Как найти площадь ромба все способы

Площадь ромба через сторону и угол

{S = a^2 cdot sin (alpha)}

На этой странице мы предлагаем вам 7 формул площади ромба. Для каждой формулы можно воспользоваться онлайн калькулятором и мгновенно получить результат, не прибегая к помощи обычного калькулятора

Содержание:
  1. калькулятор площади ромба
  2. формула площади ромба через сторону и угол
  3. формула площади ромба через сторону и высоту
  4. формула площади ромба через диагонали
  5. формула площади ромба через угол и диагональ из угла
  6. формула площади ромба через угол и противолежащую диагональ
  7. формула площади ромба ромба через радиус вписанной окружности и угол
  8. формула площади ромба через радиус вписанной окружности и сторону
  9. примеры задач

Формула площади ромба через сторону и угол

Площадь ромба через сторону и угол

S = a^2 cdot sin (alpha)

a – сторона ромба

α – угол между сторонами ромба

Формула площади ромба через сторону и высоту

Площадь ромба через сторону и высоту

S = a cdot h

a – сторона ромба

h – высота ромба

Формула площади ромба через диагонали

Площадь ромба через диагонали

S = dfrac{d_1 cdot d_2}{2}

d1 и d2 – диагонали ромба

Формула площади ромба через угол и диагональ из угла

Площадь ромба через угол и диагональ из угла

S = dfrac{d^2}{2} cdot \tg(dfrac{alpha}{2})

d – диагональ ромба

α – угол между сторонами ромба, из которого выходит диагональ

Формула площади ромба через угол и противолежащую диагональ

Площадь ромба через угол и противолежащую диагональ

S = dfrac{d^2}{2} cdot ctg(dfrac{alpha}{2})

d – диагональ ромба, противоположная углу α

α – угол между сторонами ромба

Формула площади ромба через радиус вписанной окружности и угол

Площадь ромба через радиус вписанной окружности и угол

S = dfrac{4r^2}{sin(alpha)}

r – радиус окружности

α – угол между сторонами ромба

Формула площади ромба через радиус вписанной окружности и сторону

Площадь ромба через радиус вписанной окружности и сторону

S = 2ar

r – радиус окружности

a – сторона ромба

Примеры задач на нахождение площади ромба

Задача 1

Найдите площадь ромба если его диагонали равны 34 и 4.

Решение

Для решения задачи воспользуемся формулой площади ромба через диагонали.

S = dfrac{d_1 cdot d_2}{2} = dfrac{34 cdot 4}{2} = 68 : см^2

Ответ: 68 см²

Проверим ответ на калькуляторе .

Задача 2

Найдите площадь ромба если его диагонали равны 4 и 6.

Решение

Задача аналогична предыдущей.

S = dfrac{d_1 cdot d_2}{2} = dfrac{4 cdot 6}{2} = 12 : см^2

Ответ: 12 см²

Проверим ответ на калькуляторе .

Задача 3

Найдите площадь ромба стороны которого равны 5, а высота равна 4.

Решение

Воспользуемся формулой площади ромба через высоту и сторону.

S = a cdot h = 5 cdot 4 = 20 : см^2

Ответ: 20 см²

Проверим полученный ответ на калькуляторе .

Ромб – это геометрическая фигура; параллелограмм, имеющие 4 равные стороны.

  • Формула вычисления площади

    • По длине стороны и высоте

    • По длине стороны и углу

    • По длинам диагоналей

  • Примеры задач

Формула вычисления площади

По длине стороны и высоте

Площадь ромба (S) равняется произведению длины его стороны и высоты, проведенной к ней:

S = a ⋅ h

Площадь ромба

По длине стороны и углу

Площадь ромба равняется произведению квадрата длины его стороны и синуса угла между сторонами:

S = a 2 ⋅ sin α

Площадь ромба

По длинам диагоналей

Площадь ромба равна одной второй произведения его диагоналей.

S = 1/2 ⋅ d1 ⋅ d2

Площадь ромба

Примеры задач

Задание 1
Найдите площадь ромба, если длина его стороны равна 10 см, а высота, проведенная к ней – 8 см.

Решение:
Используем первую формулу, рассмотренную выше: S = 10 см ⋅ 8 см = 80 см2.

Задание 2
Найдите площадь ромба, сторона которого равняется 6 см, а острый угол – 30°.

