Как найти площадь прямоугольника вписанного в круг

Как найти площадь прямоугольника – 9 способов с формулами и примерами

Самый простой способ – перемножить две стороны. Но иногда эти две стороны неизвестны.

Умножьте его ширину на высоту. Это самый простой способ найти площадь прямоугольника. Например, если ширина прямоугольника равна 4 см, а высота – 2 см, то площадь будет равна 4*2 = 8 см.

По диагонали и стороне

Должна быть известна диагональ и любая из сторон. Действия:

  1. Найти квадрат диагонали, то есть умножить ее на саму себя.
  2. Найти квадрат известной стороны.
  3. Из квадрата диагонали вычесть квадрат стороны.
  4. Найти квадратный корень получившейся разности.
  5. Умножить его на известную сторону.

Пример. Сторона прямоугольника равна 3 см, а диагональ – 5 см. Найдите площадь.

  1. Квадрат стороны = 3*3 = 9 см.
  2. Квадрат диагонали = 5*5 = 25 см.
  3. Вычитаю из квадрата диагонали квадрат стороны: 25-9 = 16 см.
  4. Нахожу квадратный корень получившейся разности. Корень из 16 = 4 см.
  5. Умножаю корень разности на известную сторону: 16*9 = 144 см.

Диагональ в прямоугольнике – это гипотенуза, потому что она всегда находится напротив угла в 90 градусов. Найти диагональ можно по формуле нахождения гипотенузы, например, поделив катет угла A на синус угла A.

По стороне и диаметру описанной окружности

Вокруг любого прямоугольника можно описать окружность. Вам надо знать диаметр этой окружности и любую из сторон прямоугольника.

  1. Найдите квадрат диаметра – умножьте диаметр на диаметр.
  2. Найдите квадрат известной стороны.
  3. Отнимите от квадрата диаметра квадрат стороны.
  4. Найдите квадратный корень разности.
  5. Умножьте квадратный корень на известную сторону.

Пример. Найдите площадь прямоугольника, если диаметр описанной окружности равен 10 см, а одна из сторон равна 8 см.

  1. Квадрат диаметра: 10*10 = 100 см.
  2. Квадрат стороны: 8*8 = 64 см.
  3. Отнимаю от квадрата диаметра квадрат стороны: 100-64 = 36 см.
  4. Квадратный корень из 36 равен 6 см (потому что 6*6 = 36).
  5. Умножаю сторону на корень из разности: 8*6 = 48 см.

Диаметр описанной окружности всегда равен диагонали прямоугольника. Смотрите:

А найти диагональ можно по формуле гипотенузы прямоугольного треугольника.

Диаметр равен двум радиусам, потому что радиус – это половина диаметра.

По радиусу описанной окружности и стороне

Можно просто найти диаметр (умножить радиус на два) и использовать формулу выше.

  1. Найти квадрат радиуса (умножьте радиус на радиус).
  2. Умножить квадрат радиуса на 4.
  3. Найти квадрат известной стороны.
  4. Отнять от четырех радиусов в квадрате квадрат известной стороны (из второго отнять третье).
  5. Найти квадратный корень разности.
  6. Умножить корень на известную сторону.

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 5 см, а одна из сторон равна 6 см.

  1. Квадрат радиуса: 5*5=25 см.
  2. Четыре квадрата радиуса: 4*25 = 100 см.
  3. Квадрат стороны: 6*6 = 36 см.
  4. Отнимаю от четырех радиусов в квадрате квадрат стороны: 100-36 = 64 см.
  5. Нахожу квадратный корень разности. Корень из 64 равен 8 см.
  6. Умножаю корень на сторону: 8*6 = 48 см.

Радиус = половине диаметра.

Радиус = половине гипотенузы прямоугольного треугольника, вокруг которого описана окружность. Потому что эта гипотенуза = диагонали прямоугольника = диаметру.

По стороне и периметру – 1 способ

Периметр – это сумма всех сторон прямоугольника. P=a+b+a+b. Другая формула периметра: P=2(a+b).

Если известен периметр и одна сторона, надо найти вторую сторону и перемножить их.

Пример. Периметр прямоугольника равен 14 см, а одна из сторон равна 3 см. Найдите площадь.

  1. Нахожу вторую сторону прямоугольника:
    1. P=2(a+b).
    2. P=2a+2b.
    3. 14= 2*3+2b.
    4. 14 = 6+2b.
    5. 2b = 14-6 = 8.
    6. b = 8/2.
    7. b = 4.
  2. Нахожу площадь по основной формуле. S = 3*4 = 12 см.

По стороне и периметру – 2 способ

  1. Умножьте периметр на сторону.
  2. Найдите квадрат стороны.
  3. Умножьте квадрат стороны на 2.
  4. Отнимите от произведения периметра и стороны два квадрата стороны (от первого отнимите третье).
  5. Поделите на 2.

Пример. Сторона прямоугольника равна 8, а периметр равен 28. Найдите площадь.

  1. Умножаю периметр на сторону: 8*28 = 224 см.
  2. Нахожу квадрат стороны: 8*8 = 64 см.
  3. Умножаю квадрат стороны на два: 64*2 = 84 см.
  4. Отнимаю из первого третье: 224-84 = 140 см.
  5. Делю разность на два: 140/2 = 70 см.

По диагонали и углу между диагоналями

Диагонали прямоугольника всегда равны.

  1. Найти квадрат диагонали (умножить диагональ на саму себя).
  2. Найти половину этого квадрата – умножить его на 0,5.
  3. Найти синус угла между диагоналями.
  4. Умножить половину квадрата диагонали на синус угла между диагоналями.

