Как найти площадь разносторонних фигур

С помощью данного калькулятора вы можете легко и быстро рассчитать площадь неправильного четырехугольника в условных единицах. Инструмент позволяет определить площадь выпуклой фигуры тремя разными способами: по сторонам, сторонам и углам, диагоналям и углам (первые два вычисления выполняются с ограничениями). Теоретическое обоснование расчета и формулы представлены ниже. Чтобы получить результат — выберите наиболее подходящий метод расчета, заполните поля калькулятора и нажмите кнопку «Рассчитать».

Как найти площадь неправильного четырехугольника?

Площадь неправильного четырехугольника

Первый способ расчета основан на формуле Брахмагупты (рис. 1), которая выражает площадь вписанного в окружность четырёхугольника как функцию длин его сторон. Эта формула является обобщением формулы Герона для площади треугольника.

Формула Брахмагупты

где P — полупериметр, a, b, c, d — длины сторон четырехугольника.

Вторая формула также основывается на формуле Брахмагупты, но на ее расширенной версии (рис. 2), когда необходимо найти площадь произвольного четырехугольника.

Расширенная формула Брахмагупты

где P — полупериметр, a, b, c, d — длины сторон, θ — полусумма противоположных углов четырёхугольника.

В формулах Брахмагупты есть одно ограничение — любая из сторон не может превышать полупериметр. В противном случае стороны четырехугольника не замкнутся. Математически, в формуле появится отрицательное значение. 

Последняя формула позволяет найти площадь не самопересекающейся фигуры по проведенным диагоналям и синусу угла между ними (рис. 3). По сути, формула основывается на сумме площадей треугольников, которые образуются диагоналями четырехугольника.

Площадь неправильного четырехугольника через диагонали и угол

где d1, d2 — диагонали четырехугольника, α — острый угол между диагоналями.

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить



1. Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

а – нижнее основание

b – верхнее основание

с – равные боковые стороны

α – угол при нижнем основании

Формула площади равнобедренной трапеции через стороны, (S ):

Формула площади равнобедренной трапеции через стороны

Формула площади равнобедренной трапеции через стороны и угол, (S ):

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

2. Формулы площади равнобедренной трапеции если в нее вписана  окружность

Площадь равнобедренной трапеции через радиус вписанной окружности

R – радиус вписанной окружности

D – диаметр вписанной окружности

O – центр вписанной окружности

H – высота трапеции

α, β – углы трапеции

а – нижнее основание

b – верхнее основание

Формула площади равнобедренной трапеции через радиус вписанной окружности, (S ):

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию:

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию


Площадь равнобедренной трапеции если в нее вписана окружность

R – радиус вписанной окружности

m – средняя линия

O – центр вписанной окружности

c – боковые стороны

а – нижнее основание

b – верхнее основание

Формула площади равнобедренной трапеции через радиус вписанной окружности, стороны и среднюю линию (S ):

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию:



3. Формула площади равнобедренной трапеции через диагонали и угол между ними

Формула площади равнобедренной трапеции через диагонали и угол между ними

d – диагональ трапеции

α, β – углы между диагоналями

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S ):



4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

Формула площади равнобедренной трапеции через среднюю линию

c – боковая сторона

m – средняя линия трапеции

α, β – углы при основании

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании



5. Формула площади равнобедренной трапеции через основания и высоту

Формула площади равнобедренной трапеции через основания и высоту

a – нижнее основание

b – верхнее основание

h – высота трапеции

Формула площади равнобедренной трапеции через основания и высоту, (S ):

Формула площади равнобедренной трапеции через основания и высоту

Прямоугольный треугольник, так же как и любой другой треугольник, имеет три стороны и три угла. Разница только в том, что один угол прямой, т. е. 90 градусов и два остальных, острых угла в сумме составляют, тоже 90 градусов.
Две стороны, которые формируют прямой угол, называют катетами, а третья сторона напротив прямого угла, называется – гипотенуза


1. Если известны только катеты

Прямоугольный треугольник

ab – катеты треугольника

Формула площади треугольника через катеты ( S ) :

Формула площади через катеты

2. Если известны острый угол и гипотенуза или катет

Треугольник через сторону и угол

c – гипотенуза

a, b – катеты

αβ – острые углы

Формулы площади прямоугольного треугольника через гипотенузу и угол ( S ) :