Решение:
Применим вторую формулу, в которой используются известные по условиям задания величины: S = (6 см)2 ⋅ sin 30° = 36 см2 ⋅ 1/2 = 18 см2.

Задание 3
Найдите площадь ромба, если его диагоналей равны 4 и 8 см, соответственно.

Решение:
Воспользуемся третьей формулой, в которой используются длины диагоналей: S = 1/2 ⋅ 4 см ⋅ 8 см = 16 см2.

Определение ромба

Ромб — это параллелограмм, в котором все стороны равны друг другу.

Онлайн-калькулятор площади ромба

Если стороны ромба образуют прямой угол, то получим квадрат.

Диагонали ромба пересекаются под прямым углом.
Диагонали ромба являются биссектрисами его углов.

Площадь ромба, как и площади большинства геометрических фигур, можно найти несколькими способами. Разберемся в их сути и рассмотрим примеры решений.

Формула площади ромба по стороне и высоте

Пусть нам дан ромб со стороной aa и высотой hh, проведенной к этой стороне. Так как ромб это параллелограмм, то его площадь мы находим так же, как и площадь параллелограмма.

S=a⋅hS=acdot h

aa — сторона;
hh — высота, опущенная на сторону aa.

Решим простой пример.

Пример

площадь ромба по стороне и высоте

Сторона ромба равна 5 (см.). Высота, опущенная к этой стороне, имеет длину 2 (см.). Найти площадь ромба SS.

Решение

a=5a=5
h=2h=2

Пользуемся нашей формулой и вычисляем:
S=a⋅h=5⋅2=10S=acdot h=5cdot 2=10 (см. кв.)

Ответ: 10 см. кв.

Формула площади ромба через диагонали

Здесь все так же просто. Нужно просто взять половину произведения диагоналей и получить площадь.

S=12⋅d1⋅d2S=frac{1}{2}cdot d_1cdot d_2

d1,d2d_1, d_2 — диагонали ромба.

Пример

площадь ромба через диагонали

Одна из диагоналей ромба равна 7 (см.), а другая в 2 раза больше первой. Найдите площадь фигуры.

Решение

d1=7d_1=7
d2=2⋅d1d_2=2cdot d_1

Найдем вторую диагональ:
d2=2⋅d1=2⋅7=14d_2=2cdot d_1=2cdot 7=14
Тогда площадь:
S=12⋅7⋅14=49S=frac{1}{2}cdot7cdot14=49 (см. кв.)

Ответ: 49 см. кв.

Формула площади ромба через две стороны и угол между ними

S=a2⋅sin⁡(α)S=a^2cdotsin(alpha)

aa — сторона ромба;
αalpha — любой угол ромба.

Пример

площадь ромба через две стороны и угол между ними

Найти площадь ромба, если каждая из его сторон равна 10 см, а угол между двумя смежными сторонами равен 30 градусам.

Решение

a=10a=10
α=30∘alpha=30^{circ}

По формуле получаем:
S=a2⋅sin⁡(α)=100⋅sin⁡(30∘)=50S=a^2cdotsin(alpha)=100cdotsin(30^{circ})=50 (см. кв.)

Ответ: 50 см. кв.

Формула площади ромба по радиусу вписанной окружности и углу

S=4⋅r2sin⁡(α)S=frac{4cdot r^2}{sin(alpha)}

rr — радиус вписанной окружности в ромб;
αalpha — любой угол ромба.

Пример

по радиусе вписанной окружности и угле

Найти площадь ромба, если угол между основаниями равен 60 градусов, а радиус вписанной окружности – 4 (см.).

Решение

r=4r=4
α=60∘alpha=60^{circ}

S=4⋅r2sin⁡(α)=4⋅16sin⁡(60∘)≈73.9S=frac{4cdot r^2}{sin(alpha)}=frac{4cdot 16}{sin(60^{circ})}approx73.9 (см. кв.)

Ответ: 73.9 см. кв.

Формула площади ромба по радиусу вписанной окружности и стороне

S=2⋅a⋅rS=2cdot acdot r

aa —сторона ромба;
rr — радиус вписанной окружности в ромб.

Пример

По радиусе вписанной окружности и стороне

Возьмем условие из предыдущей задачи, но пусть вместо угла нам известна сторона ромба, равная 5 см.

Решение

a=5a=5
r=4r=4

S=2⋅a⋅r=2⋅5⋅4=40S=2cdot acdot r=2cdot5cdot4=40 (см. кв.)