Пример. Найдите площадь прямоугольника, диагональ которого равна 10 см, а угол между диагоналями – 30 градусов.

  1. Квадрат диагонали: 10*10 = 100 см.
  2. Половина этого квадрата: 0,5*100 = 50 см.
  3. Синус угла между диагоналями: sin 30 градусов = 0,5.
  4. Перемножаю половину квадрата и синус угла, чтобы найти площадь: 50*0,5 = 25 см.

Вот еще вам таблица основных значений из тригонометрии. Там как раз отмечено, что синус 30 градусов всегда равен 0,5 (1/2).

По радиусу описанной окружности и углу между диагоналями – первый способ

Радиус описанной окружности равен половине ее диаметра, а диаметр равен диагонали прямоугольника. Надо найти диаметр и посчитать площадь по формуле выше.

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6 см, а угол между диагоналями – 30 градусов.

  1. Находим длину диагонали: 6*2 =12 см.
  2. Квадрат диагонали равен 144 см.
  3. Половина квадрата: 72 см.
  4. Синус 30 градусов равен 0,5.
  5. Умножаем половину квадрата на синус: 72*0,5 = 36 см.

По радиусу описанной окружности и углу между диагоналями – второй способ

  1. Найти квадрат радиуса (умножить радиус на радиус).
  2. Умножить квадрат радиуса на два.
  3. Найти синус угла между диагоналями.
  4. Умножить синус угла на два радиуса в квадрате.

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6, а угол между диагоналями – 30 градусов.

  1. Квадрат радиуса: 6*6 = 36.
  2. Два радиуса в квадрате: 36*2 = 72.
  3. Синус 30 градусов равен 0,5.
  4. Произведение синуса и двух радиусов в квадрате: 72*0,5 = 36 см.

Покритикуйте статью и стиль подачи материала в комментариях, я внесу правки. Это моя вторая статья по математике, я хочу, чтобы они все были образцовыми.

Журнал Педагог

Автор: Беспалова Любовь Иннокентьевна
Должность: учитель математики
Учебное заведение: МОУ “Ульканская общеобразовательная школа №2”
Населённый пункт: п.Улькан
Наименование материала: методическая разработка
Тема: Площадь прямоугольника, вписанного в окружность
Раздел: среднее образование

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №2»
Автор: Беспалова Любовь Иннокентьевна

Тема методической разработки: «Площадь прямоугольника,

вписанного в окружность»,интегрированный урок геометрии

и информатики
2013 П.УЛЬКАН

Тема урока
: Площадь прямоугольника, вписанного в окружность.
Цели урока
:  расширить знания учащихся по теме «Площадь прямоугольника»;  закрепить умения учащихся работать в текстовом редакторе MS Word
Задачи урока
:  Образовательные: вывести формулу площади прямоугольника, вписанного в окружность, через радиус окружности и угол между диагональю прямоугольника и одной из его сторон и исследовать ее; Используя информационные технологии закрепить теоретические знания, полученные на уроках информатики по теме: «Текстовый редактор MS Word» при выполнении исследований;  Развивающие: развитие логического мышления учащихся, навыков набора текста и работы с несколькими документами одновременно;  Воспитательные: воспитание чувства коллективизма, взаимопомощи, взаимоуважения. Точности, аккуратности и внимания в процессе выполнения работы;  Содействовать рациональной организации труда школьников.
Оборудование урока
: OC Microsoft Windos XP, MS Word, проектор, экран, циркули, линейки, плакат « Ги п от е з а –научное предположение, выдвигаемое для объяснения какого – либо явления и требующее проверки на опыте и теоретического обоснования для того, чтобы стать достоверной научной теорией; вообще – предположение, требующее подтверждения» , карточки для выполнения практической работы и для более подготовленных учащихся, таблица «Площади» Площадь прямоугольника a S = ab b Площадь параллелограмма b h S = ah, S = ab sin a Площадь треугольника b c S = ah, S = ab sin , h а S =
a p = Площадь трапеции h S = b Площадь ромба S = d 1 d 2 Площадь квадрата S = a 2 а Площадь треугольника, вписанного в окружность S = а Площадь треугольника, S = описанного около окружности rr b c а 2 Площадь многоугольника, а 3 описанного около а 1 S = rP

окружности d 1 d 2 dddd d a b R c r r r
O

а 4
Тип урока: урок изучения нового материала.

Вид урока – интегрированный: математика, информатика

Продолжительность урока 90 минут

информатики:
Ребята! Сегодняшний урок необычный: урок информатики мы сегодня проводим совместно с геометрией. П.Л. Чебышев сказал: «Сближение теории с практикой дает самые благотворные результаты, и не одна практика от этого выигрывает, сами науки развиваются под ее влиянием». (Слайд 1)
Учитель математики:
Сообщаются тема и цель урока. (Слайд 2)
II.

