Как найти площадь сечения правильного многоугольника

На практике часто возникают задачи, которые требуют умения строить сечения геометрических фигур различной формы и находить площади сечений. В данной статье рассмотрим, как строятся важные сечения призмы, пирамиды, конуса и цилиндра, и как рассчитывать их площади.

Объемные фигуры

Из стереометрии известно, что объемная фигура совершенно любого типа ограничена рядом поверхностей. Например, для таких многогранников, как призма и пирамида, этими поверхностями являются многоугольные стороны. Для цилиндра и конуса речь идет уже о поверхностях вращения цилиндрической и конической фигур.

Что значит слыть: толкование, синонимыВам будет интересно:Что значит слыть: толкование, синонимы

Если взять плоскость и пересечь ею произвольным образом поверхность объемной фигуры, то мы получим сечение. Площадь его равна площади части плоскости, которая будет находиться внутри объема фигуры. Минимальное значение этой площади равно нулю, что реализуется, когда плоскость касается фигуры. Например, сечение, которое образовано единственной точкой, получается, если плоскость проходит через вершину пирамиды или конуса. Максимальное значение площади сечения зависит от взаимного расположения фигуры и плоскости, а также от формы и размеров фигуры.

Ниже рассмотрим, как рассчитывать площади образованных сечений для двух фигур вращения (цилиндр и конус) и двух полиэдров (пирамида и призма).

Цилиндр

Круговой цилиндр является фигурой вращения прямоугольника вокруг любой из его сторон. Цилиндр характеризуется двумя линейными параметрами: радиусом основания r и высотой h. Ниже схематически показано, как выглядит круговой прямой цилиндр.

Круговой цилиндр

Для этой фигуры существует три важных типа сечения:

  • круглое;
  • прямоугольное;
  • эллиптическое.

Эллиптическое образуется в результате пересечения плоскостью боковой поверхности фигуры под некоторым углом к ее основанию. Круглое является результатом пересечения секущей плоскости боковой поверхности параллельно основанию цилиндра. Наконец, прямоугольное получается, если секущая плоскость будет параллельна оси цилиндра.

Площадь круглого сечения рассчитывается по формуле:

S1 = pi*r2

Площадь осевого сечения, то есть прямоугольного, которое проходит через ось цилиндра, определяется так:

S2 = 2*r*h

Сечения конуса

Конусом является фигура вращения прямоугольного треугольника вокруг одного из катетов. Конус имеет одну вершину и круглое основание. Его параметрами также являются радиус r и высота h. Пример конуса, сделанного из бумаги, показан ниже.

Бумажный конус

Видов конических сечений существует несколько. Перечислим их:

  • круглое;
  • эллиптическое;
  • параболическое;
  • гиперболическое;
  • треугольное.

Они сменяют друг друга, если увеличивать угол наклона секущей плоскости относительно круглого основания. Проще всего записать формулы площади сечения круглого и треугольного.

Круглое сечение образуется в результате пересечения конической поверхности плоскостью, которая параллельна основанию. Для его площади справедлива следующая формула:

S1 = pi*r2*z2/h2

Здесь z – это расстояние от вершины фигуры до образованного сечения. Видно, что если z = 0, то плоскость проходит только через вершину, поэтому площадь S1 будет равна нулю. Поскольку z < h, то площадь изучаемого сечения будет всегда меньше ее значения для основания.

Треугольное получается, когда плоскость пересекает фигуру по ее оси вращения. Формой получившегося сечения будет равнобедренный треугольник, сторонами которого являются диаметр основания и две образующие конуса. Как находить площадь сечения треугольного? Ответом на этот вопрос будет следующая формула:

S2 = r*h

Это равенство получается, если применить формулу для площади произвольного треугольника через длину его основания и высоту.

Сечения призмы

Призма – это большой класс фигур, которые характеризуются наличием двух одинаковых параллельных друг другу многоугольных оснований, соединенных параллелограммами. Любое сечение призмы – это многоугольник. В виду разнообразия рассматриваемых фигур (наклонные, прямые, n-угольные, правильные, вогнутые призмы) велико и разнообразие их сечений. Далее рассмотрим лишь некоторые частные случаи.

Пятиугольная призма

Если секущая плоскость параллельна основанию, то площадь сечения призмы будет равна площади этого основания.

Если плоскость проходит через геометрические центры двух оснований, то есть является параллельной боковым ребрам фигуры, тогда в сечении образуется параллелограмм. В случае прямых и правильных призм рассматриваемый вид сечения будет представлять собой прямоугольник.

Пирамида

Пирамида – это еще один многогранник, который состоит из n-угольника и n треугольников. Пример треугольной пирамиды показан ниже.

Треугольная пирамида

Если сечение проводится параллельной n-угольному основанию плоскостью, то его форма будет в точности равна форме основания. Площадь такого сечения вычисляется по формуле:

S1 = So*(h-z)2/h2

Где z – расстояние от основания до плоскости сечения, So – площадь основания.

Если секущая плоскость содержит вершину пирамиды и пересекает ее основание, то мы получим треугольное сечение. Для вычисления его площади необходимо обратиться к использованию соответствующей формулы для треугольника.

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

65

Добавлен:

15.05.2015

Размер:

406.75 Кб

Скачать

ПРИМЕНЕНИЕ ТЕОРЕМЫ О ПЛОЩАДИ ОРТОГОНАЛЬНОЙ ПРОЕКЦИИ МНОГОУГОЛЬНИКА ПРИ РЕШЕНИИ СТЕРЕОМЕТРИЧЕСКИХ ЗАДАЧ

Бардушкин В.В., Белов А.И., Ланцева И.А., Прокофьев А.А., Фадеичева Т.П.

Существует несколько методов решения стереометрических задач на вычисление площадей сечений, поверхностей многогранников и углов (между плоскостями, между прямой и плоскостью и т.д.). Эти методы достаточно подробно рассмотрены в школьных учебниках, изложены в различных пособиях по стереометрии. Так, например, при вычислении площадей широко применяется подход, основанный на разбиении многоугольника на части (на треугольники и четырёхугольники). Если в каждой из частей удаётся вычислить длины сторон (или диагоналей четырёхугольника) и какие-нибудь углы, то можно по известным формулам найти их площади, а значит, решить задачу. Довольно большое значение придаётся векторно-координатному методу решения подобных задач. Однако, на наш взгляд, многие из авторов-составителей не уделяют должного внимания методу вычисления площадей и углов, связанному с ортогональным проектированием многоугольника на некоторую плоскость. Накопленный нами опыт преподавания стереометрии, частично отражённый в настоящей статье, показывает, что изучение такой темы как «Площадь ортогональной проекции многоугольника» повышает у школьников интерес к предмету, стимулирует освоение ими других серьёзных тем по геометрии, что в итоге ведёт к интенсификации всего процесса обучения.

1. Теорема о площади ортогональной проекции плоской фигуры

Параллельное проектирование, при котором проектирующие прямые перпендикулярны к плоскости проекций, называется ортогональным.

Ортогональной проекцией фигуры на данную плоскость называют множество точек пересечений с этой плоскостью перпендикулярных к ней прямых, проходящих через все точки этой фигуры. В общем случае справедлива следующая теорема.

Если фигура Ф с площадью SФ лежит в плоскости , а фигура Ф с площадью SФ является ортогональной проекцией фигуры Ф на плоскость , то имеет место равенство

SФ SФ cos ,

где – угол между плоскостями и .

В школьном курсе стереометрии приведённая теорема формулируется и доказывается лишь для случая, когда проектируемая фигура – плоский многоугольник. В этом случае формулировка имеет вид:

Площадь Sпр ортогональной проекции многоугольника на плоскость равна произве-

дению его площади Sмн , умноженной на косинус угла между плоскостью много-

угольника и плоскостью проекции: Sпр Sмн cos .

2. Применение теоремы о площади ортогональной проекции многоугольника при нахождении площадей сечений

Эту теорему с успехом применяют, прежде всего, при вычислении площадей сечений многогранников. Данный подход используется в ситуациях, когда нахождение площади Sпр ортогональной проекции многоугольника, полученного в сечении, и угла между

секущей плоскостью и плоскостью проектирования сопряжено с меньшими трудностями, чем непосредственное вычисление площади сечения. В этом случае

Sсечения

S

пр

.

(1)

cos

1

В примерах 1 – 4 иллюстрируется это основное применение теоремы о площади ортогональной проекции многоугольника.

B1

C1

Пример 1. В правильной четырёхугольной призме

сторона основания равна 4 см. Через диагональ основа-

A1

D1

ния под углом 45

к плоскости основания проведена

M

плоскость, пересекающая боковое ребро. Найти пло-

щадь сечения.

Решение. Согласно условию задачи, площадь ор-

B

тогональной проекции сечения на плоскость основания

45

C

призмы равна половине его площади (см. рис. 1), т.е.

O

42

8 (см2). Тогда, используя формулу (1), полу-

A

D

Sпр

2

чаем: Sсечения

Sпр

2

Рис. 1

8 2 (см ).

cos45

Ответ: 82 см2.

Пример 2. Стороны основания прямого параллелепипеда равны 4 и 5, угол между ними равен 30°. Найти площадь сечения параллелепипеда плоскостью, пересекающей все его боковые рёбра и образующей с плоскостью основания угол в 45°.

Решение. Для нахождения площади сечения воспользуемся формулой (1). Поскольку

B1

C1

секущая плоскость пересекает все боковые рёбра

прямого параллелепипеда ABCDA BC D , то ортого-

A1

D1

1

1

1

1

N

нальной проекцией сечения MQNP является паралле-

Q

лограмм ABCD (см. рис. 2). Отметим, что MQNP так-

же является параллелограммом, так как MQ||PN и

P

M

MP||QN по свойству параллельных плоскостей (если

B

C

две параллельные плоскости пересечены третьей, то

A

30

D

линии пересечения параллельны).

Найдем площадь параллелограмма ABCD. Пусть,

Рис. 2

для определённости, AB 4, AD 5,

BAD 30 ,

тогда SABCD AB AD sin BAD 10.

SABCD

Поскольку SMQNP

, где 45 – угол между плоскостью сечения и основани-

cos

ем параллелепипеда (на рис. 2 этот угол не показан), то SMQNP 102 .

Ответ: 102 .

Пример 3. Дан куб ABCDA1B1C1D1 с ребром, равным a. На рёбрах основания AB и AD взяты соответственно точки M и N так, что AM :MB 2:1 и AN :ND 2:1. Найти площадь сечения куба плоскостью, проходящей через точки M, N и C1 .

Решение. Приведём два способа решения этой задачи. Первый способ основан на разбиении многоугольника, полученного в сечении, на части и вычислении по отдельности площадей этих частей, а второй – на использовании теоремы о площади ортогональной проекции многоугольника. Читатель сам сможет определить, какой из предложенных подходов предпочтительнее.

Прежде чем перейти к решению задачи этими двумя способами, используя метод следов, построим сечение куба плоскостью, проходящей через точки M, N и C1. Соединим вначале точки M и N, поскольку они лежат в одной плоскости ABC (см. рис. 3а). Прямая MN лежит в плоскости ABC и пересекает прямые BC и DC в точках P и L соответственно.

2

Точка P принадлежит не только плоскости нижнего основания куба, но и плоскости грани BB1C1 (как и точка C1), поэтому, соединив P и C1, получим на ребре BB1 принадлежащую сечению точку F. Далее, точка L принадлежит не только плоскости нижнего основания куба, но и плоскости грани DD1C1 (как и точка C1), поэтому, соединив L и C1, получим на ребре DD1 принадлежащую сечению точку T. В завершение построения соединим в грани

AA1B1 точки M и F, а в грани AA1D1 точки T и N. Таким образом, сечением куба

ABCDA1B1C1D1 является пятиугольник MFC1TN .

B1

C1

B1

A1

D1

C1

B1

C1

A1

D1

A1

D1

F

F

M

B

C

P

F

T

B

B

O

D

M

T

C

T

A

N

M

C

A

N

D

A

O

D

A2

L

N

а

б

в

Рис. 3

Первый способ решения. Проведём в пятиугольнике MFC1TN диагональ FT. Она ра-

зобьёт сечение на треугольник FC1T и четырёхугольник MFTN. Вычислим их площади по отдельности.

Найдем вначале площадь четырёхугольника MFTN. Поскольку MN || BD и BD лежит в плоскости BB1D1 , то MN || BB1D1 (по признаку параллельности прямой и плоскости). Так как секущая плоскость проходит через MN и пересекает плоскость BB1D1 по прямой TF, то TF ||MN (по теореме о линии пересечения). Далее, поскольку BD||MN и TF ||MN , то TF || BD. Следовательно, четырёхугольник MFTN – трапеция.

Из

прямоугольного треугольника AMN по теореме Пифагора находим

2a

. Поскольку BF || DT , как отрезки, расположенные на боко-

2

MN

AM2 AN2

3

вых рёбрах куба, то четырёхугольник BFTD – параллелограмм, а значит, TF BD a2 . Покажем, что трапеция MFTN – равнобедренная. Для этого рассмотрим вначале пря-

моугольный треугольник LDN. В нём ND a , LND 45 , следовательно, LD a . Да-

3

3

лее, треугольники LDT и

LCC

подобны

с коэффициентом k

LD

1

. Поэтому

1

LC 4

CC1

DT

a

. Так как четырёхугольник BFTD – параллелограмм, то BF DT

a

, а зна-

4

4

4

чит, прямоугольные треугольники NDT и MBF равны по двум катетам. Поэтому, по тео-

реме Пифагора, NT MF

a

2

a

2

5a

.

12

3

4

3

Далее находим длину h1 высоты этой равнобедренной трапеции MFTN. Опуская очевидные выкладки (читателю предлагается проделать их самостоятельно), получим

h

a 17

. Отсюда S

MFTN

TF MN

h

a 2 2a 2 3

a 17

5a2 34

.

12

2

2

12

72

1

1

Решим теперь задачу вычисления площади треугольника FC1T . Найдём в нём длины

сторон FC1 и TC1 . Для этого рассмотрим прямоугольные треугольники FB1C1

и TD1C1.

Они равны по двум катетам, поэтому по теореме Пифагора FC1 TC1 a

2

3a

2

5a

,

4

4

т.е. треугольник FC1T – равнобедренный. Найдем длину h2 высоты этого треугольника. Опуская очевидные выкладки (читателю предлагается проделать их самостоятельно), по-

a 17

TF h

1

a

17

a2 34

лучим h

. Отсюда S

FC T

2

a

2

.