Формула площади через гипотенузу и угол

Формула площади прямоугольного треугольника через гипотенузу и угол

Формулы площади прямоугольного треугольника через катет и угол ( S ) :

Формула площади  через катет a и угол

площади прямоугольного треугольника через катет b и угол


Для справкиКак известно, сумма острых углов в прямоугольном треугольнике равна 90 градусов, а если

Сумма острых углов прямоугольного треугольника равна 90 градусов

то справедливы следующие тождества:

синус косинус

синус косинус


3. Если известны радиус вписанной окружности и гипотенуза

Треугольник  радиус вписанной окружности и угол

c – гипотенуза

c1c2 – отрезки полученные делением гипотенузы, точкой касания окружности

r – радиус вписанной окружности

О – центр вписанной окружности

Формулы площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу ( S ) :

Формула площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Площадь фигуры (треугольник, четырёхугольник, трапеция и др.) по клеточкам (клеткам).

Какие есть формулы?

Есть способ, при котором надо воспользоваться формулой, основой которой будет понятие узла, узла внутреннего и узла внешнего. Узел это пересечение линий, образующих эти самые клеточки. Внешние узлы, это узлы, находящиеся на сторонах и вершинах геометрических фигур, площади которых нам надо найти. А внутренние узлы, это узлы внутри этих фигур. Клеточки у нас со сторонами равными одному сантиметру (1 см).

Формула, о которой идет речь, называется формула Пика.

Выглядит она вот так:

И по ней очень просто посчитать площадь фигуры S. В этой формуле M это количество внешних узлов, N – количество внутренних узлов.

Приведем пример, возьмем геометрическую фигуру параллелограмм:

Внутренние узлы – синие – N – их у нас 20.

Внешние узлы – красные – М – их у нас 18 и их количество нам надо поделить на два, получится 18/2 = 9 узлов.

Складываем 9 + 20 и вычитаем единицу: 20 + 9 – 1 = 28 см².

Еще один пример:

S = 14/2 + 43 – 1 = 49 см².

система выбрала этот ответ лучшим

Ксарф­акс
[156K]

6 лет назад 

Допустим, у нас есть произвольная фигура, построенная на листе в клетку. Необходимо вычислить её площадь.


Площадь фигуры по клеточкам

Для того, чтобы найти площадь любой фигуры по клеточкам, можно использовать формулу Пика.

Данная формула основана на подсчёте количества узлов, лежащих внутри фигуры и на её границе.

Узел – это точка, которая лежит на пересечении 2 линий данной сетки: вертикальных и горизонтальных.

Площадь фигуры по клеточкам находится по формуле:

как найти площадь фигуры по клеточкам

N – количество узлов, которые находятся внутри фигуры.

M – количество узлов, которые находятся на границах (на вершинах и сторонах).


Примеры нахождения площади по клеточкам

1) Найдём площадь треугольника. Будем считать, что одна клетка – это 1 см.

Отметим внутренние узлы и узлы, которые находятся на границах.

площадь фигуры по клеткам

N = 7 (внутренние).

M = 8 (узлы на границах).

Площадь треугольника S = 7 + 8/2 – 1 = 10 см².

2) Найдём площадь трапеции по клеточкам, одна клетка – это 1 см. Отметим все узлы и подсчитаем их количество.

площадь фигуры трапеции по клеточкам

N = 11 (внутренние).

M = 12 (узлы на границах).

Площадь трапеции S = 11 + 12/2 – 1 = 16 см².

3) Найдём площадь произвольного многоугольника. Одна клетка – это 1 см.

Отметим внутренние узлы и узлы, расположенные на границах фигуры. Подсчитаем их количество.

площадь фигуры многоугольника по клеткам

N = 6 (внутренние узлы).

M = 8 (узлы на границах).

Площадь многоугольника S = 6 + 10/2 – 1 = 10 см².

Марин­а Волог­да
[294K]

3 года назад 

Такие задачи очень часто встречаются, когда известен размер клеточки и дана фигура.

Вот пример таких задач:

Решение зависит от того, какая фигура дана и как именно она размещена относительно клеточек.

Возьмем простой пример, необходимо вычислить площадь вот такого треугольника:

Вспоминаем правило:

Теперь считаем, сколько клеточек треугольник в длину и сколько в высоту. У нас получается 2 в высоту и 6 в длину.