Ответ: 40 см. кв.

Ищете того, кто сможеит помочь вам решить контрольную работу по геометрии? Наши эксперты окажут вам быструю и качественную помощь с выполнением работы!

Тест на тему “Площадь ромба”

Как рассчитать площадь различных ромбов?

МатематикаПомощь с учебой

Анонимный вопрос

2 ноября 2018  · 19,5 K

Не перестаю узнавать новое. Люблю путешествия и все с этим связанное. Много лет работаю в…  · 2 нояб 2018

Площадь любого ромба можно найти любым из трех способов:
1) Через основание и высоту (S=ah). Т.е. нужно перемножить высоту ромба на основание, к которому ее провели.
2) Через сторлну и угол (S=a^2*sin(b)), где а сторона ромба, а b – один из его внутренних углов.
3) Через диагонали (S=1/2d*b), где d и b – диагонали ромба. Т.е. площадь ромба равна половине пооизведения его диагоналей.

17,1 K

Комментировать ответ…Комментировать…

Радиоинженер(Радиосвязь, электро-радионавигация)
В свободное время ремонтирую различную эл…
  · 8 нояб 2018

Площадь параллелограмма и его частного вида – ромба, прежде всего вычисляется по классической формуле, как произведение длины основания на длину высоты. Если разделить любой параллелограмм на части, то можно увидеть, что его площадь можно представить как сумму площадей – треугольника и трапеции, двух треугольников и прямоугольника, или четырех треугольников, такой… Читать далее

6,6 K

Комментировать ответ…Комментировать…

Содержание

  1. Площадь ромба онлайн
  2. 1. Площадь ромба через сторону и угол
  3. 2. Площадь ромба через диагонали
  4. 3. Площадь ромба через сторону и высоту
  5. 4. Площадь ромба через угол и противолежащую диагональ
  6. 5. Площадь ромба через угол и диагональ из данного угла
  7. 6. Площадь ромба через угол и радиус вписанной в ромб окружности
  8. 7. Площадь ромба через сторону и радиус вписанной в ромб окружности
  9. Площадь ромба
  10. Площадь ромба по стороне и высоте
  11. Площадь ромба по двум диагоналям
  12. Площадь ромба по углу и противолежащей диагонали
  13. Площадь ромба по углу и диагонали проведенной из этого угла
  14. Площадь ромба по стороне и углу между сторонами
  15. Площадь ромба по радиусу вписанной окружности и углу между сторонами
  16. Площадь ромба по радиусу вписанной окружности и стороне
  17. Таблица с формулами площади ромба
  18. Определения
  19. Как рассчитать площадь ромба
  20. Через сторону и высоту
  21. Через диагонали
  22. Через сторону и угол
  23. Через угол и диагональ из этого угла
  24. Через угол и противолежащию диагональ
  25. Через угол и радиус вписанной окружности
  26. Площади фигур. Площадь ромба.

Площадь ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти площадь ромба по известным элементам. Для нахождения площади ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

1. Площадь ромба через сторону и угол

Пусть задан ромб ABCD (Рис.1). Выведем формулу вычисления площади ромба через сторону и угол.

Проведем диагональ AC. Тогда ромб делится на два треугольника ABC и ADC. Противолежащие углы ромба равны (свойство 1 статя Ромб). Поэтому треугольники ABC и ADC равны по двум сторонам и углу между ними. Площадь треугольника ABC по двум сторонам и углу между ними вычисляется по формуле:

(small S=AB cdot BC cdot sin alpha )

или, учитывая, что AB=BC=a:

(small S_=frac <large 1><large 2>a^2 cdot sin alpha .)

Аналогично, площадь треугольника ADC вычисляется по формуле

(small S_= frac <large 1><large 2>a^2 cdot sin alpha .)

Поэтому площадь ромба равна:

2. Площадь ромба через диагонали

Пусть известны диагонали d1 и d2 ромба ABCD (Рис.2). Выведем формулу вычисления площади ромба через диагонали.

Поскольку диагонали ромба перепендикулярны и точкой пересечения делятся пополам (свойства 6 и 5 ромба), то они разделяют ромб на четыре прямоугольных треугольника. Тогда эти прямоугольные треугольники равны по двум катетам: ( small frac <2>) и ( small frac <2>).

(small S_=frac<large 1> <large 2>cdot frac<large d_1> <large 2>cdot frac<large d_2><large 2>) (small =frac<large d_1 cdot d_2> <large 8>.)