2

4

2

2

4

8

1

Наконец, площадь всего сечения:

5a2

a2

7a2

7a2

SMFC TN SMFTN

S FC T

34

34

34

.

Ответ:

34

.

1

1

72

8

36

36

Второй способ решения. Для нахождения площади сечения воспользуемся формулой (1). Ортогональной проекцией пятиугольника MFC1TN на плоскость ABC служит многоугольник MBCDN (см. рис. 3б). Найдём площадь MFC1TN . Очевидно, что SMBCDN SABCD S AMN . Треугольник AMN – прямоугольный. Длины его катетов AM и

AN, согласно условию задачи, равны

2a

. Поэтому SMBCDN a

2

1

2a

2

7a2

.

3

9

2 3

Далее, проведём в квадрате ABCD диагонали BD и AC. Равнобедренные прямоуголь-

ные

треугольники

AMN

и

ABD

подобны

с коэффициентом

k

2

. Тогда

3

AO

2

AC

AC

,

OC AC AO

2a

2

. Кроме того, поскольку MN || BD и BD AC ,

3

2

3

3

то MN OC.

Соединим точки O и C1. Тогда OC1

– наклонная к плоскости ABC, OC – проекция на-

клонной

OC1

и MN OC.

Следовательно, по

теореме

о

трёх

перпендикулярах,

MN OC1 . Значит,

COC1

– линейный угол двугранного угла CMNC1 .

Вычислим теперь косинус угла между плоскостью сечения и нижним основанием куба. Для этого рассмотрим прямоугольный треугольник CC1O . По теореме Пифагора

a 17

. Откуда cos

OC

2

2

.

OC

OC2 CC2

1

1

3

OC1

17

Поскольку, согласно теореме о площади ортогональной проекции многоугольника,

SMFC TN

S

MBCDN

, то окончательно получим: SMFC TN

7a

2

17

7a2 34

.

cos

1

1

9

2 2

36

Замечание. При решении задачи вторым способом для нахождения cos можно до-

строить секущую плоскость до её пересечения с продолжением ребра AA1 за точку A (см.

рис. 3в). Тогда cos

SA BC D

1 1 1 1

.

SA MFC TN

2

1

4

Пример 4. Дан куб ABCDA1B1C1D1 с ребром, равным a. Точка M – середина ребра AD,

точка N – середина ребра C1D1 . Найти площадь сечения куба плоскостью, проходящей через точки M, N и C.

Решение. Построим сечение куба плоскостью, проходящей через точки M, N и C. Соединим вначале точки M и C, поскольку они лежат в одной плоскости ABC. Затем соединим точки C и N, так как они лежат в одной плоскости DD1C1 (см. рис. 4). Прямые СN и

DD1 лежат в плоскости DD1C1

и не параллельны. Значит, они пересекаются в точке Q.

Точка Q принадлежит не только плоскости DD1C1, но и плоскости грани AA1D1 (как и

точка M),

поэтому,

соединив M и Q, получим на ребре A1D1 принадлежащую сечению

точку P. В завершение построения соединим в верхней грани куба точки P и N.

Q

Отметим, что плоскости оснований куба парал-

лельны друг другу. Значит, по свойству параллель-

ных плоскостей (если две параллельные плоскости

пересечены третьей, то линии пересечения парал-

B1

C1

лельны) MC|| PN . Далее, поскольку прямые MP и

CN пересекаются в точке Q, то стороны MP и CN че-

A1

P

N

тырёхугольника MPNC не параллельны. Таким обра-

D1

зом, сечением куба ABCDA1B1C1D1 является трапеция

MPNC.

Для нахождения площади сечения воспользуемся

формулой (1). Построим вначале линейный угол дву-

BO

C

гранного угла DMCQ. Для этого в прямоугольном

треугольнике MCD опустим перпендикуляр DO к ги-

N1

потенузе MC. Соединим точки O и Q. Тогда QO – на-

A

M

P1 D

клонная к плоскости ABC, DO – проекция наклонной

QO и MC DO.

Следовательно, по теореме о трёх

Рис. 4

перпендикулярах,

MC QO. Значит, QOD

линейный угол двугранного угла DMCQ.

Вычислим теперь косинус угла между плоскостью сечения и нижним основанием куба. Для этого рассмотрим вначале прямоугольный треугольник MCD. По теореме Пифа-

a2

a 5

. Для нахождения высоты DO выразим пло-

гора MC

MD2 DC2

a2

щадь S MCD

двумя способами:

4

2

MD DC

a2

MC DO

a

S MCD

, S MCD

5

DO.

2

4

2

4

a2

a

a

5

DO. Отсюда DO

Тогда, приравняв их, получим

.

4

4

5

Далее, рассмотрим прямоугольные треугольники CDQ и ND1Q. У этих треугольников острый угол при вершине Q – общий. Значит, они подобны. Поскольку, согласно условию

задачи, точка N

середина ребра C1D1, то коэффициент подобия треугольников CDQ и

ND1Q равен 2. Отсюда, очевидно, что DQ 2a.

Рассмотрим,

наконец,

прямоугольный треугольник QOD. По теореме Пифагора

a2

a

DO

1

2

21

QO DQ

2

DO

2

4a

. Откуда cos

.

5

QO

5

21

Построим теперь четырёхугольник MP1N1C, являющийся ортогональной проекцией трапеции MPNC на плоскость ABC. Так как PN лежит в плоскости, построенной на парал-

5

лельных прямых PP1 и NN1,

и параллельна плоскости ABC,

то линия пересечения

P1N1

плоскостей ABC и PNN1

параллельна PN (по теореме о линии пересечения). Поскольку

P1N1 || PN и MC|| PN , то P1N1 ||MC, а значит, четырёхугольник MP1N1C – трапеция.

Найдём площадь трапеции MP1N1C. Очевидно, что SMPN C S

MCD

S PN D . Прямо-

1

1

1

1

угольные треугольники MCD и P1N1D подобны, так как P1N1D MCD (как соответст-

венные). Точка

N1 – середина ребра CD, значит,

коэффициент подобия треугольников

MCD и PN

D равен 2. Поэтому S

MPN C

S

MCD

S

MCD

a2

a2

3a2

.

1 1

4

4

16

16

1

1

Согласно

теореме

о

площади

ортогональной

проекции

многоугольника,

SMP1N1C

3a2

SMPNC

, откуда окончательно получим: SMPNC

21

.

cos

16

3a2

Ответ:

21

.

16

3. Применение теоремы о площади ортогональной проекции многоугольника при вычислении угла между плоскостями

Кроме рассмотренного основного применения теоремы о площади ортогональной проекции многоугольника её можно также использовать при вычислении угла между плоскостью сечения и плоскостью какой-либо грани многогранника (обычно в качестве такой грани выступает основание пирамиды или призмы). Так поступают в случаях, когда нахождение Sпр и Sсечения является более простой задачей, чем непосредственное вычисление двугранного угла , сопряжённое с построением на чертеже его линейного угла.

B1

A1 D1

B

A D

Рис. 5

Из формулы о

C1

Пример 5. В кубе

ABCDA1B1C1D1 найти угол между

плоскостью грани AA1B1B и плоскостью BC1D.

Решение. Пусть ребро куба равно a. Ортогональной

проекцией треугольника BC1D является треугольник AB1B

a2

C

(см. рис. 5), площадь

которого равна

.

Поскольку

2

BD BC1

C1A a

(как диагонали

граней

куба), то

2

a2 .

S BC D

3

2

1

площади ортогональной проекции многоугольника получим:

S AB B

3

. Отсюда arccos

3

.

Ответ: arccos

3

.

1

S BC D

3

3

3

1

B1

P

C1

Пример 6. В кубе

ABCDA1B1C1D1 через его вершины

A , D и точку M, расположенную на ребре CC

так, что

1

1

D1

M

CM :MC1 2:1, проведено сечение. Найти угол наклона

Q

секущей плоскости к плоскости основания ABCD.

K

Решение. Построим сечение куба плоскостью, прохо-

B

L

C

дящей через точки A1, D и M. Соединим вначале точки A1

и D, поскольку они лежат в одной плоскости DD A . Затем

1

1

Dсоединим точки D и M, так как они лежат в одной плоскости DD1C1 (см. рис. 6). Противоположные боковые грани

Рис. 6

DD1A1

и CC1B1 в кубе параллельны. Поэтому секущая

6

плоскость, согласно свойству параллельных плоскостей (если две параллельные плоскости пересечены третьей, то линии пересечения параллельны) будет пересекать грань CC1B1 по прямой MP так, что MP|| A1D . Наконец, соединим точки A1 и P, так как они лежат в одной плоскости A1B1C1. Поскольку A1P и DM не параллельны, то четырёхуголь-

ник A1PMD, являющийся сечением куба, – трапеция.

Ортогональной проекцией трапеции A1PMD плоскости основания ABCD является прямоугольная трапеция ALCD. Для определения угла наклона секущей плоскости к

плоскости основания ABCD воспользуемся формулой cos SALCD . Для этого найдем

SA1PMD

площади указанных трапеций.

Пусть ребро куба равно a. Тогда, согласно условию задачи, MC a . Кроме того,

1

3

очевидно, что A1D a2. Поскольку MP|| A1D и DD1 ||MC1, то A1DD1 PMC1 (как углы с соответственно сонаправленными сторонами). Поэтому прямоугольные треуголь-

ники A DD и PMC подобны с коэффициентом k

1

. Следовательно, MP

A1D

a 2

1

1

1

3

3

3

A1D1

a

и PC

.

1

3

3

2a

Далее,

так как

A B DC a, B P CM

,

то

прямоугольные

треугольники

1

1

1

3

A1B1P

DCM

и

равны

по

двум

катетам.

Поэтому

по

теореме

Пифагора

4a2

a

.

A P DM a2

13

1

9

3

Следовательно, трапеция A1PMD равнобедренная. Найдём её высоту. Для этого опус-

тим из

точек P

и

M

перпендикуляры

PQ и

MK

на

основание A1D. Тогда

A1D MP

a

. Отсюда по теореме Пифагора из прямоугольного треуголь-

AQ DK

2

1

2

3

13a2

2a2

a

.

11

ника A PQ высота трапеции A PMD равна:

PQ

A P2

AQ2

1

1

1

1

9

9

3

A D MP

2a2

22

Таким образом, площадь сечения: SAPMD

1

PQ

.

2

9

1

a

В прямоугольной трапеции ALCD основания равны AD a

и LC PC

,

а высота

3

AD LC

2a2

1

DC a . Тогда её площадь:

SALCD

DC

.

2

3

Подставляя полученные значения площадей в формулу, находим

S

2a

2

2a2

3

cos

ALCD

:

22

22

.

SAPMD

3

9

22

1

3

Ответ: arccos

3

.

Следовательно, arccos

22

.

22

22

22

Пример 7. Плоскость пересекает прямоугольный параллелепипед с квадратным основанием по ромбу с острым углом . Под каким углом эта плоскость пересекает боковые рёбра параллелепипеда?

7

Решение. Без ограничения общности рассуждений будем считать, что секущая плоскость проходит через вершину A нижнего основания параллелепипеда, пересекая его бо-

ковые рёбра BB1, CC1

и DD1

в точках M, N и P соответственно (см. рис. 7).

B1

C1

Рассмотрим прямоугольные треугольники AMB и

D1

N

APD. В них AM AP , т.к., согласно условию, AMNP

A1

ромб. Кроме того, AB AD как стороны основания

x

параллелепипеда ABCD, являющегося квадратом. Сле-

x

довательно, AMB APD по гипотенузе и катету, а

M

значит, MB PD.

O

Рассмотрим теперь четырёхугольник BMPD. В нём

x

P

противоположные стороны MB и PD параллельны и

x B

a

равны, значит, BMPD – параллелограмм (отметим до-

C

полнительно, что BMPD – прямоугольник). Отсюда

a

a

MP|| BD и MP BD.

A

a

D

Пусть сторона ромба AMNP равна x, а ребро осно-

Рис. 7

вания параллелепипеда равно a. Тогда SAMNP x2 sin ,

SABCD a2 . Поскольку MP BD a2, то из прямо-

угольного треугольника AOP имеем: sin

OP

a 2

, или a x

sin

.

2

2

AP

2x

2

Вычислим косинус угла между секущей плоскостью и основанием:

SABCD

a2

2x2 sin2

cos

2

tg

.

SAMNP

x2 sin

Обозначим через угол,

x2 sin

2

под которым секущая плоскость пересекает боковые рёбра

параллелепипеда. Поскольку

, то

cos cos

sin . Значит,

sin tg

.

2

2

2

Отсюда arcsin tg

.

2

Ответ: arcsin tg

.

2

Пример 8. В кубе ABCDA1B1C1D1 с ребром, равным a, через точки M, P и N на рёбрах

BB , CC и DD соответственно, такие, что BM

3a

, CP

2a

и DN

a

, проведена се-

1

1

1

4

3

4

кущая плоскость. Найти угол между плоскостью сечения и плоскостью основания куба.

Решение. Построим сечение куба плоскостью, проходящей через точки M, P и N. Соединим вначале точки M и P, поскольку они лежат в одной плоскости BB1C1 . Затем соединим точки P и N, т.к. они лежат в одной плоскости

DD1C1 (см. рис. 8).

Противоположные боковые грани AA1D1 и BB1C1 в кубе параллельны. Поэтому секущая плоскость, согласно свойству параллельных плоскостей (если две параллельные плоскости пересечены третьей, то линии пересечения параллельны) будет пересекать грань AA1D1 по прямой NQ так, что

NQ|| MP.

8

Соединим точки M и Q, т.к. они лежат в одной плоскости AA1B1. Тогда MQ|| NP по

тому же свойству параллельных плоскостей AA1B1

и

CC1D1 . Таким образом,

сечение

представляет собой параллелограмм MPNQ.

Вычислим площадь MPNQ и, поскольку квадрат ABCD – ортогональная проекция

MPNQ, определим косинус угла между плоскостью сечения и плоскостью ABC.