Проверка домашнего задания:
1.
Учитель математики
: проверим решение задачи 49 из параграфа 14, (Слайд 3) 2.
Учитель информатики:
На компьютерах изобразите решение домашней задачи и отправьте файл, имя которому ваша фамилия на сервер. Учащиеся работают на компьютерах, на экране правильное решение задачи. Подводятся итоги, учитель математики отвечает на вопросы учащихся. (Слайд 4) a 1 Разделим многоугольник на n треугольников с вершинами в rr a 3 центре окружности. S – площадь многоугольника, равна сумме a 2 площадей треугольников (обозначим их S 1, S 2,………., S n ). S = ah, h = r S = S 1 + S 2 + S 3 +……… + S n = a n a 1 r + a 2 r + a 3 r +……..+ a n r = r(a 1 + a 2 +….+ a n ) = rP

a 4

где Р – периметр многоугольника, r – радиус вписанной окружности

Учитель математики:
Фронтальный опрос: а) На доске начерчен прямоугольный треугольник, обозначены его катеты и гипотенуза. Сформулировать и записать теорему Пифагора. б) Дать определение синуса угла в прямоугольном треугольнике. Записать его на доске. r r
O

в) Дать определение косинуса угла в прямоугольном треугольнике. Записать его на доске. г) Записать формулу площади прямоугольника. д) Записать формулу синуса двойного угла. е) Назовите наибольшее и наименьшее значение синуса угла. ж) Где находится точка пересечения диагоналей прямоугольника, вписанного в окружность?
III Изучение нового материала:
1.
Учитель

математики:
Мы с вами научились находить площади прямоугольника, параллелограмма, треугольников, применяя различные формулы, трапеции, ромба, квадрата, треугольников, вписанных в окружность, и треугольников, описанных около окружности, доказали, что площадь многоугольника, описанного около окружности, равна половине произведения периметра многоугольника на радиус вписанной окружности. (Обратить внимание учащихся на таблицу «Площади») 2. А сегодня на уроке мы попробуем с помощью микроисследования открыть и доказать еще одну формулу для нахождения площади прямоугольника. Учащиеся записывают тему урока: «Площадь прямоугольника, вписанного в окружность». Для этого требуется решить задачу: (слайд 5) Чтобы облегчить решение задачи, давайте мы с вами выполним практическую работу. Только радиус круга возьмем не 50 см, а 5 см. (Обратить внимание учащихся на плакат с разъяснением слова «Гипотеза», на местоположение точки пересечения диагоналей прямоугольника, вписанного в окружность) 3. Практическая работа.
Учитель информатики:
работу выполнить на компьютерах: (каждому ученику дается карточка) Выполни практическую работу. 1. В окружность радиуса 5 см впишите прямоугольник с основанием a см. Величина a принимает значения, указанные в таблице. Заполни таблицу. 2. Назовите наибольшее значение из получившихся площадей. 3. Сформулируйте гипотезу о форме прямоугольника наибольшей площади, вписанного в окружность. 4. Задание для более подготовленных учащихся: a (см) 2 3 4 5 6 7 8 9 b (см) S(см 2 )
Выразить площадь прямоугольника через радиус описанной окружности и угол между стороной прямоугольника и его диагональю. Исследовав эту формулу, ответьте на вопросы: 1. В каком случае площадь прямоугольника будет наибольшей? 2. Какую форму имеет прямоугольник наибольшей площади, вписанный в окружность? 3. Записать формулу площади прямоугольника, имеющего наибольшую площадь. После выполнения практической работы один из учеников выводит результаты исследований на экран в виде таблицы и подтверждает правильность выдвинутой гипотезы. (Ответ учащихся: гипотеза – из всех прямоугольников, вписанных в окружность, наибольшую площадь имеет квадрат).
Учитель математики:
Требуется привести доказательство гипотезы – их всех прямоугольников, вписанных в окружность, наибольшую площадь имеет квадрат. Это делает один из учеников, который выполнял индивидуальную работу. Предполагаемый ответ ученика: Чтобы это доказать, выводим формулу площади прямоугольника, вписанного в окружность через радиус окружности и угол между диагональю прямоугольника и его стороной. A B Центр окружности лежит в точке пересечения диагоналей прямоугольника. АС = 2R. S ABCD = ab. Из прямоугольного треугольника ADC следует, что = , a = 2R , = , b = 2R , S ABCD = ab = 2R 2R = 4R 2 = D C 2R 2 . a (см) 2 3 4 5 6 7 8 9 b (см) S(см 2 ) а b
Площадь прямоугольника, вписанного в окружность, равна 2R 2 , где R –радиус окружности, – угол между диагональю прямоугольника и его стороной. Наш прямоугольник должен по условию задачи иметь наибольшую площадь. Исследуем эту формулу: S = 2R 2 . 2R 2 – величина для этой окружности постоянна. Наибольшее значение площади зависит от , наибольшее значение синуса угла равно 1, тогда = 1, = , = , т.е. угол между диагональю и стороной прямоугольника равен , откуда следует, что прямоугольник наибольшей площади, вписанный в окружность, является квадратом. Тогда площадь квадрата (прямоугольника, имеющего наибольшую площадь) равна S = 2R 2 .
Учитель математики:
1. Получили новые формулы для вычисления площади прямоугольника: S = 2R 2 – площадь прямоугольника, вписанного в окружность, где R – радиус вписанной окружности, – угол между диагональю (диаметром окружности) прямоугольника и стороной прямоугольника. S = 2R 2 – площадь квадрата, вписанного в окружность (прямоугольника, вписанного в окружность наибольшей площади) 2. Задание классу: по полученной формуле найти площадь прямоугольника, имеющего наибольшую площадь, вписанного в окружность. R = 5 см (50 см 2 ) 3. Сравнить значение площади, вычисленной по полученной формуле со значением площади, полученной в результате исследований. 4. Вопрос классу: подтвердилась ли выдвинутая гипотеза: их всех прямоугольников, вписанных в окружность, наибольшую площадь имеет квадрат? 5. Решить задачу: (слайд 5) Из круглого листа жести радиуса 50 см требуется вырезать прямоугольник наибольшей площади. Найти значение этой площади. Учащиеся должны ответить на вопросы: а) Как из круглого листа жести вырезать прямоугольник наибольшей площади? (предполагаемый ответ: на круглом листе жести провести два взаимно перпендикулярных диаметра, концы диаметра последовательно соединить отрезками, получим прямоугольник (квадрат), который имеет наибольшую площадь). (Слайд 6) б) Чему равно значение этой площади? (5000 см 2 )
IV Первичное закрепление материала

1. Решение задач: (выполняется в тетради) – а) Вывести формулу площади квадрата через его диагональ двумя способами. (Слайд 7)

A B 1 способ (Слайд 8) S = a 2 ,

=
45 , a = d sin = d; a S = 2 = 2 , S = 2 .