Подставляем к формуле:

S = 1/2 х 2 х 6 = 6 см2.

Считаем по клеточкам, подставляя формулу Пика:

Целых клеточек у нас 3.

Теперь считаем, сколько не целых: 6. Делим их на 2.

S = 3 + 6:2 = 6 см2.

А теперь высчитываем по формуле Пика: количество узлов сетки внутри – 2, количество узлов сетки, лежащих на границах – 10.

Подставляем к формуле и получаем – 2 + 10:2 – 1 = 6 см2.

Теперь давайте рассмотрим вот такой треугольник:

Чтобы найти площадь, вспоминаем правило:

Считаем клеточки и подставляем в формулу:

S = 1/2 х 2 х 6 = 6 см2.

А теперь находим по клеточкам: целых клеточек 2, не целых клеточек 8. Подставляем в формулу: 2 + 8:2 = 6 см2.

Пробуем сделать по формуле Пика: количество узлов сетки внутри – 3, количество узлов сетки, лежащих на границах – 8.

Подставляем к формуле и получаем – 3 + 8:2 – 1 = 6 см2.

Enot-Nina
[110K]

3 года назад 

Найти площадь геометрической фигуры можно самыми разными способами:

Самый простой вариант – это вручную посчитать клеточки – целые и половинки также поскладывать. Простой, хотя и не самый быстрый и может не самый точный способ, но он работает. Чтобы легче было считать, достаточно расчертить фигуру на более простые.

Есть еще один способ – это использовать давно разработанную формулу. Это так называемая формула Пика. Для нее нужно посчитать количество узлов – точек пересечения клеточек, что окружены фигурой (находятся внутри нее), а также подсчитать количество пограничных узлов – по контуру фигуры.

Вот на картинке наглядно показано, как ее можно применять, чтоб посчитать площадь любой фигуры по клеточкам:

Как посчитать площадь фигуры по клеточкам

Барха­тные лапки
[382K]

3 года назад 

Площадь любого многоугольника можно посчитать по клеточкам. Для этого применяем формулу Пика. На нашем рисунке В – количество узловых клеточек внутри фигуры, Г – количество узлов на границе . Узлы – пересечение двух линий. многоугольника. Площадь равна S = В + Г/2 – 1 Считаем точки на рисунке и подставляем в формулу. – 10 + 7/2 -1 = 12,5.

Таким образом можно посчитать площадь, если вершины фигуры лежат в узлах.

Ann Luka
[2.8K]

6 лет назад 

Чтобы найти площадь фигуры по клеточкам, нужно посчитать сколько в фигуре целых клеточек. Потом нужно посчитать сколько не целых и поделить их количество на 2. Добавить к получившемуся числу количество целых клеточек – это и будет правильный ответ.

Например. В треугольнике 3 целых клетки и 4 не целых. 3+4/2=5 пощадь треугольника 5 клеток.

Outli­ne
[18.3K]

3 года назад 

Для того, чтобы определить площадь фигуры на бумаге в клеточку есть универсальная формула Пика, позволяющая вычислить площадь изображения, но в только в том случае, если вершины искомой фигуры имеют целые (натуральные числа) координаты. Называется эта формула, в честь Георга Пика:

S=В + Г / 2 − 1

В этой формуле буквенные обозначения означают следующее:

В — количество целочисленных точек внутри многоугольника;

Г — количество целочисленных точек на границе (вершинах и сторонах) многоугольника;

S – площадь фигуры.

Здесь используется понятие “целочисленные” – это те, точки, которые расположены на пересечениях сетки (в ее узлах).

Для примера, найдем площадь треугольника:

Треугольник

Обозначим внутренние точки нашей фигуры красными кружками, а те, что на границах – синим цветом. Считаем красные и синие точки:

В=12, Г=4.

Исходя из подсчетов определяем площадь треугольника по формуле:

S=В+Г/2-1=12+2-1=13.

Можно убедиться в правильность проведенных выше расчетах. Рассчитываем площадь квадрата, обведенного красным, и вычитаем площади зеленого, синего и фиолетового треугольников:

Треугольник

S квадрата равна 36, площади треугольников: синего – 6, зеленого – 2, фиолетового – 15.

Исходя из полученных данных, S белого треугольника равна 13:

S=36-6-15-2=13.