Найдём стороны треугольника MNP. Используя теорему Пифагора, получим:

из прямоугольного треугольника MLP (ML CC1 )

a2

a2

a

,

145

MP (LC PC)2 MC2

144

из прямоугольного треугольника NPS (NS CC1)

12

NP

25a2

a2

13a

,

(PC SC)2 NS2

из прямоугольного треугольника MNK (KN BB1)

144

12

MN

a2

2a2

3a

.

(BM BK)2 KN2

4

2

Полупериметр треугольника MNP равен p

a(

31)

. Используя формулу Герона,

145

24

a2

a2

найдём его площадь:

SMNP

170

. Следовательно,

SMPNQ 2SMNP

170

. Из фор-

24

12

SABCD

мулы для

площади

ортогональной

проекции получим: cos

12

. Отсюда

SMPNQ

170

arccos

6

170

.

Ответ: arccos

6

170

.

85

85

4. Применениетеоремы о площади ортогональной проекции многоугольника при вычислении площади боковой поверхности пирамиды

Ещё одной известной задачей, при решении которой применяется теорема о площади ортогональной проекции многоугольника, является задача вычисления площади Sбок бо-

ковой поверхности пирамиды, у которой все боковые грани одинаково наклонены к плоскости её основания (под углом ), или вершина пирамиды лежит на перпендикуляре, восставленном из центра вписанной в её основание окружности. Тогда

Sбок

Sосн

.

(2)

cos

Пример 9. Стороны основания треугольной пирамиды равны 6 см, 10 см и 14 см. Каждый двугранный угол при её основании равен 30°. Найти площадь боковой поверхности пирамиды.

Решение. Для нахождения площади сечения воспользуемся формулой (2). Найдём вначале площадь основания треугольной пирамиды, воспользовавшись формулой Герона. Поскольку полупериметр треугольника в основании равен 15 см, то

Sосн 15 (15 6) (15 10) (15 14) 153 (см2).

Тогда Sбок

Sосн

3

2

15 3:

30

(см ).

cos30

2

Ответ: 30 см2.

9

Пример 10. Боковые грани пирамиды, в основании которой лежит ромб, наклонены к плоскости основания под углом 30°. Диагонали ромба равны 10 см и 24 см. Найти площадь боковой поверхности пирамиды.

Решение. Для нахождения площади сечения воспользуемся формулой (2). Поскольку боковые грани пирамиды SABCD наклонены к основанию ABCD под одинаковым углом, то её вершина S проектируется в центр вписанной в ромб окружности, т. е. в точку O пересечения его диагоналей (см. рис. 9). Тогда

SABCD AC BD 120 (см2). 2

Следовательно, Sбок SABCD 803 (см2). cos30

Ответ: 803 см2.

Пример 11. В правильной усечённой четырёхугольной пирамиде стороны нижнего и верхнего оснований равны соответственно a и b (a b). Найти площадь полной поверхности усечённой пирамиды, если её боковые грани наклонены к плоскости основания под углом .

b

Решение. Поскольку основаниями правильной усе-

чённой четырёхугольной пирамиды являются квадраты со

сторонами a и b, то сумма их площадей равна

a2 b2 .

Очевидно, что ортогональная проекция боковой поверхно-

сти усечённой пирамиды на плоскость нижнего основания

a

представляет собой квадрат со стороной a, из которого

«вырезан» квадрат со стороной b. При этом стороны «вы-

Рис. 10

резанного» квадрата параллельны сторонам нижнего осно-

вания пирамиды (см. рис. 10). Так как боковые грани усе-

чённой пирамиды наклонены к плоскости основания под

одинаковым углом , то площадь её боковой поверхности равна: Sбок

Sпр

a2

b2

.

cos

cos

Таким образом, S

полн a

2

b

2

a2 b2

Ответ: a

2

b

2

a2 b2

.

.

cos

cos

Пример 12. Основанием пирамиды является ромб. Две боковые грани перпендикулярны к плоскости основания и образуют двугранный угол в 120°, а две другие боковые грани наклонены к плоскости основания под углом 30°. Найти площадь поверхности пирамиды, если её высота равна 12.

Решение. Площадь полной поверхности пирамиды равна сумме площадей боковых граней и основания, т. е.

Sполн SASB SBSC SASD SDSC SABCD .

Положим, что сторона ромба ABCD равна a. C Пусть боковые грани ASB и BSC пирамиды

SABCD перпендикулярны к плоскости основания ABCD (см. рис. 11). Тогда боковое ребро SB пирамиды перпендикулярно к плоскости ромба и равно высоте, а боковые грани ASB и BSC пирамиды являются равными прямоугольными треугольниками

10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Вы уже изучили свойства равностороннего треугольника и квадрата. Каждая из этих фигур обладает тем свойством, что у них все углы равны и все стороны равны. Указанные геометрические фигуры служат примерами правильных многоугольников, свойства которых и рассматриваются в данном параграфе.

Определение правильного многоугольника

Определение. Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.
 

Правильные многоугольники - определение и вычисление с примерами решения

Рассмотрим пример. Пусть ABC — равносторонний треугольник;. Разделим каждую его сторону на три равные части, как показано на рисунке 81, а. Каждый из треугольников ATS, KBF и DPC является равносторонним. Отсюда следует, что Правильные многоугольники - определение и вычисление с примерами решения

Модель этого правильного многоугольника получится, если от листа бумаги, имеющего форму равностороннего треугольника, отрезать равные части, имеющие форму равносторонних и равных между собой треугольников, как показано на рисунке 81, б.

Если треугольник АБС является гранью тетраэдра ВОАС (тетраэдр — треугольная пирамида, у которой все четыре грани — равные равносторонние треугольники), а каждая пара точек Т, К, F, Р и D, S делит соответственно ребра АВ, ВС и АС на три равные части, то TKFPDS — правильный шестиугольник, лежащий на грани ABC (рис. 81, в).

Ранее, в § 1 главы 1 учебного пособия «Геометрия, 8», была доказана теорема о том, что сумма градусных мер углов любого выпуклого n-угольника равна 180°(n – 2). Из доказанной теоремы и определения правильного n-угольника следует, что градусную меру каждого его угла можно найти по формулеПравильные многоугольники - определение и вычисление с примерами решения   Например,    для правильного шести Правильные многоугольники - определение и вычисление с примерами решения (рис. 82, о), а для правильного восьмиугольника Правильные многоугольники - определение и вычисление с примерами решения (рис. 82, б).

Правильные многоугольники - определение и вычисление с примерами решения

Окружность, описанная около правильного многоугольника

Вы знаете, что около правильного треугольника и правильного четырехугольника можно описать окружность. Теперь изучим вопрос о существовании окружности, описанной около правильного многоугольника.

Определение. Окружность называется описанной около многоугольника, если все его вершины лежат на этой окружности. При этом многоугольник называется вписанным в окружность.

Оказывается, что около любого правильного многоугольника можно описать окружность. Докажем следующую теорему.

Теорема 1 (об окружности, описанной около правильного многоугольника). Около любого правильного многоугольника можно описать единственную окружность.

Доказательство.

I. Докажем, существование окружности.

1) Пусть Правильные многоугольники - определение и вычисление с примерами решения — правильный многоугольник. Докажем, что существует точка, равноудаленная от всех его вершин. Пусть точка О — точка пересечения биссектрис углов Правильные многоугольники - определение и вычисление с примерами решенияСоединим точку О отрезками со всеми вершинами многоугольника и докажем, чтоПравильные многоугольники - определение и вычисление с примерами решения (рис. 83).

Правильные многоугольники - определение и вычисление с примерами решения

2) Так какПравильные многоугольники - определение и вычисление с примерами решения — биссектрисы, тоПравильные многоугольники - определение и вычисление с примерами решеният. е. треугольник Правильные многоугольники - определение и вычисление с примерами решения— равнобедренный, а значит,Правильные многоугольники - определение и вычисление с примерами решения

3) Заметим, что треугольникПравильные многоугольники - определение и вычисление с примерами решенияравен треугольнику Правильные многоугольники - определение и вычисление с примерами решенияпо двум сторонам и углу между ними (Правильные многоугольники - определение и вычисление с примерами решения,сторона Правильные многоугольники - определение и вычисление с примерами решения. Из равенства этих треугольников следует, чтоПравильные многоугольники - определение и вычисление с примерами решения Так же можно доказать, чтоПравильные многоугольники - определение и вычисление с примерами решения и т. д.

4) Таким образом,Правильные многоугольники - определение и вычисление с примерами решения т. е. точка О равноудалена от вершин многоугольника. Следовательно, окружность со с центром в точке О и радиуса ОА, является описанной около многоугольника. Из доказательства следует, что центром, окружности, описанной около правильного многоугольника, является точка пересечения биссектрис углов этого многоугольника.

II. Докажем, что описанная окружность единственная.

Пусть существует еще одна окружность со,, которая описана около правильного многоугольникаПравильные многоугольники - определение и вычисление с примерами решения Тогда эта окружность является описанной, например, около треугольникаПравильные многоугольники - определение и вычисление с примерами решенияНо около треугольника Правильные многоугольники - определение и вычисление с примерами решения можно описать единственную окружность, значит, окружности со и со, совпадают, т. е. около многоугольника Правильные многоугольники - определение и вычисление с примерами решенияможно описать единственную окружность.

Теорема доказана.

Окружность, вписанная в правильный многоугольник

Известно, что в любой правильный треугольник можно вписать окружность. Рассмотрим вопрос о существовании окружности, вписанной в правильный многоугольник.

Определение. Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются окружности. При этом многоугольник называется описанным около окружности.

Докажем, что в любой правильный многоугольник можно вписать окружность.

Теорема 2 (об окружности, вписанной в правильный многоугольник). В любой правильный многоугольник можно вписать единственную окружность.

I. Докажем существование окружности.

1) Пусть Правильные многоугольники - определение и вычисление с примерами решения — правильный многоугольник. Докажем, что существует точка, равноудаленная от прямых, содержащих стороны многоугольника (рис. 84).

Правильные многоугольники - определение и вычисление с примерами решения

2) Пусть точка О — центр описанной около многоугольника окружности. Теперь проведем высотыПравильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решениясоответственно треугольниковПравильные многоугольники - определение и вычисление с примерами решения Как было доказано в предыдущей теореме, эти треугольники равны между собой, следовательно, равны их высоты, т. е.Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

3) Таким образом, окружность Правильные многоугольники - определение и вычисление с примерами решения с центром в точке О радиусаПравильные многоугольники - определение и вычисление с примерами решенияпроходит через точкиПравильные многоугольники - определение и вычисление с примерами решенияи касается сторон многоугольника в этих точках, т. е. эта окружность вписана в правильный многоугольник Правильные многоугольники - определение и вычисление с примерами решения

Заметим также, что центр О вписанной в правильный многоугольник окружности является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Подчеркнем, что для правильного многоугольника центр вписанной окружности совпадает с центром, описанной окружности.

II. Докажем, что вписанная окружность единственная.

Предположим, что существует еще одна окружность Правильные многоугольники - определение и вычисление с примерами решениявписанная в правильный многоугольникПравильные многоугольники - определение и вычисление с примерами решенияТогда центр Ох этой окружности равноудален от сторон многоугольника, т. е. точка О, лежит на каждой из биссектрис углов многоугольника, а значит, совпадает с точкой О пересечения этих биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон многоугольника, т. е. он равенПравильные многоугольники - определение и вычисление с примерами решения Следовательно, окружности Правильные многоугольники - определение и вычисление с примерами решениясовпадают.

Теорема доказана.

Центром, правильного многоугольника называется центр его вписанной и описанной окружностей.

Выражение элементов n-угольника через радиус вписанной или описанной окружностей

Пусть S — площадь правильного n-угольника, Правильные многоугольники - определение и вычисление с примерами решения— длина его стороны, Р — периметр, а г и R — радиусы вписанной и описанной окружностей соответственно.

1) Площадь S правильного n-уголъника, описанного около окружности, можно найти, зная периметр Р и радиус г вписанной окружности, по формулеПравильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Соединим центр О правильного многоугольника с его вершинами (рис. 85, а). Тогда многоугольник разбивается на n равных треугольников, площадь каждого из которых равнаПравильные многоугольники - определение и вычисление с примерами решения Следовательно,Правильные многоугольники - определение и вычисление с примерами решения

Что и требовалось доказать.

2)    Длину стороныПравильные многоугольники - определение и вычисление с примерами решения правильного n-угольника можно найти, зная радиус г вписанной окружности, по формуле Правильные многоугольники - определение и вычисление с примерами решения
Соединим центр многоугольника с вершинами Правильные многоугольники - определение и вычисление с примерами решенияи проведем высоту OF равнобедренного треугольника Правильные многоугольники - определение и вычисление с примерами решения (рис. 85, б). Так как многоугольник правильный, то Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения в равнобедренном треугольникеПравильные многоугольники - определение и вычисление с примерами решения высота OF,  проведенная к основанию, является биссектрисой, следовательно,Правильные многоугольники - определение и вычисление с примерами решения Таким образом,Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

Что и требовалось доказать.
Так какПравильные многоугольники - определение и вычисление с примерами решения, то площадь S =

3)    Длину стороны аn правильного n-угольника можно найти, зная радиус R описанной окружности, по формуле Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Пусть OF — высота равнобедренного треугольникаПравильные многоугольники - определение и вычисление с примерами решения (рис. 86, а). ТогдаПравильные многоугольники - определение и вычисление с примерами решенияВ прямоугольном треугольнике Правильные многоугольники - определение и вычисление с примерами решенияТаким образом, Правильные многоугольники - определение и вычисление с примерами решения

Что и требовалось доказать.

Для правильного треугольника (n = 3), квадрата (n = 4) и правильного шестиугольника, (n = 6) получим соответственно формулы: Правильные многоугольники - определение и вычисление с примерами решения

4) Площадь S правильного п-угольника можно найти, зная радиус R описанной окружности, по формуле Правильные многоугольники - определение и вычисление с примерами решения

Соединим вершины правильного /i-угольника с его центром (рис 86, б). Тогда многоугольник разобьется на п равных треугольников. Следовательно, Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

Что и требовалось доказать.

5) Радиус г вписанной окружности можно найти, зная радиус R описанной окружности, по формуле Правильные многоугольники - определение и вычисление с примерами решения

В прямоугольном треугольнике Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

Что и требовалось доказать.

Построение правильных многоугольников

Вопрос о построении правильного треугольника уже рассматривался ранее. Покажем, каким образом можно с помощью циркуля и линейки построить правильный треугольник, вписанный в окружность.