2 способ (Слайд 9)

C D Квадрат – это ромб, диагонали ромба равны (d 1 = d 2 ).

Формула площади ромба: S = d 1 d 2 , площадь квадрата: S = 2 . б) Боковая сторона равнобедренного треугольника равна 18 см. Найти наибольшую возможную площадь этого треугольника. (Слайд 10) (Слайд 11) A K Треугольник АВС – равнобедренный, АМ – высота, Проведем АК МС, КС АМ, площадь

18

прямоугольника АКСМ равна площади

треугольника АВС ( АМВ = СКА (равенство

B M C прямоугольных треугольников по двум катетам: АМ = КС, ВМ = МС, МС = АК, тогда АК = МС)). Прямоугольник АКСМ будет иметь наибольшую площадь, если он будет являться квадратом. S кв = 2 , S АКСМ = 18 2 = 324:2 = 162 (см 2 ). Так как площадь прямоугольника АКСМ равна площади треугольника АВС, то наибольшая площадь треугольника АВС равна 162 см 2 .
V Задание на дом:
(Слайд 12) 1. Вывод формулы площади прямоугольника, вписанного в окружность, через диагональ прямоугольника и угол между диагональю прямоугольника и его стороной; 2. Задание по карточке: (карточка выдается каждому учащемуся) d

Домашнее задание
1. Задача: Нужно огородить участок прямоугольной формы забором длиной 200м. Каковы должны быть размеры этого участка, чтобы его площадь была наибольшей? 2. Переформулировать задачу, взяв за периметр прямоугольника 20 см. 3. Заполнить таблицу: a (см) 1 2 3 4 5 6 7 8 9 b (см) S (cм 2 ) 4. Запишите наибольшее значение из получившихся площадей. 5. Сформулируйте гипотезу о форме прямоугольника заданного периметра, имеющего наибольшую площадь. 6. Решить данную задачу. 7. Выполни задание в среде MS Word. 3. (
Учитель математики)
(Слайд 13)
Тест

1.
Площадь ромба с диагоналями 10 см и 20 см равна: а) 200 см 2 б) 300 см 2 в) 400 см 2 г) 100 см 2 2. Площадь квадрата со стороной 5 см равна: а) 20 см 2 б) 10 см 2 в) 25 см 2 г) 15 см 2 3. Боковая сторона равнобедренного треугольника равна 24 см. При каком значении высоты площадь треугольника будет наибольшей? Проверяется результат, анализируется решение задачи. а) 12 см; б) 12 см; в) 12 см; г) 8 см.
VI Итог урока

1.
Вопросы классу: (
Учитель математики)
а) формула площади прямоугольника, вписанного в окружность, через радиус окружности и угол между диагональю прямоугольника и его стороной; какую форму имеет прямоугольник, вписанный в окружность, наибольшей площади? б) формула площади квадрата через его диагональ.
Учитель информатики
: -Какие функции необходимо использовать при вставке фигур в документ? – Какими способами можно задать таблицу в MS WORD? 2. Выставление оценок по математике и информатике.

Учитель математики:
Закончить сегодняшний урок хочется словами великого Леонардо до Винчи: « Железо ржавеет, не находя себе применения, стоячая вода гниет или на холоде замерзает, а ум человека, не находя себе применения, чахнет». Мы хотим, чтобы ваш ум никогда не зачах. (Слайд 14)
Литература
1. Современный словарь иностранных слов. Москва «Русский язык», 1993 г. 2. А.В.Погорелов «Геометрия 7 – 9», учебник, «Просвещение» 2005 г. 3. Т.И.Купорова «Геометрия 9 класс, поурочные планы по учебнику А.В.Погорелова», Волгоград «Учитель», 2003 г. 4. И.М.Шапиро «Использование задач с практическим содержанием в преподавании математики», Москва «Просвещение», 1990 г. 5. А.Г.Мордкович «Алгебра и начала математического анализа 10 – 11, часть 2, задачник», Москва «Просвещение», 2009 г. 6. А.А. Кузнецов, Н.В. Апатова «Основы информатики», «Просвещение», 2008 г 7. А.А.Журин, И.П.Журина «Word 7.0 для школьников» «Дрофа», 2007 г.

Формулы площадей фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Формула площади треугольника по стороне и высоте

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

где a — одна из сторон треугольника, h — высота, проведенная к стороне треугольника.

Формула площади треугольника по трем сторонам

Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

S = p p – a p – b p – c ,

где p — полупериметр треугольника: p = a + b + c 2
a, b, c — стороны треугольника.

Формула площади треугольника по двум сторонам и углу между ними

Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S = 1 2 a · b · sin γ ,

где a, b — стороны треугольника,
γ — угол между сторонами a и b .