Kriti­kSPb
[93.6K]

3 года назад 

Подсчет клеточек – дело полезное. С их помощью можно найти площадь геометрической фигуры.

Достаточно воспользоваться формулой, доказанной Георгом Пиком в 1899 году.

Подходит для расчета площади фигур с прямыми сторонами и целым количеством углов, чаще всего применяют для нахождения площади разносторонних треугольников и многоугольников с числом углов больше 4-х.

На теорему Пика есть задания в ЕГЭ.

12777­1
[272K]

3 года назад 

Сначала я подумал, что нужно будет фигуру, которая указана на рисунке в клеточку разбить по фигурам так, чтобы можно посчитать площадь каждой фигуры по-отдельности, но оказалось все намного проще. Существует для данной задачи специальная формула Пика, которая выглядит следующим образом:

Площадь = В + Г/2 – 1, где:

  • В – количество целочисленных точек внутри многоугольника.
  • Г – количество целочисленных точек на границе многоугольника.

Теперь разберемся на примере, у нас есть такой пример:

Перед нами трапеция. Допустим площадь одной клетки 1 кв.см. Теперь можно воспользоваться формулой:

11+12/2-1=16 кв.см.

Бекки Шарп
[71.2K]

3 года назад 

Найти площадь фигуры можно если вершины фигуры находятся в уголках клеточек, так называемые Целочисленные вершины или узловые точки. Решать задачу будем по формуле Пика, где

  • В – количество внутренних узловых точек,
  • Г – количество граничных узловых точек,

Вот такая фигура у нас –

Считаем точки и подставляем в формулу: S = 17 + 14/2 – 1 = 23

Ответ мы получаем в квадратных единицах, то есть клеточках.

Знаете ответ?

Как найти площадь разностороннего треугольника

Разносторонним треугольником называется такой треугольник, длины сторон которого не равны между собой. При этом подразумевается, что не равны также никакие две стороны (иначе треугольник получился бы равнобедренным). Для вычисления площади разностороннего треугольника используется несколько разных формул. Рассмотрены все основные варианты, которые могут встретиться на практике и при решении геометрических задач.

Как найти площадь разностороннего треугольника

Вам понадобится

  • – калькулятор;
  • – транспортир;
  • – линейка.

Инструкция

Чтобы найти площадь треугольника, умножьте длину его стороны на высоту (перпендикуляр, опущенный на эту сторону из противоположной вершины) и разделите полученное произведение на два. В виде формулы данное правило выглядит следующим образом:

S = ½ * а * h,

где:
S – площадь треугольника,
а – длина его стороны,
h – высота, опущенной на эту сторону.

Длина стороны и высота должны быть представлены в одинаковых единицах измерения. При этом площадь треугольника получится в соответствующих «квадратных» единицах.

Пример.
На одну из сторон разностороннего треугольника длиной 20 см, опущен перпендикуляр из противоположной вершины длиной 10 см.
Требуется определить площадь треугольника.
Решение.
S = ½ * 20 * 10 = 100 (см²).

Если известны длины двух любых сторон разностороннего треугольника и угол между ними, то воспользуйтесь формулой:

S = ½ * а * b * sinγ,

где: а, b – длины двух произвольных сторон, а γ – величина угла между ними.

На практике, например, при измерении площади земельных участков, использование вышеприведенных формул иногда бывает затруднительно, так как требует дополнительных построений и измерения углов.

Если вам известны длины всех трех сторон разностороннего треугольника, то воспользуйтесь формулой Герона:

S = √(p(p-a)(p-b)(p-c)),

где:

a, b, c – длины сторон треугольника,
р – полупериметр: p = (a+b+c)/2.

Если кроме длин всех сторон известен радиус вписанной в треугольник окружности, то воспользуйтесь следующей компактной формулой:

S = p * r,

где: r – радиус вписанной окружности (р – полупериметр).

Для вычисления площади разностороннего треугольника через радиус описанной окружности и длины его сторон, используйте формулу:

S = abc/4R,

где: R – радиус описанной окружности.

Если известна длина одной из сторон треугольника и величины трех углов (в принципе, достаточно двух – величина третьего вычисляется из равенства суммы трех углов треугольника – 180º), то воспользуйтесь формулой:

S = (a² * sinβ * sinγ)/2sinα,

где α – величина противолежащего стороне а угла;
β, γ – величины остальных двух углов треугольника.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий