Как найти площадь ромба по клеточкам огэ

Каталог заданий.
Ромб


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 18 № 311333

i

На рисунке изображен ромб ABCD. Используя рисунок, найдите  тангенс angle OBC.

Аналоги к заданию № 311333: 311376 Все

Источник: 9 класс. Ма­те­ма­ти­ка. Кра­е­вая ди­а­гно­сти­че­ская ра­бо­та. Крас­но­дар (вар. 2)

Решение

·

Помощь


2

Тип 18 № 311376

i

На рисунке изображен ромб ABCD. Используя рисунок, найдите  тангенс angle CDO.

Аналоги к заданию № 311333: 311376 Все

Источник: 9 класс. Ма­те­ма­ти­ка. Кра­е­вая ди­а­гно­сти­че­ская ра­бо­та. Крас­но­дар (вар.6)

Решение

·

Помощь


3

Тип 18 № 348446

i

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Аналоги к заданию № 348446: 348586 349027 349478 … Все

Решение

·

Помощь


4

Тип 18 № 356974

i

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Аналоги к заданию № 356974: 356975 356976 356977 … Все

Источник: Банк за­да­ний ФИПИ

Решение

·

Помощь

Пройти тестирование по этим заданиям

Всем привет!

До ОГЭ по математике осталось совсем немного времени, но с другой стороны его не так уж и мало, чтобы успеть подготовиться и получить хороший результат на экзамене!

С этой статье мы разберем, как решать одно из самых простых заданий по математике, а именно №18. Кроме того, это задание относится к блоку “Геометрия”, а для того, чтобы успешно сдать ОГЭ, необходимо набрать как минимум два балла по геометрии! И спомощью этого задания вы уже получите как минимум один балл))

Даже если вам тяжело дается геометрия, это задание сможет решить каждый школьник..нужно просто повторить немного теории и научиться пользоваться некоторыми формулами, которые будут вам доступны на экзамене в форме справочных материалов.

В качестве примеров я взяла 5 заданий из сборника Ященко для подготовке к ОГЭ 2023. Итак, поехали.

Задание 1

На клетчатой бумаге с размером клетки 1 см × 1 см отмечены точки A, B и C. Найдите расстояние от точки A до отрезка BC.

Здесь все просто – расстояние от точки до прямой – это перпендикуляр, проведенный к этой прямой. Поэтому соединяем точки В и С в отрезок ВС, проводим к нему перпендикуляр из точки А. Считаем длину его по клеточкам:

Задание 18 ОГЭ по математике
Задание 18 ОГЭ по математике

Задание 2

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Для того, чтобы найти площадь трапеции, необходимо вспомнить формулу нахождения площади. Но на экзамене выдаются справочные материалы, поэтому найти эту формулу не составит никакого труда:

Формула площади трапеции
Формула площади трапеции

Осталось расшифровать эту формулу:

a и b – это основания трапеции, h -высота трапеции. Дальше считаем все по клеточкам и подставляем полученные значения в формулу:

В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь этой трапеции.
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь этой трапеции.

Задание 3

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Здесь, как и в предыдущем задании, мы можем воспользоваться справочными материалами и найти формулу площади треугольника.

Площадь треугольника
Площадь треугольника

В этом задании используем 1 формулу, где а – это основание треугольника, h – высота, проведенная к основанию. В качестве основания мы берем сторону, расположенную слева, так как ее можно посчитать точно по клеточкам, соответственно и высоту проводим к этой стороне. Далее считаем клетки, подставляем в формулу и вычисляем площадь.

Вычисление площади
Вычисление площади

Задание 4

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. … Найдите длину его средней линии, параллельной стороне AC.

Для решения этой задачи необходимо знать формулу нахождения средней линии. Но и здесь нам помогут справочные материалы. Там эта формула конечно же есть, даже если вы впервые слышите о таком понятии, как средняя линия, здесь все предельно ясно: нужно нижнее основание треугольника разделить на 2.

Средняя линия треугольника
Средняя линия треугольника

Остается только посчитать длину нижнего основания по клеточкам и разделить полученное значение на два.

вычисление средней линии треугольника
вычисление средней линии треугольника

Задание 5

На клетчатой бумаге с размером клетки 1×1 изображен ромб. Найдите площадь этого ромба.

Находим формулу площади ромба в справочных материалах:

Площадь ромба
Площадь ромба

Далее считаем диагонали ромба по клеточкам, подставляем полученные значения в формулу площади и вычисляем площадь ромба:

Задание 18 ОГЭ
Задание 18 ОГЭ

Видеоразбор других прототипов 18 задания можно посмотреть здесь:

Подписывайтесь на канал, чтобы успешно подготовиться к ОГЭ 2023!