Формула площади треугольника по трем сторонам и радиусу описанной окружности

a, b, c — стороны треугольника,
R – радиус описанной окружности.

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

где S — площадь треугольника,
r – радиус вписанной окружности,
p — полупериметр треугольника: p = a + b + c 2

Формулы площади квадрата

Формула площади квадрата по длине стороны

Площадь квадрата равна квадрату длины его стороны.

где S — площадь квадрата,
a — длина стороны квадрата.

Формула площади квадрата по длине диагонали

Площадь квадрата равна половине квадрата длины его диагонали.

где S — площадь квадрата,
d — длина диагонали квадрата.

Формула площади прямоугольника

Площадь прямоугольника равна произведению длин двух его смежных сторон.

где S — площадь прямоугольника,
a, b — длины сторон прямоугольника.

Формулы площади параллелограмма

Параллелограмм — это четырёхугольник, у которого противолежащие стороны параллельны.

Формула площади параллелограмма по длине стороны и высоте

Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

где S — площадь параллелограмма,
a, h — длины сторон параллелограмма.

Формула площади параллелограмма по двум сторонам и углу между ними

Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

где S — площадь параллелограмма,
a, b — длины сторон параллелограмма,
α – угол между сторонами параллелограмма.

Формула площади параллелограмма по двум диагоналям и углу между ними

Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

S = d1 · d2 · sin β 2 = d1 · d2 · sin γ 2 ,

где S — площадь параллелограмма,
d1, d2 — длины диагоналей параллелограмма,
β , γ – угол между диагоналями параллелограмма.

Формулы площади ромба

Формула площади ромба по длине стороны и высоте

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

где S — площадь ромба,
a — длина стороны ромба,
h — длина высоты ромба.

Формула площади ромба по длине стороны и углу

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

где S — площадь ромба,
a — длина стороны ромба,
α — угол между сторонами ромба.

Формула площади ромба по длинам его диагоналей

Площадь ромба равна половине произведению длин его диагоналей.

где S — площадь ромба,
d1, d2 — длины диагоналей ромба.

Формулы площади трапеции

Трапеция — это четырёхугольник, у которого две ( a, b ) стороны параллельны (основания), а две другие ( c, d ) стороны не параллельны (боковые стороны).

Формула Герона для трапеции

где S — площадь трапеции,
a, b — длины основ трапеции,
c, d — длины боковых сторон трапеции,
p = a + b + c + d 2 — полупериметр трапеции.

Формула площади трапеции по длине основ и высоте

Площадь трапеции равна произведению полусуммы её оснований на высоту.

где S — площадь трапеции,
a, b — длины основ трапеции,
h — высота трапеции.

Формулы площади дельтоида

Дельтоид — это выпуклый четырёхугольник, состоящий из двух различных равнобедренных треугольников с общим основанием, вершины которых лежат по разные стороны от этого основания.

Формула площади дельтоида по двум неравным сторонам и углу между ними

Площадь дельтоида равна произведению длин неравных сторон на синус угла между ними.

где S — площадь дельтоида,
a, b — длины неравных сторон дельтоида,
β — угол между неравными сторонами дельтоида.

Формула площади дельтоида по равным сторонам и углу между ними

Площадь дельтоида равна полусумме произведения каждой из пар равных сторон на синус угла между ними.

S = a 2 sin γ + b 2 sin α 2 ,

где S — площадь дельтоида,
a, b — длины сторон дельтоида,
α — угол между равными сторонами b ,
γ — угол между равными сторонами a .

Формула площади дельтоида по двум неравным сторонам и радиусу вписанной окружности

Площадь дельтоида равна произведению суммы неравных сторон на радиус вписанной окружности.

где S — площадь дельтоида,
a, b — длины неравных сторон дельтоида,
r — радиус вписанной окружности.

Формула площади дельтоида по двум диагоналям

Площадь дельтоида равна половине произведения длин двух диагоналей.

где S — площадь дельтоида,
d1, d2 — диагонали дельтоида.

Формулы площади произвольного выпуклого четырехугольника

Формула площади произвольного выпуклого четырехугольника по длине диагоналей и углу между ними

Площадь произвольного выпуклого выпуклого четырехугольника равна половине произведения его диагоналей умноженной на синус угла между ними.

S = d1 · d2 · sin γ 2 ,

где S — площадь четырехугольника,
d1, d2 — диагонали четырехугольника,
γ — любой из четырёх углов между диагоналями.

Формула площади произвольного выпуклого четырехугольника по длине сторон и значению противоположных углов

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника,
p = a + b + c + d 2 — полупериметр четырехугольника,
θ = α + β 2 — полусумма двух противоположных углов четырехугольника.

Формула площади вписанного четырехугольника (формула Брахмагупты)

Если вокруг четырехугольника можно описать окружность, то его площадь равна

S = p – a p – b p – c p – d ,

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника,
p = a + b + c + d 2 — полупериметр четырехугольника.

Формула площади четырехугольника с вписанной окружностью

Если в четырехугольник можно вписать окружность, то его площадь равна:

где S — площадь четырехугольника,
r — радиус вписанной окружности,
p = a + b + c + d 2 — полупериметр четырехугольника.

Формула площади четырехугольника с вписанной и описанной окружностями

Если в четырехугольник можно вписать окружность, а также около него можно описать окружность, то его площадь равна:

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника.

Формулы площади круга

Формула площади круга через радиус

Площадь круга равна произведению квадрата радиуса на число пи.

S = π r 2 ,

где S — площадь круга,
r — радиус круга.

Формула площади круга через диаметр

Площадь круга равна четверти произведения квадрата диаметра на число пи.

где S — площадь круга,
d — диаметр круга.

Площадь сегмента круга

Площадь кругового сегмента через угол в градусах.

где S — площадь сегмента круга,
R — радиус круга,
α° — угол в градусах.

Площадь кругового сегмента через угол в радианах.

где S — площадь сегмента круга,
R — радиус круга,
α° — угол в радианах.

Формула площади эллипса

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

где S — площадь эллипса,
a — длина большей полуоси эллипса,
b — длина меньшей полуоси эллипса.

[spoiler title=”источники:”]

http://zhurnalpedagog.ru/servisy/publik/publ?id=3392

http://urokmatematiki.ru/reference-information/formuly-po-geometrii/formuly-ploshchadey-figur.php

[/spoiler]

Сергей Логинов



Знаток

(283),
закрыт



11 лет назад

Лучший ответ

Квантор

Просветленный

(34142)


11 лет назад

d^2=16^2+12^2 -теорема пифагора
d^2=400
d=20
d=2r
r=10cм
S=pi*r^2
S=100*pi
вот и все

Остальные ответы

Хулиганов Иосиф

Искусственный Интеллект

(268385)


11 лет назад

Диагональ вписанного прямоугольника равна диаметру окружности:
d^2 = a^2 + b^2 = 400
d = 20
R = d/2 = 10
Площадь круга
S = п*R^2 = 100*п

Похожие вопросы

Как найти площадь круга? Сначала найдите радиус. Учитесь решать простые и сложные задачи.

Содержание

  • Площадь круга: формула через радиус, диаметр, длину окружности, примеры решения задач
    • Формула нахождения площади круга через радиус:
    • Формула нахождения S-площади круга через D-диаметр:
    • Нахождение S круга, если известна длина окружности:
  • Площадь круга, вписанного в квадрат: формула, примеры решения задач
    • Задача №1: Известна сторона квадратной фигуры, которая равна 6 сантиметров. Найдите S-площадь вписанной окружности.
    • Задача №2: Найдите S круга, вписанного в квадратную фигуру и его радиус, если одна сторона равна a=4 см.
  • Площадь круга, описанного около квадрата: формула, примеры решения задач
  • Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: формула, примеры решения задач
  • Площадь круга, описанного около прямоугольного и равнобедренного треугольника: формула, примеры решения задач
  • Площадь круга, вписанного в прямоугольную и равнобедренную трапецию: формула, примеры решения задач
  • Площадь круга, описанного около прямоугольной и равнобедренной трапеции: формула, примеры решения задач
  • Видео: Математика | Вычисление площадей круга и его частей

Круг — это замкнутая кривая. Любая точка на линии окружности будет находиться на одинаковом расстоянии от центральной точки. Круг — это плоская фигура, поэтому решать задачи с нахождением площади просто. В этой статье мы рассмотрим, как найти площадь круга, вписанного в треугольник, трапецию, квадрат, и описанного около этих фигур.

Площадь круга: формула через радиус, диаметр, длину окружности, примеры решения задач

Чтобы найти площадь данной фигуры, нужно знать, что такое радиус, диаметр и число π.

Площадь круга: формула через радиус, диаметр, длину окружности, примеры решения задач

Площадь круга: формула через радиус, диаметр, длину окружности, примеры решения задач

Радиус R — это расстояние, ограниченное центром окружности. Длины всех R-радиусов одной окружности будут равными.

Диаметр D — это линия между двумя любыми точками окружности, которая проходит через центральную точку. Длина этого отрезка равна длине R-радиуса, умноженной на 2.

Число π — это неизменная величина, которая равна 3,1415926. В математике обычно это число округляется до 3,14.

Формула нахождения площади круга через радиус:

Площадь круга: формула через радиус

Площадь круга: формула через радиус

Примеры решения заданий по нахождению S-площади круга через R-радиус:

————————————————————————————————————————

Задача: Найдите площадь окружности, если ее радиус равен 7 см.

Решение: S=πR², S=3,14*7², S=3,14*49=153,86 см².

Ответ: Площадь окружности равна 153,86 см².

Формула нахождения S-площади круга через D-диаметр:

Площадь круга: формула через диаметр

Площадь круга: формула через диаметр

Примеры решения заданий по нахождению S, если известен D:

————————————————————————————————————————-

Задача: Найдите S круга, если его D равен 10 см.

Решение: P=π*d²/4, P=3,14*10²/4=3,14*100/4=314/4=78,5 см².

Ответ: Площадь плоской круглой фигуры равна 78,5 см².

Нахождение S круга, если известна длина окружности:

Сначала находим, чему равен радиус. Длина окружности рассчитывается по формуле: L=2πR, соответственно радиус R будет равен L/2π. Теперь находим площадь круга по формуле через R.

Рассмотрим решение на примере задачи:

———————————————————————————————————————-

Задача: Найдите площадь круга, если известна длина окружности L — 12 см.

Решение: Сначала находим радиус: R=L/2π=12/2*3,14=12/6,28=1,91.

Теперь находим площадь через радиус: S=πR²=3,14*1,91²=3,14*3,65=11,46 см².

Ответ: Площадь круга равна 11,46 см².

Площадь круга, вписанного в квадрат: формула, примеры решения задач

Площадь круга, вписанного в квадрат: формула, примеры решения задач

Площадь круга, вписанного в квадрат: формула, примеры решения задач

Найти площадь круга, вписанного в квадрат просто. Сторона квадрата — это диаметр круга. Чтобы найти радиус, нужно сторону разделить на 2.

Формула нахождения площади круга, вписанного в квадрат:

Площадь круга, вписанного в квадрат: формула

Площадь круга, вписанного в квадрат: формула

Примеры решения задач по нахождению площади круга, вписанного в квадрат:

———————————————————————————————————————

Задача №1: Известна сторона квадратной фигуры, которая равна 6 сантиметров. Найдите S-площадь вписанной окружности.

Решение: S=π(a/2)²=3,14(6/2)²=3,14*9=28,26 см².

Ответ: Площадь плоской круглой фигуры равна 28,26 см².

————————————————————————————————————————

Задача №2: Найдите S круга, вписанного в квадратную фигуру и его радиус, если одна сторона равна a=4 см.

Решайте так: Сначала найдем R=a/2=4/2=2 см.

Теперь найдем площадь окружности S=3,14*2²=3,14*4=12,56 см².

Ответ: Площадь плоской круглой фигуры равна 12,56 см².

Площадь круга, описанного около квадрата: формула, примеры решения задач

Площадь круга, описанного около квадрата: формула, примеры решения задач

Площадь круга, описанного около квадрата: формула, примеры решения задач

Немного сложнее находить площадь круглой фигуры, описанной около квадрата. Но, зная формулу, можно быстро подсчитать данное значение.

Формула нахождения S круга, описанного около квадратной фигуры:

Площадь круга, описанного около квадрата: формула

Площадь круга, описанного около квадрата: формула

Примеры решения заданий по нахождению площади окружности, описанной около квадратной фигуры:

Задача 

Площадь круга, описанного около квадрата: примеры решения задач

Площадь круга, описанного около квадрата: примеры решения задач

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: формула, примеры решения задач

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: формула, примеры решения задач

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: формула, примеры решения задач

Окружность, которая вписана в треугольную фигуру — это круг, который касается всех трех сторон треугольника. В любую треугольную фигуру можно вписать круг, но только один. Центром круга будет точка пересечения биссектрис углов треугольника.

Формула нахождения площади круга, вписанного в равнобедренный треугольник:

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: формула

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: формула

Когда будет известен радиус, площадь можно вычислить по формуле: S=πR².

Формула нахождения площади круга, вписанного в прямоугольный треугольник:

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник

Примеры решения заданий:

Задача №1

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: примеры решения задач

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: примеры решения задач

Если в этой задаче нужно найти еще и площадь круга с радиусом 4 см, то сделать это можно по формуле: S=πR²

Задача №2

Площадь круга, вписанного в равнобедренный треугольник: примеры решения задач

Площадь круга, вписанного в равнобедренный треугольник: примеры решения задач

Решение:

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: примеры

Площадь круга, вписанного в прямоугольный и равнобедренный треугольник: примеры

Теперь, когда известен радиус, можно найти площадь круга через радиус. Формулу смотрите выше по тексту.

Задача №3

Площадь круга, вписанного в треугольник: примеры решения задач

Площадь круга, вписанного в треугольник: примеры решения задач

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: формула, примеры решения задач

Все формулы по нахождению площади круга сводятся к тому, что сначала нужно найти его радиус. Когда известен радиус, то найти площадь просто, как было описано выше.

Площадь круга, описанного около прямоугольного и равнобедренного треугольника находится по такой формуле:

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: формула

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: формула

Примеры решения задач:

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: примеры решения задач

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: примеры решения задач

Вот еще пример решения задачи с использованием формулы Герона.

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: примеры

Площадь круга, описанного около прямоугольного и равнобедренного треугольника: примеры

Решать подобные задачи сложно, но их можно осилить, если знать все формулы. Такие задачи школьники решают в 9 классе.

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию: формула, примеры решения задач

У равнобедренной трапеции две стороны равны. У прямоугольной трапеции один угол равен 90º. Рассмотрим, как найти площадь круга, вписанного в прямоугольную и равнобедренную трапецию на примере решения задач.

Например, в равнобедренную трапецию вписана окружность, которая в точке касания делит одну сторону на отрезки m и n.

Для решения этой задачи нужно использовать такие формулы:

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию: формула

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию: формула

Нахождение площади окружности, вписанной в прямоугольную трапецию, производится по следующей формуле:

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию

Если известна боковая сторона, то можно найти радиус через это значение. Высота боковой стороны трапеции равна диаметру окружности, а радиус — это половина диаметра. Соответственно, радиус равен R=d/2.

Примеры решения задач:

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию: примеры решения задач

Площадь круга, вписанного в прямоугольную и равнобедренную трапецию: примеры решения задач

Площадь круга, описанного около прямоугольной и равнобедренной трапеции: формула, примеры решения задач

Трапецию можно вписать в окружность, когда сумма ее противолежащих углов равна 180º. Поэтому вписать можно только равнобокую трапецию. Радиус для вычисления площадь круга, описанного около прямоугольной или равнобедренной трапеции, рассчитывается по таким формулам:

Площадь круга, описанного около прямоугольной и равнобедренной трапеции: формула, примеры решения задач

Площадь круга, описанного около прямоугольной и равнобедренной трапеции: формула, примеры решения задач
Площадь круга, описанного около прямоугольной и равнобедренной трапеции: формула
Площадь круга, описанного около прямоугольной и равнобедренной трапеции: формула

Примеры решения задач:

Площадь круга, описанного около прямоугольной и равнобедренной трапеции: примеры решения задач

Площадь круга, описанного около прямоугольной и равнобедренной трапеции: примеры решения задач

Решение: Большое основание в данном случае проходит через центр, так как в окружность вписана равнобедренная трапеция. Центр делит это основание ровно пополам. Если основание АВ равно 12, тогда радиус R можно найти так: R=12/2=6.