Пример №1

Постройте правильный треугольник, вписанный в данную окружность.

Поиск решения.

Пусть правильный треугольник ABC вписан в окружность с центром в точке О. Проведем диаметр BF этой окружности, обозначим буквой Т точку пересечения этого диаметра со стороной АС. Тогда положение точки Т на отрезке OF характеризуется равенством ОТ = TF; т. к. центр равностороннего треугольника есть точка пересечения медиан, то Правильные многоугольники - определение и вычисление с примерами решения  Кроме того, Правильные многоугольники - определение и вычисление с примерами решения Теперь можем осуществить построение (рис. 87, а).

Построение.

1) Проводим диаметр BF окружности и строим точку Т — середину отрезка OF (рис. 87, б).
 

Правильные многоугольники - определение и вычисление с примерами решения

Строим прямую l, которая проходит через точку Т и перпендикулярна диаметру BF (рис. 87, б).

3) Отметим точки А и С пересечения прямой l с окружностью.

4) Строим отрезки ВА и ВС (рис. 87, в). Треугольник ABC — искомый.

Докажите самостоятельно, что построенный треугольник — правильный.

Пример №2

Постройте правильный шестиугольник, сторона которого равна данному отрезку а.

Правильные многоугольники - определение и вычисление с примерами решения

Поиск решения.

Пусть ABCDFE — правильный шестиугольник, сторона. которого равна а. Рассмотрим, описанную около этого шестиугольника окружность. Известно, что радиус окружности, описанной около правильного шестиугольника, равен его стороне, т. е. R = АВ = ВС = CD = DF = FE = ЕА = a.(рис. 88). Этим можем воспользоваться для построения шестиугольника.

Построение.

1) Строим окружность Правильные многоугольники - определение и вычисление с примерами решенияс центром О и радиуса а.

2) Выбираем на этой окружности произвольную точку А и строим окружностьПравильные многоугольники - определение и вычисление с примерами решения Отметим точки В и Е пересечения окружностиПравильные многоугольники - определение и вычисление с примерами решения, с окружностью Правильные многоугольники - определение и вычисление с примерами решения (рис. 88, б).

3) Далее строим точку С, которая является одной из точек пересечения окружностиПравильные многоугольники - определение и вычисление с примерами решения и окружности Правильные многоугольники - определение и вычисление с примерами решения Аналогично строим точки D и F. Шестиугольник ABCDFE — искомый (рис. 88, в).

Заметим, что результат задачи 1 позволяет построить правильный шестиугольник, если построен правильный треугольник.

Понятие длины окружности

Рассмотрим вопрос о вычислении длины окружности. Пусть в окружность вписан правильный n-угольник. Если число n сторон правильного « угольника, вписанного в окружность, неограниченно возрастает, то геометрическая фигура, образованная его сторонами, все меньше и меньше отличается от окружности (рис. 93, а, б, в). В вузовском курсе математического анализа устанавливается, что существует число, к которому стремятся периметры Р„ правильных n-угольников, вписанных в окружность, при неограниченном возрастании числа их сторон. Это число называется длиной окружности. Таким образом, за длину окружности принимается число, к которому стремятся периметры вписанных в окружность правильных n-угольников при неограниченном увеличении числа их сторон.
Правильные многоугольники - определение и вычисление с примерами решения

Длина окружности зависит от ее радиуса, окружность большего радиуса имеет большую длину. Вместе с тем можно доказать, что отношение длины окружности к ее диаметру есть число постоянное.

2.    Теорема об отношении длины окружности к ее диаметру. Докажем теорему, которая характеризует отношение длины окружности к ее диаметру.

Теорема (об отношении длины окружности к ее диаметру).

Отношение длины окружности к ее диаметру есть число постоянное для всех окружностей.

Дано: Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решенияокружности, Правильные многоугольники - определение и вычисление с примерами решения соответственно длины этих окружностей. Доказать: Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Доказательство.

1) Впишем в каждую из окружностей правильные n-угольники. Пусть длиныПравильные многоугольники - определение и вычисление с примерами решения— стороны этих многоугольников,Правильные многоугольники - определение и вычисление с примерами решения— соответственно их периметры (рис. 94, а, б).

2) Теперь воспользуемся формулой, которой выражается длина стороны правильного п-угольника через радиус описанной окружности. Учитывая эту формулу (глава 3, § 1, п. 3), можем записать равенства Правильные многоугольники - определение и вычисление с примерами решения.Правильные многоугольники - определение и вычисление с примерами решения Следовательно, верно равенство Правильные многоугольники - определение и вычисление с примерами решения

3) Это равенство верно при любом значении n. Будем неограниченно увеличивать число n, тогда периметр Правильные многоугольники - определение и вычисление с примерами решенияпервого многоугольника стремится к длине С первой окружности, а периметрПравильные многоугольники - определение и вычисление с примерами решениявторого многоугольника стремится к длине Правильные многоугольники - определение и вычисление с примерами решениявторой окружности, т. е. Правильные многоугольники - определение и вычисление с примерами решения стремится кПравильные многоугольники - определение и вычисление с примерами решения

4) Таким образом, Правильные многоугольники - определение и вычисление с примерами решенияОтсюда следует, что   Правильные многоугольники - определение и вычисление с примерами решения

Значит, отношение длины окружности к ее диаметру одно и то же для всех окружностей.

Теорема доказана.

Число, равное отношению длины окружности к ее диаметру, обозначается строчной греческой буквой Правильные многоугольники - определение и вычисление с примерами решения (читается «пи»). Доказано, что число Правильные многоугольники - определение и вычисление с примерами решения — иррациональное, то есть выражается бесконечной непериодической десятичной дробью. Приближенное значение    числа    л с точностью до    восьми знаков после запятой такое:   Правильные многоугольники - определение и вычисление с примерами решения  При решении    задач  в школьной практике пользуются приближенным значением числа Правильные многоугольники - определение и вычисление с примерами решения с точностью до сотых: Правильные многоугольники - определение и вычисление с примерами решения

Длина дуги окружности

Для нахождения формулы длины окружности воспользуемся равенством Правильные многоугольники - определение и вычисление с примерами решенияОтсюда следует, что длину окружности радиуса R можно найти по формулеПравильные многоугольники - определение и вычисление с примерами решенияили по формуле Правильные многоугольники - определение и вычисление с примерами решениягде D — диаметр окружности.

Теперь выведем формулу для вычисления длины I дуги окружности, градусная мера которой равна а. Пусть данная дуга является дугой окружности радиуса R. Так как длина всей окружности равнаПравильные многоугольники - определение и вычисление с примерами решения, то длина дуги в 1° равна

Правильные многоугольники - определение и вычисление с примерами решения. Так как градусная мера дуги равна а, то длина I этой дуги выражается:Правильные многоугольники - определение и вычисление с примерами решения

Пример №3

Точки F, Т и К — середины сторон равностороннего треугольника ABC. Найдите длину окружности, вписанной в треугольник FT К, если длина стороны треугольника ABC равна а.

Дано: Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Найти: длину окружности, вписанной в треугольник Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Для нахождения длины окружности можем воспользоваться формулой Правильные многоугольники - определение и вычисление с примерами решениягде г — радиус окружности, вписанной в треугольник FTK. Для нахождения радиуса г воспользуемся тем, что треугольник FTK также является равносторонним.

1) Пусть точка О — центр окружности, вписанной в треугольник FTK, а Е — точка касания окружности и стороны FT (рис. 95, а, б).

2) Треугольник FTK является равносторонним, так как Правильные многоугольники - определение и вычисление с примерами решенияТреугольник ТЕО — прямоугольный, Правильные многоугольники - определение и вычисление с примерами решения  так как отрезок ОЕ — радиус, проведенный в точку касания, луч ОТ — биссектриса угла ЕТК).

3) В прямоугольном треугольнике Правильные многоугольники - определение и вычисление с примерами решения. Так какПравильные многоугольники - определение и вычисление с примерами решения

Заметим, что радиус г можно найти и другим способом, воспользовавшись тем, что треугольник FT К подобен треугольнику ABC с коэффициентом подобия Правильные многоугольники - определение и вычисление с примерами решения

Таким образом, длина окружности Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Пример №4

Основанием прямой четырехугольной призмы Правильные многоугольники - определение и вычисление с примерами решенияявляется квадрат. Вычислите длину окружности, описанной около боковой грани призмы, если длина окружности, описанной около основания призмы, равна 871 см, а боковое ребро в два раза больше стороны основания призмы.

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Длину С окружности можно найти по формуле Правильные многоугольники - определение и вычисление с примерами решения где R — радиус окружности. Данная призма является прямой, и ее основаниями служат квадраты, следовательно, все боковые грани — равные между собой прямоугольники. Диагональ граниПравильные многоугольники - определение и вычисление с примерами решения равна диаметру описанной около него окружности, т. е.Правильные многоугольники - определение и вычисление с примерами решения (рис. 96, а, б, в).

1) По условию длина окружности, описанной около квадрата ABCD, равна 8л см. Диаметр окружности равен диагонали АС, таким образом,Правильные многоугольники - определение и вычисление с примерами решенияОтсюда АС = 8 см.

2) Так как четырехугольник ABCD — квадрат, тоПравильные многоугольники - определение и вычисление с примерами решения Следовательно, Правильные многоугольники - определение и вычисление с примерами решения

3) По условиюПравильные многоугольники - определение и вычисление с примерами решения В прямоугольном треугольнике Правильные многоугольники - определение и вычисление с примерами решения Диаметр окружности, описанной около грани Правильные многоугольники - определение и вычисление с примерами решения, равен Правильные многоугольники - определение и вычисление с примерами решения, т. е. Правильные многоугольники - определение и вычисление с примерами решенияТеперь вычислим длину окружности, описанной около боковой грани Правильные многоугольники - определение и вычисление с примерами решенияОтвет: Правильные многоугольники - определение и вычисление с примерами решения

Радианная мера угла

Ранее была определена единица измерения углов — градус. Наряду с ней используется единица измерения углов, которая называется радианом.

Углом в один радиан называется центральный угол, которому соответствует длина дуги, равная длине радиуса окружности.

Радианная мера угла — это величина угла, выраженная в радианах.

Установим связь между радианной и градусной мерой угла. Углу, градусная мера которого равна 180°, соответствует полуокружность, длина I которой равна Правильные многоугольники - определение и вычисление с примерами решения т. е.Правильные многоугольники - определение и вычисление с примерами решения. Для нахождения радианной меры этого угла надо длину этой дуги разделить на радиус, т. е.Правильные многоугольники - определение и вычисление с примерами решенияСледовательно, радианная мера развернутого угла равна л, т. е. 180° = Правильные многоугольники - определение и вычисление с примерами решения рад. Таким образом, радианная мера угла в 1°

равнаПравильные многоугольники - определение и вычисление с примерами решенияПри записи используется сокращенное обозначение радиана — «рад». Из равенстваПравильные многоугольники - определение и вычисление с примерами решения следует, что градусная мера

угла в 1 радиан равна   Правильные многоугольники - определение и вычисление с примерами решения Приближенно 1 радиан равен 57°.Из определения радиана следует, что длина I дуги окружности радиуса R, соответствующей центральному углу в х радиан, равна Rx.

Рассмотрим примеры перехода от радианной меры к градусной и от градусной меры к радианной.

Пример №5

Вычислите градусную меру угла 3 рад.

Решение:

Так какПравильные многоугольники - определение и вычисление с примерами решения

Пример №6

Вычислите радианную меру угла 30°.

Решение:

Так какПравильные многоугольники - определение и вычисление с примерами решения

При записи радианной меры угла обозначение рад можно

опускать. Например, вместо Правильные многоугольники - определение и вычисление с примерами решения запишем Правильные многоугольники - определение и вычисление с примерами решения
 

Площадь круга

Рассмотрим вопрос о вычислении площади круга. Пусть в окружность, ограничивающую круг, вписан правильный n-угольник. Если число n сторон правильного n-угольника, вписанного в окружность, неограниченно возрастает, то многоугольник все меньше и меньше отличается от круга (рис. 100, а, б). Из результатов, доказывемых в вузовском курсе математического анализа, следует, что существует число, к которому стремятся площади S,, правильных п-угольников, вписанных в окружность, при неограниченном возрастании числа их сторон. Это число называется площадью круга. Таким образом, за площадь круга принимается число, к которому стремятся площади вписанных в окружность, ограничивающую этот круг, правильных n-угольников при неограниченном увеличении числа их сторон.

Правильные многоугольники - определение и вычисление с примерами решения

Теперь докажем следующую теорему.

Теорема (о площади круга). Площадь S круга радиуса R можно вычислить по формуле Правильные многоугольники - определение и вычисление с примерами решения

1) Пусть дан круг радиуса R и правильный n-угольник Правильные многоугольники - определение и вычисление с примерами решениявписанный в окружность, которая ограничивает этот круг. На рисунке 100, в дано изображение для случая n = 6. ЕслиПравильные многоугольники - определение и вычисление с примерами решения — периметр вписанного многоугольника, а г„ — радиус вписанной в него окружности, то S„ — площадь этого многоугольника, которая находится по формулеПравильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

2) При неограниченном увеличении числа n сторон n-угольника радиусПравильные многоугольники - определение и вычисление с примерами решения вписанной окружности стремится к R. Действительно, так какПравильные многоугольники - определение и вычисление с примерами решения, то при неограниченном увеличении числа сторон n число   Правильные многоугольники - определение и вычисление с примерами решения стремится к нулю, а значит,Правильные многоугольники - определение и вычисление с примерами решения  стремится к единице, т. е. Правильные многоугольники - определение и вычисление с примерами решениястремится к R. Кроме того, периметрПравильные многоугольники - определение и вычисление с примерами решения стремится к длине окружности, равной Правильные многоугольники - определение и вычисление с примерами решения, а площадь Правильные многоугольники - определение и вычисление с примерами решениястремится к площади S круга. Таким образом, площадь кругаПравильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

Теорема доказана.

Площадь сектора

Рассмотрим вопрос о вычислении площади части круга, которая называется сектором.

Определение. Сектором называется часть круга, ограниченная дугой окружности и двумя радиусами, соединяющими концы дуги с центром круга.

Дуга окружности, ограничивающая сектор, называется дугой сектора.

Например, на рисунке 101, а изображены два сектора, дугами которых служат дуги АТ В и AFB. На рисунке 101, б изображены круг, который касается всех сторон треугольника, и два сектора, ограниченные радиусами, проведенными в точки касания, и соответствующими дугами окружности.

Правильные многоугольники - определение и вычисление с примерами решения

Выведем формулу для вычисления площади S сектора радиуса R, градусная мера дуги которого равна а. Площадь круга радиуса R равнаПравильные многоугольники - определение и вычисление с примерами решения. Следовательно, площадь сектора, ограниченного дугой, градусная мера которой 1°, равна

Правильные многоугольники - определение и вычисление с примерами решения Значит, площадь сектора, ограниченного дугой, градусная мера которой равна а градусов, можно найти по формуле Правильные многоугольники - определение и вычисление с примерами решения

Например, если ABC — равносторонний треугольник, вписанный в круг радиуса R, а точка О — его центр, тогда площадь сектора, ограниченного радиусами ОА, ОБ и дугой AFB, равнаПравильные многоугольники - определение и вычисление с примерами решения

Площадь сегмента

Рассмотрим формулу для нахождения площади фигуры, которая называется сегментом.

Определение. Сегментом называется часть круга, ограниченная дугой окружности и хордой, соединяющей концы дуги.

Дуга окружности, ограничивающая сегмент, называется дугой сегмента, а ограничивающая его хорда называется основанием сегмента.

На рисунке 102, а изображены два сегмента, ограниченные хордой АВ и дугами AFB и АТ В. Хорда АВ является основанием для каждого из этих сегментов.

На рисунке 102, б изображены сегменты, ограниченные стороной CD вписанного квадрата и соответствующими дугами окружности.

Правильные многоугольники - определение и вычисление с примерами решения

Выведем формулу для вычисления площади сегмента. Рассмотрим два случая: 1) градусная мера дуги сегмента меньше 180°; 2) градусная мера дуги сегмента больше 180°.
1)    Пусть градусная мера дуги АnВ сегмента равна а Правильные многоугольники - определение и вычисление с примерами решения(рис. 103, а). Тогда площадь этого сегмента равна разности площади сектора, ограниченного этой дугой и радиусами ОА, ОВ, и площади треугольника АОВ, т. е.Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

2)    Пусть градусная мера дуги АmВ равна а (а > 180°) (рис. 103, б). Тогда площадь этого сегмента равна сумме площади сектора, ограниченного этой дугой и радиусами ОА,OB и площади треугольника, т. е. Правильные многоугольники - определение и вычисление с примерами решения
Заметим, что площадь этого сегмента можно найти так же, как разность между площадью круга и площадью сегмента с тем же основанием и дугой, градусная мера которой равна Правильные многоугольники - определение и вычисление с примерами решения

Пусть равносторонний треугольник ABC вписан в крут радиуса R, а точка О — его центр (рис. 103, в). Тогда площадь меньшего сегмента, основанием которого служит сторона АВ треугольника, равна Правильные многоугольники - определение и вычисление с примерами решения
 

Пример №7

Диагональ BD равнобедренной трапеции ABCD перпендикулярна боковой стороне, а площадь круга, вписанного в треугольник ABD, равнаПравильные многоугольники - определение и вычисление с примерами решенияВычислите длину окружности, описанной около трапеции, если площадь треугольника ABD равна Правильные многоугольники - определение и вычисление с примерами решения (рис. 104).

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Длину С окружности, описанной около трапеции ABCD, можно найти по формуле Правильные многоугольники - определение и вычисление с примерами решения По условию задачи окружность, описанная около трапеции, описана около прямоугольного треугольника ABD. Следовательно, основание AD трапеции является диаметром окружности, т. е. Правильные многоугольники - определение и вычисление с примерами решения, а значит, Правильные многоугольники - определение и вычисление с примерами решения

1) Пусть г — радиус круга, вписанного в треугольник ABD. Так как площадь этого круга равнаПравильные многоугольники - определение и вычисление с примерами решения то из уравненияПравильные многоугольники - определение и вычисление с примерами решения

2) Площадь Правильные многоугольники - определение и вычисление с примерами решения, прямоугольного треугольника ABD найдем по формулеПравильные многоугольники - определение и вычисление с примерами решениягде г — радиус вписанного круга, р — полупериметр треугольника ABD. По условию задачи Правильные многоугольники - определение и вычисление с примерами решенияследовательно, из уравнения 24 = 2р получим р = 12 см.

3) Для нахождения длины отрезка AD воспользуемся формулой r=p -AD. Отсюда AD =р – г = 12 – 2 = 10 (см).

4) Теперь длина окружности Правильные многоугольники - определение и вычисление с примерами решения

Ответ: Правильные многоугольники - определение и вычисление с примерами решения

Пример №8

Основанием прямой треугольной призмыПравильные многоугольники - определение и вычисление с примерами решения является равносторонний треугольник ABC. Вычислите длину окружности, описанной около боковой грани призмы, если площадь круга, вписанного в основание, равна Правильные многоугольники - определение и вычисление с примерами решения, а все ребра призмы равны между собой (рис. 105, а).

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

По условию задачи каждая боковая грань призмы является квадратом. Длину окружности, описанной около квадратаПравильные многоугольники - определение и вычисление с примерами решения, можно вычислить по формуле Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решенияДля нахождения длины стороны АВ можем воспользоваться тем, что по условию задачи известна площадь круга, вписанного в равносторонний треугольник ABC (рис. 105, б).

1) Пусть точка О — центр круга, вписанного в равносторонний треугольник ABC, Правильные многоугольники - определение и вычисление с примерами решения тогда АВ = 2АТ.

2) Так как площадь круга, вписанного в треугольник ABC, равнаПравильные многоугольники - определение и вычисление с примерами решения, то из уравнения Правильные многоугольники - определение и вычисление с примерами решения найдем ОТ = = 3 см.

3) В прямоугольном треугольникеПравильные многоугольники - определение и вычисление с примерами решения, следовательно,Правильные многоугольники - определение и вычисление с примерами решения

4) Теперь вычислим длину С окружности, описанной около грани Правильные многоугольники - определение и вычисление с примерами решения

Ответ: Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники с примерами

Определение. Правильным многоугольником называется выпуклый многоугольник, у которого все стороны равны и все углы равны.

На рисунке 198 изображены правильные треугольник, четырехугольник, пятиугольник, шестиугольник, семиугольник. Правильный треуголь­ник — это равносторонний треугольник, а правильный четырехугольник — это квадрат.

Правильные многоугольники - определение и вычисление с примерами решения

Одной из простейших задач является задача нахождения величины внутреннего угла правильного многоугольника. Так как все углы правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника равны между собой, а сумма углов любого Правильные многоугольники - определение и вычисление с примерами решения-угольника равна Правильные многоугольники - определение и вычисление с примерами решения то угол Правильные многоугольники - определение и вычисление с примерами решения правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника можно найти по формуле

Правильные многоугольники - определение и вычисление с примерами решения

Например, для правильного шестиугольника Правильные многоугольники - определение и вычисление с примерами решения

Теорема. Около любого правильного многоугольника можно описать окружность, в любой правильный многоугольник можно вписать окружность; центры этих окружностей совпадают.

Правильные многоугольники - определение и вычисление с примерами решения

Доказательство:

В правильном многоугольнике Правильные многоугольники - определение и вычисление с примерами решения проведем биссектрисы внутренних углов Правильные многоугольники - определение и вычисление с примерами решения и Правильные многоугольники - определение и вычисление с примерами решения Пусть О — точка пересечения этих биссектрис (рис. 199). Так как Правильные многоугольники - определение и вычисление с примерами решения как половины равных углов, то Правильные многоугольники - определение и вычисление с примерами решения — равнобедренный с основанием Правильные многоугольники - определение и вычисление с примерами решения Проведя отрезок Правильные многоугольники - определение и вычисление с примерами решения получим Правильные многоугольники - определение и вычисление с примерами решения равный Правильные многоугольники - определение и вычисление с примерами решения по двум сторонам и углу между ними (Правильные многоугольники - определение и вычисление с примерами решениясторона Правильные многоугольники - определение и вычисление с примерами решения — общая, Правильные многоугольники - определение и вычисление с примерами решения).

Соединив точку О отрезками с остальными вершинами, получим множество равных равнобедренных треугольников. Отсюда Правильные многоугольники - определение и вычисление с примерами решения 

Поэтому окружность с центром О и радиусом Правильные многоугольники - определение и вычисление с примерами решения пройдет через все вершины многоугольника Правильные многоугольники - определение и вычисление с примерами решения т. е. будет его описанной окружностью.

А поскольку высоты указанных равных равнобедренных треугольников, проведенные к их основаниям, равны, т. е. Правильные многоугольники - определение и вычисление с примерами решения то точка О — также и центр вписанной окружности многоугольника Правильные многоугольники - определение и вычисление с примерами решения радиус которой Правильные многоугольники - определение и вычисление с примерами решения. Теорема доказана.
 

Точка О называется центром правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника.

Формулы радиусов описанной и вписанной окружностей правильного многоугольника

Пусть Правильные многоугольники - определение и вычисление с примерами решения — правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник со стороной Правильные многоугольники - определение и вычисление с примерами решения, где О — его центр, Правильные многоугольники - определение и вычисление с примерами решения — радиус описанной окружности, Правильные многоугольники - определение и вычисление с примерами решения — радиус вписанной окружности (рис. 202).

Правильные многоугольники - определение и вычисление с примерами решения

Так как Правильные многоугольники - определение и вычисление с примерами решения а высота ОН равнобедренного треугольника Правильные многоугольники - определение и вычисление с примерами решения является биссектрисой и медианой, то угол Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения Из прямоугольного треугольника Правильные многоугольники - определение и вычисление с примерами решения находим:

а) Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения

б) Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения

Замечание. Выведенные формулы запоминать не обязательно. Важно помнить способ их получения: решение прямоугольного треугольника Правильные многоугольники - определение и вычисление с примерами решения
 

Примеры:

1) Для правильного треугольника (рис. 203) получим:

Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения или Правильные многоугольники - определение и вычисление с примерами решения или Правильные многоугольники - определение и вычисление с примерами решения

2) Для правильного четырехугольника (рис. 204) получим: 

Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения или Правильные многоугольники - определение и вычисление с примерами решения илиПравильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения Правильные многоугольники - определение и вычисление с примерами решения

3) Для правильного шестиугольника (рис. 205)  Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения или Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Полезно запомнить формулы, выражающие сторону Правильные многоугольники - определение и вычисление с примерами решения правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника через радиус R описанной окружности при Правильные многоугольники - определение и вычисление с примерами решения = 3, 4, 6:

Правильные многоугольники - определение и вычисление с примерами решения

Для нахождения площади правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника Правильные многоугольники - определение и вычисление с примерами решения с центром О и радиусом R описанной окружности можно найти площадь треугольника Правильные многоугольники - определение и вычисление с примерами решения по формуле Правильные многоугольники - определение и вычисление с примерами решения и умножить ее на число таких треугольников, т. е. на Правильные многоугольники - определение и вычисление с примерами решения
 

Пример:

  • Правильные многоугольники - определение и вычисление с примерами решения
  • Правильные многоугольники - определение и вычисление с примерами решения
  • Правильные многоугольники - определение и вычисление с примерами решения

Для нахождения радиуса Правильные многоугольники - определение и вычисление с примерами решения окружности, вписанной в правильный мно­гоугольник, можно использовать формулу площади описанного многоугольника Правильные многоугольники - определение и вычисление с примерами решения

Правильный треугольник

Обобщим информацию о правильном (равностороннем) треугольнике.
Запишем формулы высоты Правильные многоугольники - определение и вычисление с примерами решения площади Правильные многоугольники - определение и вычисление с примерами решения радиуса R описанной и радиуса Правильные многоугольники - определение и вычисление с примерами решения вписанной окружностей правильного треугольника АВС со стороной Правильные многоугольники - определение и вычисление с примерами решения (рис. 209):

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Из Правильные многоугольники - определение и вычисление с примерами решения где Правильные многоугольники - определение и вычисление с примерами решения, следует, что Правильные многоугольники - определение и вычисление с примерами решения

При заданной стороне Правильные многоугольники - определение и вычисление с примерами решения правильного треугольника его можно построить при помощи циркуля и линейки, используя алгоритм построения треугольника по трем сторонам.

Так как Правильные многоугольники - определение и вычисление с примерами решения Для построения описанной и вписанной оружностей правильного треугольника достаточно по- строить его медианы (высоты), точка пересечения которых будет центром искомых окружностей.

Правильный четырехугольник

Правильные многоугольники - определение и вычисление с примерами решения

Пусть сторона квадрата ABCD равна Правильные многоугольники - определение и вычисление с примерами решения — ра­диус описанной, Правильные многоугольники - определение и вычисление с примерами решения — радиус вписанной окружности (рис. 210). Диаметр его описанной окружности ра­вен диагонали АС. В свою очередь, Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения или Правильные многоугольники - определение и вычисление с примерами решения Из равнобедренного прямоугольного треугольника Правильные многоугольники - определение и вычисление с примерами решениятакже следует, что Правильные многоугольники - определение и вычисление с примерами решения Правильные многоугольники - определение и вычисление с примерами решения
Диаметр КН окружности, вписанной в квадрат, равен длине стороны квадрата, т. е. КН = АВ = а, откуда Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения [ Из прямоугольного равнобедренного треугольника АОН также следует,
что Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Для построения квадрата, вписанного в данную окружность с заданным центром, можно построить две взаимно перпендикулярные прямые, проходящие че­рез центр окружности (рис. 211). Эти прямые пересекут окружность в вершинах квадрата. Обоснуйте это утверждение. Выполните указанное построение при помощи чертежного треугольника.

Правильный шестиугольник

Рассмотрим правильный 6-угольник ABCDEF со стороной Правильные многоугольники - определение и вычисление с примерами решения вписанный в окружность с центром О и радиусом R (рис. 212). Его внутренние углы равны по 120°. Треугольник AOF равнобедренный,
так как ОА = OF = RПравильные многоугольники - определение и вычисление с примерами решенияПоэтому Правильные многоугольники - определение и вычисление с примерами решения — равносторонний, откуда Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Так как радиус Правильные многоугольники - определение и вычисление с примерами решения вписанной окружности является высотой равностороннего треугольника со сто­роной а, то  Правильные многоугольники - определение и вычисление с примерами решения

Поскольку Правильные многоугольники - определение и вычисление с примерами решения то большая (главная) диаго­наль BE правильного шестиугольника проходит через его центр О, а все три большие диагонали AD, BE и CF разбивают его на шесть равных равносторонних треугольников. Площадь правильного шестиугольника

Правильные многоугольники - определение и вычисление с примерами решения

Меньшая (малая) диагональ BD правильного шестиугольника является диагональю ромба BCDO (ВС = CD = DO = ВО – а) с углами, равными 60° и 120°. Откуда Правильные многоугольники - определение и вычисление с примерами решения Треугольник BDE является прямоугольным (Правильные многоугольники - определение и вычисление с примерами решения как опирающийся на диаметр), Правильные многоугольники - определение и вычисление с примерами решения
Кроме того, Правильные многоугольники - определение и вычисление с примерами решения а расстояния между указанными парами параллельных прямых равны Правильные многоугольники - определение и вычисление с примерами решения Докажите это самостоятельно.
Построим при помощи циркуля и линейки правильный шестиугольник, вписанный в данную окружность с радиусом R (рис. 213, а). Воспользуемся тем, что а = R, где а — сторона правильного шестиугольника. 

Правильные многоугольники - определение и вычисление с примерами решения

Одну вершину Правильные многоугольники - определение и вычисление с примерами решения шестиугольника берем на окружности произвольно. Из нее как из центра радиусом, равным радиусу R, делаем засечку на окружности и получаем вершину Правильные многоугольники - определение и вычисление с примерами решения Затем аналогично последовательно строим остальные вершины: Правильные многоугольники - определение и вычисление с примерами решения — и соединяем их отрезками. Из равенства равносторонних треугольников (Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения) следует равенство углов построенного шестиугольника Правильные многоугольники - определение и вычисление с примерами решения откуда заключаем, что он — правильный.
Для построения правильного треугольника, вписанного в данную окружность, достаточно соединить отрезками через одну вершины правильного вписанного шестиугольника (рис. 213, б). Для построения правильного 12-угольника следует разделить дуги Правильные многоугольники - определение и вычисление с примерами решения пополам (построив серединные перпендикуляры к сторонам правильного шести­угольника) и каждую из точек деления соединить отрезками с концами соответствующей стороны.
Применяя указанный способ деления дуг пополам, можно с помощью циркуля и линейки построить множество правильных многоугольников.
Так, из правильного 4-угольника можно построить правильный 8-угольник, 16-угольник, и вообще любой правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник, где Правильные многоугольники - определение и вычисление с примерами решения — целое число, большее двух.

Пример №9

В окружности с центром О проведен диаметр BD, через середину радиуса OD проведена хорда АС, перпендикулярная диаметру BD (рис. 214). Доказать, что Правильные многоугольники - определение и вычисление с примерами решения — правильный.

Правильные многоугольники - определение и вычисление с примерами решения

Доказательство:

Так как Правильные многоугольники - определение и вычисление с примерами решения то в прямоугольном треугольнике Правильные многоугольники - определение и вычисление с примерами решения. В равнобедренном треугольнике Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения Вписанный угол АВС равен половине центрального угла АОС, т. е. Правильные многоугольники - определение и вычисление с примерами решенияДиаметр, перпендикулярный хорде, делит ее пополам.
Поэтому АК = КС. Так как в треугольнике АВС высо­та ВК является и медианой, то он — равнобедренный, АВ = ВС. Отсюда Правильные многоугольники - определение и вычисление с примерами решения — равно­сторонний, т. е. правильный. Что и требовалось доказать.
Замечание. Из задачи следует второй способ построения правильного треугольника, вписанного в окружность: строится диаметр BD, через середину радиуса OD проводится хорда АС, перпендикулярная диаметру. Треугольник АВС — правильный.
 

Пример №10

Дан правильный шестиугольник ABCDEF, диагональ АС равна Правильные многоугольники - определение и вычисление с примерами решения Найти площадь шестиугольника (рис. 215).
Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Вписанный угол ACD опирается на диаметр АО, поэтому он прямой. Из прямоугольного треугольника Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения
Ответ: Правильные многоугольники - определение и вычисление с примерами решения

Нахождение длины окружности и площади круга

Длину окружности, сделанной из гибкой проволоки, можно измерить, если проволоку распрямить в отрезок. Еще древние заметили, что отношение длины любой окружности к ее диаметру есть величина постоянная: длина окружности примерно в 3 раза больше диаметра. Вы можете убедиться в этом при помощи нитки и линейки, используя в качестве окружности верхнюю кромку чашки (рис. 224).

Правильные многоугольники - определение и вычисление с примерами решения

Понятно, что периметр правильного многоугольника, вписанного в окружность, будет стремиться к длине окружности при неограниченном увеличении числа его сторон, а площадь этого многоугольника — к площади круга, ограниченного данной окружностью (рис. 225).

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения Правильные многоугольники - определение и вычисление с примерами решения

Используя этот факт, выведем уже известные вам формулы длины окружности Правильные многоугольники - определение и вычисление с примерами решения и площади круга Правильные многоугольники - определение и вычисление с примерами решения где R — радиус окружности и круга.
Вначале покажем, что отношение длины любой окружности С к ее диаметру D = 2R есть величина постоянная. Для этого рассмотрим две окружности и два правильных вписан­ных в них многоугольника с одинаковым числом сторон Правильные многоугольники - определение и вычисление с примерами решения где Правильные многоугольники - определение и вычисление с примерами решения — сторона первого, Правильные многоугольники - определение и вычисление с примерами решения— сторона второго многоугольника, Правильные многоугольники - определение и вычисление с примерами решения — их соответствующие периметры,Правильные многоугольники - определение и вычисление с примерами решения — длина первой, а Правильные многоугольники - определение и вычисление с примерами решения — длина второй описанной окружности (рис. 226).

Найдем отношение указанных периметров:

Правильные многоугольники - определение и вычисление с примерами решения

При неограниченном увеличении числа Правильные многоугольники - определение и вычисление с примерами решения периметр Правильные многоугольники - определение и вычисление с примерами решения устремится к Правильные многоугольники - определение и вычисление с примерами решения периметр Правильные многоугольники - определение и вычисление с примерами решения -к Правильные многоугольники - определение и вычисление с примерами решения, а отношение Правильные многоугольники - определение и вычисление с примерами решения — к отношению Правильные многоугольники - определение и вычисление с примерами решения и тогда Правильные многоугольники - определение и вычисление с примерами решения
Отсюда следует, что отношение длины окружности к ее диаметру, т. е. . Правильные многоугольники - определение и вычисление с примерами решения величина постоянная для любой окружности.
Это отношение обозначается буквой Правильные многоугольники - определение и вычисление с примерами решения Так как Правильные многоугольники - определение и вычисление с примерами решения то длина окружности Правильные многоугольники - определение и вычисление с примерами решения Таким образом, нами доказана следующая теорема.
 

Теорема. Длина окружности радиуса R находится по формуле Правильные многоугольники - определение и вычисление с примерами решения
 

Интересно знать. Число Правильные многоугольники - определение и вычисление с примерами решения 3,1415… — иррациональное и в десятичном виде представляет собой бесконечную непериодическую дробь. Оно было известно уже древним грекам. Еще Архимед нашел дробь Правильные многоугольники - определение и вычисление с примерами решения довольно точно приближающую число Правильные многоугольники - определение и вычисление с примерами решения Мы же для приближенных вычислений будем пользоваться в основном значением Правильные многоугольники - определение и вычисление с примерами решения
А теперь выведем формулу площади круга.
 

Теорема. Площадь круга радиуса R находится по формуле
Правильные многоугольники - определение и вычисление с примерами решения

 

Правильные многоугольники - определение и вычисление с примерами решения

Доказательство:

Рассмотрим некоторую окружность радиуса R и вписанный в нее правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник (рис. 227), площадь которого Правильные многоугольники - определение и вычисление с примерами решения где Р — его периметр, Правильные многоугольники - определение и вычисление с примерами решения — радиус вписанной окружности. При неограниченном увеличении числа Правильные многоугольники - определение и вычисление с примерами решения площадь Правильные многоугольники - определение и вычисление с примерами решения правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника устремится к площади Правильные многоугольники - определение и вычисление с примерами решения круга радиуса R, периметр Р — к длине С описанной окружности, а радиус Правильные многоугольники - определение и вычисление с примерами решения — к радиусу R (поскольку угол р устремится к нулю).
Тогда Правильные многоугольники - определение и вычисление с примерами решения устремится к Правильные многоугольники - определение и вычисление с примерами решения то есть к Правильные многоугольники - определение и вычисление с примерами решения что равно Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения
Теорема доказана.

Длина дуги окружности и площадь сектора круга

Правильные многоугольники - определение и вычисление с примерами решения Правильные многоугольники - определение и вычисление с примерами решения

Поскольку длина окружности Правильные многоугольники - определение и вычисление с примерами решения а ее градусная мера равна 360°, то длина дуги, содержащей 1°, равна Правильные многоугольники - определение и вычисление с примерами решения Тогда длина Правильные многоугольники - определение и вычисление с примерами решения дуги, содержащей Правильные многоугольники - определение и вычисление с примерами решения (рис. 228), равна Правильные многоугольники - определение и вычисление с примерами решения

 Напомним, что сектором называется часть круга, ограниченная двумя радиусами и дугой, соединяющей концы радиусов (рис. 229). Радиус круга называется радиусом сектора, указанная дуга — дугой сектора, центральный угол между радиусами, ограничивающими сектор, — углом сектора.
Так как площадь круга Правильные многоугольники - определение и вычисление с примерами решения то площадь сектора с углом в 1° равна Правильные многоугольники - определение и вычисление с примерами решения, а с углом в Правильные многоугольники - определение и вычисление с примерами решения градусов — Правильные многоугольники - определение и вычисление с примерами решения
Заметим, что Правильные многоугольники - определение и вычисление с примерами решения т. е. площадь сектора равна половине произведения длины дуги сектора на его радиус.
 

Пример №11

Пусть дана дуга окружности с радиусом 9 см, содержащая 30° (рис. 230, а). Найдем длину дуги: 

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Пример №12

Пусть угол сектора содержит 45°, а радиус равен 6 см (рис. 230, б). Найдем площадь сектора:

Правильные многоугольники - определение и вычисление с примерами решения
Замечание. При вычислении длины дуги (площади сектора) допустимы обе следующие записи:

Правильные многоугольники - определение и вычисление с примерами решения
Длина дуги и площадь сектора прямо пропорциональны градусной мере дуги и угла сектора. Поэтому длина дуги так относится к длине окружности, как градусная мера дуги относится к градусной мере окружности.
Площадь сектора так относится к площади круга, как градусная мера угла сектора относится к градусной мере полного угла, т. е. справедливы пропорции:

Правильные многоугольники - определение и вычисление с примерами решения

Замечание. В третьей пропорции Правильные многоугольники - определение и вычисление с примерами решения — это длина дуги сектора.
Данные пропорции также позволяют находить длину дуги и площадь сектора. Так, если длина окружности равна 10 см, а градусная мера ее дуги Правильные многоугольники - определение и вычисление с примерами решения откуда длина данной дуги Правильные многоугольники - определение и вычисление с примерами решения
А если площадь круга равна 12 см2 и угол сектора равен 80°, Правильные многоугольники - определение и вычисление с примерами решения откуда площадь данного сектора Правильные многоугольники - определение и вычисление с примерами решения

Пример №13

Дан сектор АОВ (рис. 231), радиус которого равен 6, а площадь — Правильные многоугольники - определение и вычисление с примерами решения. Найти длину дуги этого сектора. Ответ округлить до 0,1.

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Способ 1. Пусть Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения Так как по условию Правильные многоугольники - определение и вычисление с примерами решения то Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения Найдем длину дуги Правильные многоугольники - определение и вычисление с примерами решения
 

Способ 2. Воспользуемся пропорцией Правильные многоугольники - определение и вычисление с примерами решения

Тогда  Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения

Способ 3. Так как Правильные многоугольники - определение и вычисление с примерами решения

Ответ: 3,1.

Пример №14

Найти площадь сегмента круга, радиус которого равен 12, если градусная мера дуги этого сегмента равна 120°.

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Напомним, что сегментом называется часть круга, ограниченная хордой и дугой окружности, которая соединяет концы этой хорды.
Пусть О — центр данной окружности, Правильные многоугольники - определение и вычисление с примерами решения(рис. 232). Тогда Правильные многоугольники - определение и вычисление с примерами решения Площадь сегмента АМВ равна разности площади сектора АОВМ и площади равнобедренного треугольника АОВ.
Так как площадь сектора Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения а площадь треугольника Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения то площадь сегмента Правильные многоугольники - определение и вычисление с примерами решения
Ответ: Правильные многоугольники - определение и вычисление с примерами решения
Замечание. Площадь сегмента АКВ (см. рис. 232) можно найти как сумму площадей сектора ОАКВ и треугольника АОВ, либо как разность площади круга и площади сегмента АМВ.

Интересно знать. В 1987 г. был учрежден неофициальный праздник — день числа Правильные многоугольники - определение и вычисление с примерами решения который от­мечают любители математики 14 марта (3-й месяц, 14-е число).
Долгое время математики старались найти как можно большее число знаков числа Правильные многоугольники - определение и вычисление с примерами решения после запятой.
Легко запомнить двенадцать первых знаков числа Правильные многоугольники - определение и вычисление с примерами решения 3,14159265358… при помощи следующей считалки: «Это я знаю и помню прекрасно, но многие цифры мне лишни, напрасны», — в которой количество букв в каждом слове означает очередную цифру числа Правильные многоугольники - определение и вычисление с примерами решения «это» — 3, «я» — 1, «знаю» — 4 и т. д.

Луночки Гиппократа

Луночками Гиппократа называют серповидные фигуры, ограниченные дугами двух окружностей.

Пример №15

На отрезках АВ, AM и МВ построены полукруги с центрами в точках Правильные многоугольники - определение и вычисление с примерами решения (рис. 249). Найти площадь закрашенной части большого полукруга.

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Площадь закрашенной фигуры равна разности площадей полукруга с диаметром АВ = 2R и двух полукругов с диаметрами Правильные многоугольники - определение и вычисление с примерами решения и Правильные многоугольники - определение и вычисление с примерами решения т. е.

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Так какПравильные многоугольники - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр АВ, то NM — высота прямоугольного треугольника ANB, проведенная к гипотенузе. А высота прямоугольного треугольника, проведенная к гипотенузе, это среднее пропорциональное между проекциями катетов на гипотенузу, т. е. Правильные многоугольники - определение и вычисление с примерами решения Следовательно, Правильные многоугольники - определение и вычисление с примерами решения
Ответ: 25л.

Золотое сечение

«Золотое сечение», или «божественная пропорция», — так называют математики деление отрезка некоторой точкой на части так, что больший из полученных отрезков является средним пропорциональным (средним геометрическим) между меньшим отрезком и целым. Другими словами, больший отрезок должен так относиться к меньшему, как целый отрезок относится к большему. Если на отрезке АВ отмечена точка М и Правильные многоугольники - определение и вычисление с примерами решения то отрезок AM — среднее пропорциональное отрезков АВ и МВ. Поэтому точка М делит отрезок АВ в отношении золотого сечения.
Пусть Правильные многоугольники - определение и вычисление с примерами решения (рис. 251).
Тогда Правильные многоугольники - определение и вычисление с примерами решения откуда Правильные многоугольники - определение и вычисление с примерами решения Учитывая, что Правильные многоугольники - определение и вычисление с примерами решения получим Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Таким образом, больший отрезок AM составляет приблизительно 62 %, а меньший отрезок МВ — приблизительно 38 % всего отрезка АВ.
Число Правильные многоугольники - определение и вычисление с примерами решения — считается отношением золотого сечения. Оно примерно равно отношению 8 : 5 (рис. 252).

Правильные многоугольники - определение и вычисление с примерами решения

Золотое сечение обладает определенной гармонией, которую человек на­ходит прекрасной. Многие художественные, музыкальные, поэтические про­изведения, шедевры архитектуры содержат в своей струк­туре золотое сечение. Опытным путем установлено, что оптимальным человеку кажется прямоугольник, длина и ширина которого находятся в отношении золотого сечения. Физиологи объясняют это тем, что поле зрения человека, т. е. та часть окружающего мира, которую видит человек, представляет собой прямоугольник со сторонами, находящимися в отношении золотого сечения.

Правильные многоугольники - определение и вычисление с примерами решения

Известно, например, что в знаменитой скульптуре Венеры Милосской (рис. 253) — эталоне женской красоты — талия делит фигуру в отношении золотого сечения.
Примечателен один исторический факт. Когда информация о Венере Милосской и золотом сечении была опубликована в одном из популярных журналов начала XX в., то в магазинах поблизости женских гимназий вдруг исчезли портняжные метры. Их раскупили девушки гимназистки, чтобы проверить, насколько их фигура близка к идеалу и какой высоты каблук следует носить, чтобы к нему приблизиться.

Правильные многоугольники - определение и вычисление с примерами решения

Покажем способ деления отрезка в отношении золотого сечения при помощи циркуля и линейки. Пусть дан отрезок, равный Правильные многоугольники - определение и вычисление с примерами решения Построим прямоугольный треугольник АВС с катетами Правильные многоугольники - определение и вычисление с примерами решения и Правильные многоугольники - определение и вычисление с примерами решения (рис. 254). На гипотенузе АВ отложим отрезок ВК, равный отрезку ВС. Затем на катете АС отложим отрезок AM, равный отрезку АК.
Точка М делит отрезок АС в отношении золотого сечения, т. е. Правильные многоугольники - определение и вычисление с примерами решения Убедитесь в этом самостоятельно.

Построение правильного пятиугольника

С давних времен построению правильных многоугольников при помо­щи циркуля и линейки математики уделяли большое внимание. Древние греки умели строить правильные треугольники, четырехугольники, пятиугольники, а также правильные многоугольники, получаемые удвоением числа их сторон: 6-угольники, 8-угольники, 10-угольники и т. д. Далее дело зашло в тупик: они не могли найти способ построения правильных 7-угольников, 9-угольников, 11-угольников. И только 2000 лет спустя ве­ликий немецкий математик XVII в. Карл Гаусс решил эту математическую проблему. Будучи 19-летним юношей, он доказал, что можно построить правильный 17-угольник, а вот 7-угольник, 9-угольник, 11-угольник, 13-угольник циркулем и линейкой построить нельзя. Задача о построении правильного 17-угольника была его первым научным открытием. Несмотря на выдающиеся достижения Гаусса в области математики, этой пер­ вой своей решенной проблеме он придавал такое значение, что в конце жизни завещал изобразить на могильном камне правильный 17-угольник.

Рассмотрим правильный пятиугольник. Если в нем провести все диагонали (рис. 255), то получится звезда (звездчатый пятиугольник). Звезда была символом школы Пифагора. Замечательно то, что точки пересечения диагоналей пятиуголь­ника делят их в отношении золотого сечения:Правильные многоугольники - определение и вычисление с примерами решенияДокажем это.

Правильные многоугольники - определение и вычисление с примерами решения Правильные многоугольники - определение и вычисление с примерами решения

Так как Правильные многоугольники - определение и вычисление с примерами решения — равные равнобедренные треугольники (рис. 256), то Правильные многоугольники - определение и вычисление с примерами решенияПоскольку Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения (докажите самостоятельно), то AMDE — параллелограмм, поэтому Правильные многоугольники - определение и вычисление с примерами решения
Но ВС = ED = х как стороны пятиугольника. Из подобия треугольников АВС и ВМС (по двум углам) следует Правильные многоугольники - определение и вычисление с примерами решения или Правильные многоугольники - определение и вычисление с примерами решения Следовательно, точка М делит отрезок АС в отношении золотого сечения.
Рассмотрим задачу о построении правильно­го пятиугольника при помощи циркуля и линейки. Для построения правильного пятиугольника можно взять произвольный отрезок Правильные многоугольники - определение и вычисление с примерами решения равный диагонали правильного пятиугольника, и разде­лить его в отношении золотого сечения. Получив отрезок Правильные многоугольники - определение и вычисление с примерами решения который равен стороне правильного пятиугольника, можно легко построить правильный пятиугольник. Продолжите построение сами.

Правильные многоугольники - определение и вычисление с примерами решения

Задача о построении правильного пятиугольника равносильна построению углов, равных 36°, 72°, 108°, а также построению равнобедренного треугольника, биссектриса угла при основании которого разбивает данный треугольник на два равнобедренных. Пусть в треугольнике АВС (рис. 257) Правильные многоугольники - определение и вычисление с примерами решения — биссектриса и АВ = ВС = 1. Обозначим АС = АК = КВ = х, КС = 1 – х. Из свойства биссектрисы вытекает Правильные многоугольники - определение и вычисление с примерами решенияоткуда Правильные многоугольники - определение и вычисление с примерами решения Таким образом, точка К делит отрезок ВС в отношении золотого сечения. Из треугольника АВС по теореме косинусов

Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Отметим, что сторона АС треугольника АВС является стороной правильного десятиугольника, вписанного в окружность с радиусом, равным АВ.

Справочный материал по правильным многоугольникам

В этом параграфе вы узнаете, какие многоугольники называют правильными. Изучите свойства правильных многоугольников. Узнаете, как с помощью циркуля и линейки строить некоторые из них.

Научитесь находить радиусы вписанной и описанной окружностей правильного многоугольника, длину дуги окружности, площади сектора и сегмента круга.

Правильные многоугольники и их свойства

Определение. Многоугольник называют правильным, если у него все стороны равны и все углы равны.

С некоторыми правильными многоугольниками вы уже знакомы: равносторонний треугольник — это правильный треугольник, квадрат — это правильный четырехугольник. На рисунке 6.1 изображены правильные пятиугольник и восьмиугольник.

Ознакомимся с некоторыми свойствами, которыми обладают все правильные Правильные многоугольники - определение и вычисление с примерами решения-угольники.

Правильные многоугольники - определение и вычисление с примерами решения

Теорема 6.1. Правильный многоугольник является выпуклым многоугольником.

С доказательством этой теоремы вы можете ознакомиться на с. 61-62.

Каждый угол правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника равен Правильные многоугольники - определение и вычисление с примерами решения Действительно, поскольку сумма углов выпуклого Правильные многоугольники - определение и вычисление с примерами решения-угольника равна Правильные многоугольники - определение и вычисление с примерами решения и все углы равны, то каждый из них равен Правильные многоугольники - определение и вычисление с примерами решения

В правильном треугольнике существует точка, равноудаленная от всех его вершин и от всех его сторон. Это точка пересечения биссектрис правильного треугольника. Точка пересечения диагоналей квадрата также обладает аналогичным свойством. То, что в любом правильном многоугольнике существует точка, равноудаленная от всех его вершин и от всех его сторон, подтверждает следующая теорема.

Теорема 6.2. Любой правильный многоугольник является как вписанным в окружность, так и описанным около окружности, причем центры описанной и вписанной окружностей совпадают.

Доказательство: На рисунке 6.2 изображен правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник Правильные многоугольники - определение и вычисление с примерами решения Докажем, что в него можно вписать и около него можно описать окружности.

Проведем биссектрисы углов Правильные многоугольники - определение и вычисление с примерами решения Пусть Правильные многоугольники - определение и вычисление с примерами решения — точка их пересечения. Соединим точки Правильные многоугольники - определение и вычисление с примерами решения Поскольку в треугольниках Правильные многоугольники - определение и вычисление с примерами решения и Правильные многоугольники - определение и вычисление с примерами решения углы 2 и 3 равны, Правильные многоугольники - определение и вычисление с примерами решения — общая сторона, то эти треугольники равны по первому признаку равенства треугольников. Кроме того, углы 1 и 2 равны как половины равных углов. Отсюда треугольник Правильные многоугольники - определение и вычисление с примерами решения — равнобедренный, следовательно, равнобедренным является треугольник Правильные многоугольники - определение и вычисление с примерами решения Поэтому Правильные многоугольники - определение и вычисление с примерами решения

Соединяя точку Правильные многоугольники - определение и вычисление с примерами решения с вершинами Правильные многоугольники - определение и вычисление с примерами решения аналогично можно показать, что Правильные многоугольники - определение и вычисление с примерами решения

Таким образом, для многоугольника Правильные многоугольники - определение и вычисление с примерами решения существует точка, равноудаленная от всех его вершин. Это точка Правильные многоугольники - определение и вычисление с примерами решения — центр описанной окружности.

Поскольку равнобедренные треугольники Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения равны, то равны и их высоты, проведенные из вершины Правильные многоугольники - определение и вычисление с примерами решения Отсюда делаем вывод: точка Правильные многоугольники - определение и вычисление с примерами решения равноудалена от всех сторон многоугольника. Следовательно, точка Правильные многоугольники - определение и вычисление с примерами решения — центр вписанной окружности. Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Точку, которая является центром описанной и вписанной окружностей правильного многоугольника, называют центром правильного многоугольника.

На рисунке 6.3 изображен фрагмент правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника с центром Правильные многоугольники - определение и вычисление с примерами решения и стороной Правильные многоугольники - определение и вычисление с примерами решения длину которой обозначим Правильные многоугольники - определение и вычисление с примерами решения Угол Правильные многоугольники - определение и вычисление с примерами решения называют центральным углом правильного многоугольника. Понятно, что Правильные многоугольники - определение и вычисление с примерами решения

В равнобедренном треугольнике Правильные многоугольники - определение и вычисление с примерами решения проведем высоту Правильные многоугольники - определение и вычисление с примерами решения Тогда Правильные многоугольники - определение и вычисление с примерами решения Из треугольника Правильные многоугольники - определение и вычисление с примерами решения получаем, что

Правильные многоугольники - определение и вычисление с примерами решения

Отрезки Правильные многоугольники - определение и вычисление с примерами решения — радиусы соответственно описанной и вписанной окружностей правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника. Если длины этих радиусов обозначить Правильные многоугольники - определение и вычисление с примерами решения соответственно, то полученные результаты можно записать в виде формул:

Правильные многоугольники - определение и вычисление с примерами решения

Подставив в эти формулы вместо Правильные многоугольники - определение и вычисление с примерами решения числа 3, 4, 6, получим формулы для нахождения радиусов описанной и вписанной окружностей для правильных треугольника, четырехугольника и шестиугольника со стороной Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Из полученных результатов следует, что сторона правильного шестиугольника равна радиусу его описанной окружности. Отсюда получаем алгоритм построения правильного шестиугольника: от произвольной точки Правильные многоугольники - определение и вычисление с примерами решения окружности надо последовательно откладывать хорды, равные радиусу (рис. 6.4). Таким образом получаем вершины правильного шестиугольника.

Соединив через одну вершины правильного шестиугольника, получим правильный треугольник (рис. 6.5).

Правильные многоугольники - определение и вычисление с примерами решения

Для построения правильного четырехугольника достаточно в окружности провести два перпендикулярных диаметра Правильные многоугольники - определение и вычисление с примерами решения (рис. 6.6). Тогда четырехугольник Правильные многоугольники - определение и вычисление с примерами решения — квадрат (докажите это самостоятельно).

Если уже построен правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник, то легко построить правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник. Для этого надо найти середины всех сторон Правильные многоугольники - определение и вычисление с примерами решения-угольника и провести радиусы описанной окружности через полученные точки. Тогда концы радиусов и вершины данного Правильные многоугольники - определение и вычисление с примерами решения-угольника будут вершинами правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника. На рисунках 6.7 и 6.8 показано построение правильных 8-угольника и 12-угольника.

Правильные многоугольники - определение и вычисление с примерами решения

Пример №16

Существует ли правильный многоугольник, угол которого равен: Правильные многоугольники - определение и вычисление с примерами решения В случае утвердительного ответа укажите вид многоугольника.

Решение:

1) Пусть Правильные многоугольники - определение и вычисление с примерами решения — количество сторон искомого правильного многоугольника. С одной стороны, сумма его углов равна Правильные многоугольники - определение и вычисление с примерами решения

С другой стороны, эта сумма равна Правильные многоугольники - определение и вычисление с примерами решения Следовательно, Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения Поскольку Правильные многоугольники - определение и вычисление с примерами решения должно быть натуральным числом, то такого правильного многоугольника не существует.

2) Имеем: Правильные многоугольники - определение и вычисление с примерами решения

Ответ: 1) не существует; 2) существует, это — стодвадцатиугольник.