Если статья была полезна, не забудьте поставить лайк, это очень поможет ее продвижению!

Пишите в комментариях, какие еще задания ОГЭ подробно разобрать?

На клетчатой  бумаге с размером клетки 1×1 изображен ромб. Найдите площадь этого ромба.

На клетчатой  бумаге с размером клетки 1x1 изображен ромб. Найдите площадь этого ромба.

Источник: ОГЭ Ященко 2022 (36 вар)

Решение:

На клетчатой  бумаге с размером клетки 1x1 изображен ромб. Найдите площадь этого ромба.

    Площадь ромба находится по формуле, через диагонали:

S=frac{1}{2}cdot d_{1}cdot d_{2}=frac{1}{2}cdot 4cdot 10=2cdot 10=20

Ответ: 20.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.6 / 5. Количество оценок: 41

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Задание 3. ЕГЭ. Найти площадь ромба

Рубрика Задание 3, Решаем ЕГЭ по математике Комментарии (0)

Задание. На клетчатой бумаге с размером клетки 1 × 1 изображен ромб. Найдите его площадь.

Задание3в8_1

Решение:

Задание3в8_2

Площадь ромба равна половине произведения его диагоналей, т. е.

Задание3в8_3

По рисунку находим: AC = 10, BD = 2, тогда

Задание3в8_4

Ответ: 10

Понравилось? Нажмите

Это задание из ОГЭ по математике предлагает найти площади, углы, длины геометрических фигур, нарисованных на фоне в клетку. Задание 18 с кратким ответом, в ответ идет только число.

Реальные задания №18 по геометрии из банка ФИПИ

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=6/2=3.
Ответ: 3

AE8B22

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=6/4=1,5.
Ответ: 1,5

09C3B1

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=5/4=1,25.
Ответ: 1,25

739060

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=5/2=2,5.
Ответ: 2,5

0747AA

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=4/1=4.
Ответ: 4

9C09A9

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=4/5=0,8.
Ответ: 0,8

A1ECAA

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=3/5=0,6.
Ответ: 0,6

887E42

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=2/4=0,5.
Ответ: 0,5

201054

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=2/5=0,4.
Ответ: 0,4

E73651

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=1/5=0,2.
Ответ: 0,2

A601D0

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=1/4=0,25.
Ответ: 0,25

51BEC9

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 6*4=12
Ответ: 12

F519DD

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10*2=10
Ответ: 10

704DB1

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 6*8=24
Ответ: 24

2F4DA5

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 6*2=6
Ответ: 6

1F239C

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 8  * 4 = 16
Ответ: 16

33E327

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 12 * 6 = 36
Ответ: 36

0B92D0

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 8 * 2 = 8
Ответ: 8

3B5D8B

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10 * 4 = 20
Ответ: 20

CFCA33

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10 * 8 = 40
Ответ: 40

3B008A

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10 * 6 = 30
Ответ: 30

8372E0

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 12 * 4 = 24
Ответ: 24

FFD1EE

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 12 * 2 = 12
Ответ: 12

E2A932

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 3

969F4E

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 5

AFB9A1

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 1

D234F7

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 2

68F679

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 4

9672D7

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 5

3F311F

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 6

C598DA

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 8

FCC29D

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 7

0DBF9B

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 6

B73FA9

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 1

78BDFE

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 7

CB1715

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 3

107F53

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 2

5B4C37

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 4

FEDC09

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 6

C563EA

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 5

B2853A

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 4

FE13B1

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 2

C8BF73

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 5

A4B62F

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 2

DA3762

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 7

C576A6

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 1

9D880E

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 4

078B48

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 6

854014

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 3

B4DCCF

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 8

259D23

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 6. Длина средней линии равна половине длины стороны AC, следовательно, 3.
Ответ: 3

9C2804

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 10. Длина средней линии равна половине длины стороны AC, следовательно, 5.
Ответ: 5

BC4EBE

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 4. Длина средней линии равна половине длины стороны AC, следовательно, 2.
Ответ: 2

7ECBCE

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 8. Длина средней линии равна половине длины стороны AC, следовательно, 4.
Ответ: 4

D2D94B

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 8. Длина средней линии равна половине длины стороны AC, следовательно, 4.
Ответ: 4

8F5C52

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 4. Длина средней линии равна половине длины стороны AC, следовательно, 2.
Ответ: 2

686EFB

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 6. Длина средней линии равна половине длины стороны AC, следовательно, 3.
Ответ: 3

07C968

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 10. Длина средней линии равна половине длины стороны AC, следовательно, 5.
Ответ: 5

E3456A

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 6. Длина средней линии равна половине длины стороны AC, следовательно, 3.
Ответ: 3

794271

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 8. Длина средней линии равна половине длины стороны AC, следовательно, 4.
Ответ: 4

A1906B

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 4. Длина средней линии равна половине длины стороны AC, следовательно, 2.
Ответ: 2

E52B99

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 10. Длина средней линии равна половине длины стороны AC, следовательно, 5.
Ответ: 5

E331C7

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 6

F7FF65

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 8

AAC1BC

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 7

2BD44A

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 8

6DE9A6

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 4

39A91A

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 9

197283

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 5

2EA9C2

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 7

ED1F0E

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 9

10323E

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 10

ED4E1A

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 6

4FAEEC

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 10

F8232E

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (1+7) : 2 = 4
Ответ: 4

351A72

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (6+10) : 2 = 8
Ответ: 8

5EFE19

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (4+8) : 2 = 6
Ответ: 6

C05266

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (2+10) : 2 = 6
Ответ: 6

CFD6D8

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (3+7) : 2 = 5
Ответ: 5

3BD771

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (2+8) : 2 = 5
Ответ: 5

869450

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (1+5) : 2 = 3
Ответ: 3

19D522

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (2+6) : 2 = 4
Ответ: 4

A28F9D

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (1+9) : 2 = 5
Ответ: 5

2EF821

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (3+9) : 2 = 6
Ответ: 6

45A5FF

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (5+9) : 2 = 7
Ответ: 7

7AAADC

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (4+10) : 2 = 7
Ответ: 7

321F00

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

87C214

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 6

6CB64A

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 8

4801B0

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 12

DEA70E

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 8

6D0D8F

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 12

8D9098

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 8

90A16B

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

F3D7EA

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

35106F

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

1C594B

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 6

E4F439

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 12

657F97

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 6 * 3 = 9
Ответ: 9

E873D3

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 8 * 5 = 20
Ответ: 20

9E69AF

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 8 * 3 = 12
Ответ: 12

53C928

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 6 * 5 = 15
Ответ: 15

EE2C25

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 5 * 10 = 25
Ответ: 25

1B4EAF

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 8 * 9 = 36
Ответ: 36

94B40E

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 5 * 4 = 10
Ответ: 10

F50FF8

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 7 * 6 = 21
Ответ: 21

3A7F81

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 4 * 3 = 6
Ответ: 6

DFB4EA

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 7 * 8 = 28
Ответ: 28

7AEBD7

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 10 * 7 = 35
Ответ: 35

4718F7

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 7 * 2 = 14
Ответ: 14

0C5645

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (7+3) * 4= 20
Ответ: 20

695D77

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (4+8) * 7= 42
Ответ: 42

07B1AD

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (4+8) * 3 = 18
Ответ: 18

4774FE

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (5+9) * 2= 14
Ответ: 14

284762

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (5+9) * 4= 28
Ответ: 28

2916B2

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (3+7) * 5= 25
Ответ: 25

867701

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (5+9) * 5= 35
Ответ: 35

B5D99F

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (2+6) * 7= 28
Ответ: 28

B11571

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (4+8) * 6= 36
Ответ: 36

E46263

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (2+6) * 3= 12
Ответ: 12

283DE4

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (3+7) * 2= 10
Ответ: 10

383C46

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (3+7) * 6= 30
Ответ: 30

2E7B84

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 7 * 4 = 28
Ответ: 28

71E23E

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 2 = 10
Ответ: 10

3BD9B6

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 4 = 20
Ответ: 20

5C5046

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 6 * 3 = 18
Ответ: 18

566A4E

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 6 * 6 = 36
Ответ: 36

0275CC

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 3 * 7 = 21
Ответ: 21

E81F8D

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 7 = 35
Ответ: 35

2A59D7

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 7 * 2 = 14
Ответ: 14

5FC71A

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 6 * 5 = 30
Ответ: 30

257B6F

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 7 * 6 = 42
Ответ: 42

839354

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 4 * 3 = 12
Ответ: 12

C1A1AF

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 5 = 25
Ответ: 25

9B4AE0

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 14

11403B

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 8

CDF457

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 15

06B968

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 10

AFB70E

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 13

C4025D

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 16

E4CBB2

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 9

211628

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 17

5D3FCF

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 19

320729

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 18

C72856

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 12

BB2950

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 11

F78C61

Добавить комментарий