Ответ: Радиус равен 6.

В геометрии важно знать формулы. Но все их невозможно запомнить, поэтому даже на многих экзаменах разрешается пользоваться специальным формуляром. Однако важно уметь находить правильную формулу для решения той или иной задачи. Тренируйтесь в решении разных задач на нахождение радиуса и площади окружности, чтобы уметь правильно подставлять формулы и получать точные ответы.

Видео: Математика | Вычисление площадей круга и его частей

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними


Площадь четырехугольника через диагонали


Формула для нахождения площади четырехугольников через диагонали и угол между ними:

d1, d2 – диагонали; α – угол между диагоналями.


Через стороны и противолежащие углы


Площадь четырехугольника через стороны и противолежащие углы


Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

p – полупериметр четырехугольника; a, b, c, d – стороны четырехугольника; α, β – противолежащие углы.


Площадь вписанного четырехугольника в окружность


Площадь вписанного четырехугольника в окружность


Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

p – полупериметр четырехугольника; a, b, c, d – стороны четырехугольника.


Площадь описанного четырехугольника около окружности через радиус


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через радиус:

p – полупериметр четырехугольника; r – радиус вписанной окружности; a, b, c, d – стороны четырехугольника.


Площадь описанного четырехугольника около окружности через стороны и противолежащие углы


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через стороны и противолежащие углы:

p – полупериметр четырехугольника; a, b, c, d – стороны четырехугольника; α, β – противолежащие углы.

Площадь вписанного четырехугольника равна?

Формула площади вписанного четырехугольника?

Площадь четырехугольника, вписанного в окружность?

Вроде бы- согласно правилам- центры окружностей, как вписанных, так и описанных, в квадрат и вокруг него, находятся на пересечении его дигоналей,это упрощает нахождение площади, так как, радиус окружности, описанной вокруг квадрата, равен половине диагонали, отсюда- сторона квадрата = радиус* на корень кв. из 2- х, а площадь- стороне, возведенной во

вторую степень.

Речь о квадрате, потому что другой четырехугольник не впишется, а опишется

вокруг окружности, еще и ромб.

система выбрала этот ответ лучшим

Эта задача в сформулированном виде имеет смысл только в том случае, если вписанный четырехугольник – это квадрат. В таком случае пусть радиус окружности равен r, а сторона квадрата равна а. Диаметр окружности (он же – диагональ квадрата) равен 2r. По теореме Пифагора а2 + а2 = (2r)2, 2а2 = 4r2 и получаем, что площадь квадрата равна а2 = 2r2. Если же вписанный четырехугольник – не квадрат, то для определения его площади необходимы дополнительные данные. Например, если четырехугольник прямоугольный, то достаточно дать длину, например, меньшей его стороны. Потому что площадь вписанного прямоугольника будет стремиться у нулю при уменьшении длины этой меньшей стороны. Если четырехугольник произвольный, то тем более необходимы для решения задачи какие-то дополнительные данные. Например, стороны или углы этого четырехугольника. Предполагается во всех случаях, что известен радиус окружности.

Есть другой вариант – от площади окружности отнять четыре сегмента круга..

Сегмент круга – это разность площади сектора и двух прямоугольных треугольников, опирающихся на него или разница между сектором и прямоугольным треугольником..

a-длина хорды

r-радиус

b-высота, опущенная на хорду..

S1=a*b/2=a*sqrt(r^2-a^2/4)/2

S2=п*r^2(alpha)/360

alpha=2*arcsin(a*r/2)

Итого получится:

S=п*r^2(1-E(п*r^2(2*arcsin(ai*r/2))/360-ai*sqrt(r^2-ai^2/4)/2),

где Е-знак суммирования сигма по всем четырём ai, которые являются хордами и одновременно сторонами вписанного четырёхугольника..

Проще всего посчитать площадь вписанного четырёхугольника – это провести диагональ между двумя любыми углами, а затем из других углов опустить высоты..

Если длины высот обозначить как a и d, отрезки, отсекаемые от диагонали – b и c, то из рассмотрения четырёх прямоугольных треугольников получаем:

S= (a*b+a*c+b*d+d*c)/2

Вот такая простая и очевидная формула, ведь в задании не было указано, что нужно определить через радиус окружности..

Михаи­л Алекс­еевич – гражд­анин РФ
[6.3K]

6 лет назад 

Если четырех угольник это квадрат, то делим квадрат на 4 прямоугольных треугольника, соответственно сторона треугольника равна радиусу, а площадь R*R/2, соответственно площадь 4 треугольников 4R*R/2 или 2R*R или 2R квадрат. В остальных случаях необходимы дополнительные параметры и общей формулы нет, площадь может изменяться от 0 если одна сторона =диаметру а вторая 0 до площади квадрата, формула приведена выше.

Galin­a7v7
[120K]

6 лет назад 

Существует несколько сложная формула вычисления площади ПРОИЗВОЛЬНОГО четырёхугольника, но вписанного в окружность :

s = корень из(p *(p-a)*(p-b)*(p-c)*(p-d), где p – полупериметр сторон четырёхугольника, a , b , c , d – стороны четырёхугольника.

Формула очень напоминает формулу Герона.

Ещё есть формула вычисления площади опять таки произвольного четырёхугольника, но по значениям диагоналей 4-х угольника.

Знаете ответ?

Добавить комментарий