равен 10 см, а одна из сторон равна 8 см.

  1. Квадрат диаметра: 10*10 = 100 см.
  2. Квадрат стороны: 8*8 = 64 см.
  3. Отнимаю от квадрата диаметра квадрат стороны: 100-64 = 36 см.
  4. Квадратный корень из 36 равен 6 см (потому что 6*6 = 36).
  5. Умножаю сторону на корень из разности: 8*6 = 48 см.

Ответ: 48 см.

Лайфхак

Диаметр описанной окружности всегда равен диагонали прямоугольника. Смотрите:

Диагональ равна диаметру

А найти диагональ можно по формуле гипотенузы прямоугольного треугольника.

Диаметр равен двум радиусам, потому что радиус – это половина диаметра.

Как найти площадь треугольника – все способы

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

По радиусу описанной окружности и стороне

Можно просто найти диаметр (умножить радиус на два) и использовать формулу выше.

Другой способ:

  1. Найти квадрат радиуса (умножьте радиус на радиус).
  2. Умножить квадрат радиуса на 4.
  3. Найти квадрат известной стороны.
  4. Отнять от четырех радиусов в квадрате квадрат известной стороны (из второго отнять третье).
  5. Найти квадратный корень разности.
  6. Умножить корень на известную сторону.

Площадь по стороне и радиусу

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 5 см, а одна из сторон равна 6 см.

  1. Квадрат радиуса: 5*5=25 см.
  2. Четыре квадрата радиуса: 4*25 = 100 см.
  3. Квадрат стороны: 6*6 = 36 см.
  4. Отнимаю от четырех радиусов в квадрате квадрат стороны: 100-36 = 64 см.
  5. Нахожу квадратный корень разности. Корень из 64 равен 8 см.
  6. Умножаю корень на сторону: 8*6 = 48 см.

Ответ: 48 см.

Помните

Радиус = половине диаметра.

Радиус = половине гипотенузы прямоугольного треугольника, вокруг которого описана окружность. Потому что эта гипотенуза = диагонали прямоугольника = диаметру.

По стороне и периметру – 1 способ

Периметр – это сумма всех сторон прямоугольника. P=a+b+a+b. Другая формула периметра: P=2(a+b).

Если известен периметр и одна сторона, надо найти вторую сторону и перемножить их.

Пример. Периметр прямоугольника равен 14 см, а одна из  сторон равна 3 см. Найдите площадь.

  1. Нахожу вторую сторону прямоугольника:
    1. P=2(a+b).
    2. P=2a+2b.
    3. 14= 2*3+2b.
    4. 14 = 6+2b.
    5. 2b = 14-6 = 8.
    6. b = 8/2.
    7. b = 4.
  2. Нахожу площадь по основной формуле. S = 3*4 = 12 см.

Ответ: 12 см.

По стороне и периметру – 2 способ

Действия такие:

  1. Умножьте периметр на сторону.
  2. Найдите квадрат стороны.
  3. Умножьте квадрат стороны на 2.
  4. Отнимите от произведения периметра и стороны два квадрата стороны (от первого отнимите третье).
  5. Поделите на 2.

Как найти площадь, если известны периметр и сторона

Пример. Сторона прямоугольника равна 8, а периметр равен 28. Найдите площадь.

  1. Умножаю периметр на сторону: 8*28 = 224 см.
  2. Нахожу квадрат стороны: 8*8 = 64 см.
  3. Умножаю квадрат стороны на два: 64*2 = 84 см.
  4. Отнимаю из первого третье: 224-84 = 140 см.
  5. Делю разность на два: 140/2 = 70 см.

Ответ: 70 см.

По диагонали и углу между диагоналями

Диагонали прямоугольника всегда равны.

Действия:

  1. Найти квадрат диагонали (умножить диагональ на саму себя).
  2. Найти половину этого квадрата – умножить его на 0,5.
  3. Найти синус угла между диагоналями.
  4. Умножить половину квадрата диагонали на синус угла между диагоналями.

Ищем площадь по диагонали и углу

Пример. Найдите площадь прямоугольника, диагональ которого равна 10 см, а угол между диагоналями – 30 градусов.

  1. Квадрат диагонали: 10*10 = 100 см.
  2. Половина этого квадрата: 0,5*100 = 50 см.
  3. Синус угла между диагоналями: sin 30 градусов = 0,5.
  4. Перемножаю половину квадрата и синус угла, чтобы найти площадь: 50*0,5 = 25 см.

Ответ: 25 см.

Вот еще вам таблица основных значений из тригонометрии. Там как раз отмечено, что синус 30 градусов всегда равен 0,5 (1/2).

Основные значения из тригонометрии

По радиусу описанной окружности и углу между диагоналями – первый способ

Радиус описанной окружности равен половине ее диаметра, а диаметр равен диагонали прямоугольника. Надо найти диаметр и посчитать площадь по формуле выше.

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6 см, а угол между диагоналями – 30 градусов.

  1. Находим длину диагонали: 6*2 =12 см.
  2. Квадрат диагонали равен 144 см.
  3. Половина квадрата: 72 см.
  4. Синус 30 градусов равен 0,5.
  5. Умножаем половину квадрата на синус: 72*0,5 = 36 см.

Ответ: 36 см.

По радиусу описанной окружности и углу между диагоналями – второй способ

Действия:

  1. Найти квадрат радиуса (умножить радиус на радиус).
  2. Умножить квадрат радиуса на два.
  3. Найти синус угла между диагоналями.
  4. Умножить синус угла на два радиуса в квадрате.

Ищем площадь по радиусу и углу между диагоналями

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6, а угол между диагоналями – 30 градусов.

  1. Квадрат радиуса: 6*6 = 36.
  2. Два радиуса в квадрате: 36*2 = 72.
  3. Синус 30 градусов равен 0,5.
  4. Произведение синуса и двух радиусов в квадрате: 72*0,5 = 36 см.

Ответ: 36 см.

Покритикуйте статью и стиль подачи материала в комментариях, я внесу правки. Это моя вторая статья по математике, я хочу, чтобы они все были образцовыми.

( 1 оценка, среднее 5 из 5 )

Оцените статью

ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА

Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети

ПОДПИСАТЬСЯ

Площадь прямоугольника

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы расскажем, как вычислять площадь прямоугольника.

Улыбка

Различные формулы вычисления площади (а их действительно немало), изучают в 8 классе школы.

Что такое площадь прямоугольника

Но для начала давайте все-таки дадим основные определения:

Прямоугольник – это геометрическая фигура, относящаяся к категории четырехугольников. Ее отличительная особенность в том, что противоположные стороны лежат на параллельных прямых (то есть параллельны друг другу) и равны.

Прямоугольник является параллелограммом (что это такое?) и выглядит вот так:

Фигура

А частным случаем прямоугольника, если у него все стороны равны между собой, является квадрат.

Площадь любой геометрической фигуры, формально говоря, это ее размер. Другими словами, размер того пространства, которое находится внутри границ фигуры.

В отношении четырехугольников применимо еще понятие «квадратура». С его помощью показывали, сколько квадратов вместится внутрь фигуры.

Собственно, отсюда и пошло современное обозначение площадей, когда речь идет о габаритах помещения или какой-то территории. Мы часто слышим «столько-то квадратных метров (миллиметров, сантиметров, километров)» или просто «столько-то квадратов».

Определение

Для площади геометрических фигур действуют определенные правила:

  1. Она не может быть отрицательной.
  2. У равных фигур всегда равные площади.
  3. Если две фигуры не пересекаются друг с другом, то их общая площадь равна сумме площадей фигур по отдельности.
  4. Если одна фигура вписана в другую, то ее площадь всегда меньше, чем у второй.

Обычно фигуры, которые имеют равные площади, называют «равновеликими».

Как найти площадь прямоугольника

Площадь прямоугольника вычисляется по очень простой формуле – надо лишь перемножить его стороны.

Возьмем, к примеру, такой прямоугольник:

Геометрия

Площадь геометрической фигуры обычно обозначается латинской буквой «S». И тогда формула для конкретного примера будет:

Например, если мы имеем прямоугольник со сторонами 2 и 3 сантиметра, то его площадь составит 2 * 3 = 6 сантиметров.

Но бывают случаи, когда неизвестны размеры сторон прямоугольника, а площадь вычислить все равно надо. Для этого существуют более сложные формулы.

Формула площади прямоугольника через периметр

Если известна длина только одной стороны, но известен еще и периметр прямоугольника.

В этом случае есть два варианта.

  1. Первый — вычислить длину второй стороны. Для этого надо вспомнить, что периметр (обозначается буквой «Р») считается по формуле:

    Длина стороны

    И тогда обратные расчеты выглядят вот так:

    Расчет

    Ну а после того, как станет известна длина второй стороны прямоугольника, можно прибегнуть к классической формуле.

  2. Ну и второй вариант – воспользоваться сразу готовой формулой:

    Готовая формула

Площадь прямоугольника через диагональ

  1. Известна одна сторона и длина диагонали.

    Тут опять же есть два варианта. В первом случае вычисляем длину второй стороны, используя теорему Пифагора.

    Пифагор

    Формула

    Второй вариант – опять же сразу прибегнуть к готовой формуле:

    Готовая формула

  2. Если известны длина диагоналей и угол между ними.

    Диагонали

    В этом случае стоит воспользоваться вот такой формулой:

    Вычисляем

Вот и все, что нужно знать о вычислении площади прямоугольников.

Площадь прямоугольника онлайн

С помощю этого онлайн калькулятора можно найти площадь прямоугольника. Для нахождения площади прямоугольника введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Площадь прямоугольника. Определение

Определение 1. Площадь прямоугольника − это величина той части плоскости, которую занимает прямоугольник.

Площадь прямоугольника. Доказательство

Теорема 1. Площадь S прямоугольника со смежными сторонами a и b равна произведению этих сторон :.

Доказательство. Рассмотрим прямоугольник со сторонами a, b и площадью S (Рис.1). Докажем, что .

Достроим прямоугольник до квадрата со стороной a+b (Рис.2). Площадь этого квадрата равна (a+b)·(a+b) (см. статью Площадь квадрата онлайн).

С другой стороны, данный квадрат состоит из двух квадратов со сторонами со сторонами a и b и площадями a2 и b2, соответственно и из двух прямоугольников с площадями S. Поэтому сумма площадей этих двух квадратов и двух прямоугольников равна площади квадрата со стороной a+b:

Упрощая полученное равенство, получим: .

Площадь прямоугольника через стороны

Из вышеизложенной теоремы следует, что площадь прямоугольника через его смежные стороны вычисляется из формулы:

Пример 1. Стороны прямоугольника равны и . Найти площадь прямоугольника.

Решение. Для нахождения площади прямоугольника воспользуемся формулой (1). Подставим , в (1):

Ответ:

Площадь прямоугольника через сторону и диагональ

Пример 2. Известна сторона прямоугольника и диагональ (Рис.3). Найти площадь прямоугольника.

Решение. Найдем сначала неизвестную сторону прямоугольника. Для этого воспользуемся теоремой Пифагора:

Площадь прямоугольника вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления площади прямоугольника через диагональ и сторону:

Подставим , в (3):

Ответ:

Площадь прямоугольника через периметр и сторону

Пример 3. Известны сторона прямоугольника и периметр (Рис.4). Найти площадь прямоугольника.

Решение. Найдем сначала неизвестную сторону прямоугольника. Для этого воспользуемся теоремой Пифагора:

Площадь прямоугольника вычисляется из формулы (1). Подставляя (4) в (1), получим формулу вычисления площади прямоугольника через периметр и сторону:

Подставим , в (5):

Ответ:

Площадь прямоугольника через диагональ и периметр

Пример 4. Известны диагональ прямоугольника и периметр (Рис.5). Найти площадь прямоугольника.

Решение. Найдем сначала стороны прямоугольника. Запишем формулу Пифагора и формулу периметра прямоугольника:

Из формулы (7) найдем ( small b ) и подставим в (6):

Упростив (9), получим квадратное уравнение относительно неизвестной ( a ):

Вычислим дискриминант квадратного уравнения (10):

Подставляя значения и в (11), получим:

Поскольку дискриминант неотрицательное число, то такой прямоугольник существует.

Стороны прямоугольника вычисляются из формул:

Почему ( small b ), как и ( small a ) получается неотрицательным, посмотрите “примечание” на странице Прямоугольник. Онлайн калькулятор.

Площадь прямоугольника по двум сторонам равна:

Подставляя (12) в (13), получим:

Далее, из (11) и (14) следует:

Подставляя , в (15), получим:

Ответ:

Смотрите также:

  • Прямоугольник. Онлайн калькулятор

Naumenko

Высший разум

(856097)


11 лет назад

1. берется полупериметр. те а+в=10 для примера
2. выражается одна сторона через другую а=10-в
3. составляется выражение для площади: в*(10-в) и …
дальше вычислить что – либо затруднительно. тк не хватает информации.

НО! если периметр не очень большое число. то можно подбором найти а и в.. .
наверное. в исходном условии есть еще какие-то слова.

Вовчик

Мыслитель

(6652)


11 лет назад

например периметр 30
один прямоугольник имеет стороны 10 и 5, при этом площадь 50
другой 2 и 13, при этом площадь 26
третий 8 и 7, и площадь при этом 56
вот ведь какая хрень..

Добавить комментарий