Тогда площадь ромба равна:

3. Площадь ромба через сторону и высоту

Пусть известны сторона a и высота h ромба (Рис.3). Так как ромб является параллелограммом, то площадь ромба вычисляется по формуле площади параллелограмма:

4. Площадь ромба через угол и противолежащую диагональ

Пусть известны один из углов α=∠ABC ромба и противолежащий диагональ d=AC (Рис.4). Выведем формулу вычисления площади ромба.

Проведем другой диагональ BD. Как было отмечено в параграфе 2, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Найдем площадь одного из них:

(small S_= frac<large 1 > <large 2>cdot AO cdot OB .) (3)
(small frac<large OB > <large AO>= mathrm angle ABO ) (small = mathrm frac<large alpha> <large 2>)
(small OB= AO cdot mathrm frac<large alpha> <large 2>.) (4)

Подставим (4) в (3):

(small S_= frac<large 1 > <large 2>cdot AO cdot AO cdot mathrm frac<large alpha><large 2>.)

или, учитывая что ( small AO=frac<large d><large 2>,) получим:

(small S_= frac<large d^2 > <large 8>cdot mathrm frac<large alpha><large 2>.) (5)

Тогда площадь ромба равна:

(small S= 4 cdot S_=frac<large d^2 > <large 2>cdot mathrm frac<large alpha><large 2>.) (6)

5. Площадь ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠BAD ромба и диагональ из данного угла d=AC (Рис.5). Выведем формулу вычисления площади ромба.

Проведем другой диагональ BD. Как было отмечено в параграфе 2, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Найдем площадь одного из них:

(small S_= frac<large 1 > <large 2>cdot AO cdot OB .) (7)
(small frac<large OB > <large AO>= mathrm angle BAO ) (small = mathrm frac<large alpha> <large 2>)
(small OB= AO cdot mathrm frac<large alpha> <large 2>.) (8)

Подставим (8) в (7):

(small S_= frac<large 1 > <large 2>cdot AO cdot AO cdot mathrm frac<large alpha><large 2>.)

или, учитывая что ( small AO=frac<large d><large 2>,) получим:

(small S_= frac<large d^2 > <large 8>cdot mathrm frac<large alpha><large 2>.) (9)

Тогда площадь ромба равна:

(small S= 4 cdot S_=frac<large d^2 > <large 2>cdot mathrm frac<large alpha><large 2>.) (10)

6. Площадь ромба через угол и радиус вписанной в ромб окружности

Пусть известны один из углов α=∠ABC ромба и радиус r вписанной в ромб окружности (Рис.6). Выведем формулу вычисления площади ромба.

Как мы отметили выше, диагонали разделяют ромб на четыре равных прямоугольных треугольника. В частности

Тогда ( small angle BAO=angle BCO=90°-frac< large alpha > <large 2>). Треугольники AKO и CLO также прямоугольные. Следовательно

( small angle 1=90°- angle BAO ) ( small =90°- (90°-frac< large alpha ><large 2>) ) ( small =frac< large alpha ><large 2>, ) (12)
( small angle 2=90°- angle BCO ) ( small =90°- (90°-frac< large alpha ><large 2>) ) ( small =frac< large alpha ><large 2>. ) (13)

Применим теорему синусов для прямоугольного треугольника AOB:

( small frac<large AO><large sin frac< alpha ><2>>= frac<large OB><large sin left( 90°-frac< alpha > < 2>right) >) ( small =frac<large OB><large cos frac< alpha > < 2>> )

Для прямоугольного треугольника AKO имеем:

или, учитывая (12) и KO=r:

Подставляя (15) в (14), получим:

Найдем площадь треугольника AOB:

( small S_=frac<large 1 > <large 2>cdot AO cdot OB) (17)

Подставляя (15) и (16) в (17), получим:

( small S_=frac<large 1 > <large 2>cdot frac<large r><large cos frac< alpha ><2>> cdot frac<large r ><large sin frac< alpha ><2>>) ( small =frac<large r^2><large sin alpha>.)

Тогда площадь ромба равна:

7. Площадь ромба через сторону и радиус вписанной в ромб окружности

Пусть известны сторона a=AB ромба и радиус r вписанной в ромб окружности (Рис.7). Найдем площадь ромба.

Прямая AB является касательной к окружности вписанной в ромб. Тогда ( small OK ⊥ AB ). Прямая CD является касательной к окружности вписанной в ромб. Тогда ( small OL ⊥ CD ). Поэтому треугольники BKO и DLO прямоугольные. Эти треугольники равны по гипотенузе и катету (BO=OD, KO=OL). Тогда ( small angle BOK=angle DOL ). Углы BOK и KOD смежные. Следовательно ( small angle KOD=180°-angle BOK. ) ( small angle KOD+angle DOL ) ( small =180°-angle BOK+angle DOL=180°. ) Получили, что отрезки KO и OL находятся на одной прямой. То есть KL=KO+OL=2r. Поскольку ( small KL ⊥ AB, ) то является высотой ромба. Площадь ромба по стороне и высоте вычисляется из формулы (3). Тогда имеем:

Источник

Площадь ромба

Площадь ромба, формулы и калькулятор для вычисления площади в режиме онлайн.

Для вычисления площади ромба применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор для вычисления площади ромба в режиме онлайн.

Площадь ромба по стороне и высоте

Площадь ромба по двум диагоналям

Площадь ромба по углу и противолежащей диагонали

Площадь ромба по углу и диагонали проведенной из этого угла

Площадь ромба по стороне и углу между сторонами

Площадь ромба по радиусу вписанной окружности и углу между сторонами

Площадь ромба по радиусу вписанной окружности и стороне

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Таблица с формулами площади ромба

В зависимости от известных исходных данных, площадь ромба можно вычислить по различным формулам.

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 сторона и высота
2 диагонали
3 диагональ и угол между сторонами
4 диагональ и угол между сторонами
5 сторона и угол между сторонами
6 радиус вписанной окружности и угол между сторонами
7 сторона и радиус вписанной окружности

Определения

Ромб — это геометрическая фигура, образованная четырьмя последовательно соединенными отрезками (сторонами) одинаковой длины, у которой противоположные стороны попарно параллельны, а угол между любыми двумя смежными сторонами не равен 90 градусов.

Ромб – это частный случай параллелограмма.

Высота ромба – это отрезок проведенный из вершины ромба к противоположной стороне под углом в 90 градусов.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Площадь ромба – это численная характеристика, характеризующая размер плоскости, ограниченной четырьмя последовательно соединенными отрезками (сторонами) одинаковой длины, у которой противоположные стороны попарно параллельны, а угол между любыми двумя смежными сторонами не равен 90 градусов.

Источник

Как рассчитать площадь ромба

На данной странице калькулятор поможет рассчитать площадь ромба онлайн. Для расчета задайте длину основания, высоту или длины диагоналей и угол между ними.

Ромб – четырёхугольник, у которого все стороны равны между собой. Ромб является частным случаем параллелограмма. Ромб с прямыми углами называется квадратом.

Через сторону и высоту

Формула для нахождения площади ромба через сторону и высоту:

Через диагонали

Формула для нахождения площади ромба через диагонали:

Через сторону и угол

Формула для нахождения площади ромба через сторону и угол:

Через угол и диагональ из этого угла

Формула для нахождения площади ромба через угол и диагональ выходящая из этого угла:

Через угол и противолежащию диагональ

Формула для нахождения площади ромба через угол и диагональ противолежащая углу:

Через угол и радиус вписанной окружности

Формула для нахождения площади ромба через угол и радиус вписанной окружности:

Источник

Площади фигур. Площадь ромба.

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, полностью принадлежащей

одной плоскости. Если фигуру можно разбить на конечное множество единичных квадратов, то площадь

будет равна числу этих квадратов.

Ромб — это параллелограмм с равными сторонами. Ромб с прямыми углами называется квадратом.

Площадь ромба равна половине произведения его диагоналей.

Воспользуйтесь нашим калькулятором для расчета площади ромба.

Для расчета площади других фигур воспользуйтесь этим калькулятором: площади фигур.

Формулы для вычисления площади ромба.

  1. Формула площади ромба по длине стороны и его высоте.

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

  1. Формула площади ромба по длине стороны и углу.

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

  1. Формула площади ромба по длинам его диагоналей.

Площадь ромба равна половине произведению длин его диагоналей.

где S — Площадь ромба,

a — длина стороны ромба,

h — длина высоты ромба,

α — угол между сторонами ромба,

d1, d2 — длины диагоналей.

Еще некоторые формулы для определения площади ромба:

Источник

Добавить комментарий