Пример №17

В окружность вписан правильный треугольник со стороной 18 см. Найдите сторону правильного шестиугольника, описанного около этой окружности.

Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Радиус окружности, описанной около правильного треугольника, вычисляют по формуле Правильные многоугольники - определение и вычисление с примерами решения где Правильные многоугольники - определение и вычисление с примерами решения — длина стороны треугольника (рис. 6.9). Следовательно,

Правильные многоугольники - определение и вычисление с примерами решения (см)

По условию радиус окружности, вписанной в правильный шестиугольник, равен радиусу окружности, описанной около правильного треугольника, то есть Правильные многоугольники - определение и вычисление с примерами решения см. Поскольку Правильные многоугольники - определение и вычисление с примерами решения — длина стороны правильного шестиугольника, то

Правильные многоугольники - определение и вычисление с примерами решения

Ответ: 12 см. Правильные многоугольники - определение и вычисление с примерами решения

О построении правильных n-угольников

Докажем, что любой правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник является выпуклым многоугольником. Для этого достаточно показать, что в любом многоугольнике есть хотя бы один угол, меньший Правильные многоугольники - определение и вычисление с примерами решения Тогда из того, что в правильном Правильные многоугольники - определение и вычисление с примерами решения-угольнике все углы равны, будет следовать, что каждый из них меньше Правильные многоугольники - определение и вычисление с примерами решения то есть многоугольник будет выпуклым.

Рассмотрим произвольный многоугольник и прямую Правильные многоугольники - определение и вычисление с примерами решения не имеющую с ним общих точек (рис. 6.11). Из каждой вершины многоугольника опустим перпендикуляр на прямую Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Сравнив длины этих перпендикуляров, мы сможем выбрать вершину многоугольника, наименее удаленную от прямой Правильные многоугольники - определение и вычисление с примерами решения (если таких вершин несколько, то выберем любую из них). Пусть этим свойством обладает вершина Правильные многоугольники - определение и вычисление с примерами решения (рис. 6.11). Через точку Правильные многоугольники - определение и вычисление с примерами решения проведем прямую Правильные многоугольники - определение и вычисление с примерами решения параллельную прямой Правильные многоугольники - определение и вычисление с примерами решенияТогда угол Правильные многоугольники - определение и вычисление с примерами решения многоугольника лежит в одной полуплоскости относительно прямой Правильные многоугольники - определение и вычисление с примерами решения Следовательно, Правильные многоугольники - определение и вычисление с примерами решения

Вы умеете с помощью циркуля и линейки строить правильный 4-угольник, а следовательно, и 8-угольник, 16-угольник, 32-угольник, то есть любой Правильные многоугольники - определение и вычисление с примерами решения-угольник (Правильные многоугольники - определение и вычисление с примерами решения — натуральное число, Правильные многоугольники - определение и вычисление с примерами решения Умение строить правильный треугольник позволяет построить следующую цепочку из правильных многоугольников: 6-угольник, 12-угольник, 24-угольник и т. д., то есть любой Правильные многоугольники - определение и вычисление с примерами решения -угольник Правильные многоугольники - определение и вычисление с примерами решения — натуральное число).

Задачу построения правильных многоугольников с помощью циркуля и линейки изучали еще древнегреческие геометры.

В частности, помимо указанных выше многоугольников, они умели строить правильные 5-угольник и 15-угольник — задачи довольно непростые.

Древние ученые, умевшие строить любой из правильных Правильные многоугольники - определение и вычисление с примерами решения-угольников, где Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения пытались решить эту задачу и для Правильные многоугольники - определение и вычисление с примерами решения Им это не удалось. Вообще, более двух тысяч лет математики не могли продвинуться в решении этой проблемы. Лишь в 1796 г. великий немецкий математик Карл Фридрих Гаусс смог с помощью циркуля и линейки построить правильный 17-угольник. В 1801 г.

Гаусс доказал, что циркулем и линейкой можно построить правильный Правильные многоугольники - определение и вычисление с примерами решения-угольник тогда и только тогда, когда Правильные многоугольники - определение и вычисление с примерами решенияПравильные многоугольники - определение и вычисление с примерами решения — целое неотрицательное число, Правильные многоугольники - определение и вычисление с примерами решения — разные простые числа вида Правильные многоугольники - определение и вычисление с примерами решения где Правильные многоугольники - определение и вычисление с примерами решения — целое неотрицательное число, которые называют простыми числами ФермаПравильные многоугольники - определение и вычисление с примерами решения Сейчас известны лишь пять простых чисел Ферма: 3, 5, 17, 257, 65 537.

Гаусс придавал своему открытию столь большое значение, что завещал изобразить 17-угольник на своем надгробии. На могильной плите Гаусса этого рисунка нет, однако памятник Гауссу в Браун-швейге стоит на семнадцатиугольном постаменте.

Длина окружности. Площадь круга

На рисунке 7.1 изображены правильные 4-угольник, 8-угольник и 16-угольник, вписанные в окружность.

Мы видим, что при увеличении количества сторон правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника его периметр Правильные многоугольники - определение и вычисление с примерами решения все меньше и меньше отличается от длины Правильные многоугольники - определение и вычисление с примерами решения описанной окружности.

Так, для нашего примера можно записать:

Правильные многоугольники - определение и вычисление с примерами решения

При неограниченном увеличении количества сторон правильного многоугольника его периметр будет как угодно мало отличаться от длины окружности. Это означает, что разность Правильные многоугольники - определение и вычисление с примерами решения можно сделать меньшей, чем, например, Правильные многоугольники - определение и вычисление с примерами решения и вообще меньшей, чем любое положительное число.

Правильные многоугольники - определение и вычисление с примерами решения Рассмотрим два правильных Правильные многоугольники - определение и вычисление с примерами решения-угольника со сторонами Правильные многоугольники - определение и вычисление с примерами решения вписанных в окружности, радиусы которых равны Правильные многоугольники - определение и вычисление с примерами решения соответственно (рис. 7.2). Тогда их периметры Правильные многоугольники - определение и вычисление с примерами решения можно вычислить по формулам

Правильные многоугольники - определение и вычисление с примерами решения

Отсюда

Правильные многоугольники - определение и вычисление с примерами решения

Это равенство справедливо при любом значении Правильные многоугольники - определение и вычисление с примерами решения — натуральное число, Правильные многоугольники - определение и вычисление с примерами решения При неограниченном увеличении значения Правильные многоугольники - определение и вычисление с примерами решения периметры Правильные многоугольники - определение и вычисление с примерами решениясоответственно будут сколь угодно мало отличаться от длин Правильные многоугольники - определение и вычисление с примерами решения описанных окружностей. Тогда при неограниченном увеличении Правильные многоугольники - определение и вычисление с примерами решения отношение Правильные многоугольники - определение и вычисление с примерами решения будет сколь угодно мало отличаться от отношения Правильные многоугольники - определение и вычисление с примерами решения С учетом равенства Правильные многоугольники - определение и вычисление с примерами решения приходим к выводу, что число Правильные многоугольники - определение и вычисление с примерами решения сколь угодно мало отличается от числа Правильные многоугольники - определение и вычисление с примерами решения

А это возможно только тогда, когда Правильные многоугольники - определение и вычисление с примерами решения

Последнее равенство означает, что для всех окружностей отношение длины окружности к диаметру является одним и тем же числом.

Из курса математики 6 класса вы знаете, что это число принято обозначать греческой буквой Правильные многоугольники - определение и вычисление с примерами решения (читают: «пи»).

Из равенства Правильные многоугольники - определение и вычисление с примерами решения я получаем формулу для вычисления длины окружности:

Правильные многоугольники - определение и вычисление с примерами решения

Число Правильные многоугольники - определение и вычисление с примерами решения иррациональное, следовательно, его невозможно представить в виде конечной десятичной дроби. Обычно при решении задач в качестве приближенного значения Правильные многоугольники - определение и вычисление с примерами решения принимают число 3,14.

Великий древнегреческий ученый Архимед (III в. до н. э.), выразив через диаметр описанной окружности периметр правильного 96-угольника, установил, что Правильные многоугольники - определение и вычисление с примерами решения Отсюда и следует, что Правильные многоугольники - определение и вычисление с примерами решения

С помощью современных компьютеров и специальных программ можно вычислить число Правильные многоугольники - определение и вычисление с примерами решения с огромной точностью. Приведем запись числа Правильные многоугольники - определение и вычисление с примерами решения с 47 цифрами после запятой:

Правильные многоугольники - определение и вычисление с примерами решения 3,14159265358979323846264338327950288419716939937…. В 1989 г. число Правильные многоугольники - определение и вычисление с примерами решения вычислили с точностью до 1 011 196 691 цифры после запятой. Этот факт был занесен в Книгу рекордов Гиннесса. Само число в книге не приведено, так как для этого понадобилось бы более тысячи страниц. В 2017 г. уже было вычислено более 22 триллионов знаков числа Правильные многоугольники - определение и вычисление с примерами решения

Найдем формулу для вычисления длины дуги окружности с градусной мерой Правильные многоугольники - определение и вычисление с примерами решения Поскольку градусная мера всей окружности равна Правильные многоугольники - определение и вычисление с примерами решения то длина дуги в Правильные многоугольники - определение и вычисление с примерами решения равна Правильные многоугольники - определение и вычисление с примерами решения Тогда длину Правильные многоугольники - определение и вычисление с примерами решения дуги в Правильные многоугольники - определение и вычисление с примерами решения вычисляют по формуле

Правильные многоугольники - определение и вычисление с примерами решения

Выведем формулу для вычисления площади круга.

Обратимся снова к рисунку 7.1. Видим, что при увеличении количества сторон правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника его площадь Правильные многоугольники - определение и вычисление с примерами решения все меньше и меньше отличается от площади Правильные многоугольники - определение и вычисление с примерами решения круга. При неограниченном увеличении количества сторон его площадь стремится к площади круга.

Правильные многоугольники - определение и вычисление с примерами решения

На рисунке 7.3 изображен фрагмент правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника с центром в точке Правильные многоугольники - определение и вычисление с примерами решения со стороной Правильные многоугольники - определение и вычисление с примерами решения и радиусом описанной окружности, равным Правильные многоугольники - определение и вычисление с примерами решения Опустим перпендикуляр Правильные многоугольники - определение и вычисление с примерами решения на сторону Правильные многоугольники - определение и вычисление с примерами решения Имеем:

Правильные многоугольники - определение и вычисление с примерами решения

Поскольку радиусы, проведенные в вершины правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника, разбивают его на Правильные многоугольники - определение и вычисление с примерами решения равных треугольников, то площадь Правильные многоугольники - определение и вычисление с примерами решения-угольника Правильные многоугольники - определение и вычисление с примерами решения раз больше площади треугольника Правильные многоугольники - определение и вычисление с примерами решения Тогда Правильные многоугольники - определение и вычисление с примерами решения

Отсюда

Правильные многоугольники - определение и вычисление с примерами решения где Правильные многоугольники - определение и вычисление с примерами решения — периметр данного правильного Правильные многоугольники - определение и вычисление с примерами решения-угольника.

При неограниченном увеличении значения Правильные многоугольники - определение и вычисление с примерами решения величина Правильные многоугольники - определение и вычисление с примерами решения будет сколь угодно мало отличаться от Правильные многоугольники - определение и вычисление с примерами решения а следовательно, Правильные многоугольники - определение и вычисление с примерами решения будет стремиться к 1. Периметр Правильные многоугольники - определение и вычисление с примерами решения будет стремиться к длине Правильные многоугольники - определение и вычисление с примерами решения окружности, а площадь Правильные многоугольники - определение и вычисление с примерами решения — к площади Правильные многоугольники - определение и вычисление с примерами решения круга. Тогда с учетом равенства Правильные многоугольники - определение и вычисление с примерами решения можно записать: Правильные многоугольники - определение и вычисление с примерами решения

Из этого равенства получаем формулу для нахождения площади круга:

Правильные многоугольники - определение и вычисление с примерами решения

На рисунке 7.4 радиусы Правильные многоугольники - определение и вычисление с примерами решения делят круг на две части, закрашенные разными цветами. Каждую из этих частей вместе с радиусами Правильные многоугольники - определение и вычисление с примерами решенияназывают круговым сектором или просто сектором.

Понятно, что круг радиуса Правильные многоугольники - определение и вычисление с примерами решения можно разделить на 360 равных секторов, каждый из которых будет содержать дугу в Правильные многоугольники - определение и вычисление с примерами решения Площадь Правильные многоугольники - определение и вычисление с примерами решения такого сектора равна.Тогда площадь Правильные многоугольники - определение и вычисление с примерами решения сектора, содержащего дугу окружности в Правильные многоугольники - определение и вычисление с примерами решения вычисляют по формуле:

Правильные многоугольники - определение и вычисление с примерами решения

На рисунке 7.5 хорда Правильные многоугольники - определение и вычисление с примерами решения делит круг на две части, закрашенные разными цветами. Каждую из этих частей вместе с хордой Правильные многоугольники - определение и вычисление с примерами решения называют круговым сегментом или просто сегментом. Хорду Правильные многоугольники - определение и вычисление с примерами решения при этом называют основанием сегмента.

Правильные многоугольники - определение и вычисление с примерами решения Чтобы найти площадь сегмента, закрашенного розовым цветом (рис. 7.6), надо из площади сектора, содержащего хорду Правильные многоугольники - определение и вычисление с примерами решения вычесть площадь треугольника Правильные многоугольники - определение и вычисление с примерами решения (точка Правильные многоугольники - определение и вычисление с примерами решения — центр круга). Чтобы найти площадь сегмента, закрашенного голубым цветом, надо к площади сектора, не содержащего хорду Правильные многоугольники - определение и вычисление с примерами решения прибавить площадь треугольника Правильные многоугольники - определение и вычисление с примерами решения

Если хорда Правильные многоугольники - определение и вычисление с примерами решения является диаметром круга, то она делит круг на два сегмента, которые называют полукругами. Площадь Правильные многоугольники - определение и вычисление с примерами решения полукруга вычисляют по формуле Правильные многоугольники - определение и вычисление с примерами решения где Правильные многоугольники - определение и вычисление с примерами решения — радиус круга.

Пример №18

Длина дуги окружности, радиус которой 25 см, равна Правильные многоугольники - определение и вычисление с примерами решения см. Найдите градусную меру дуги.

Решение:

Из формулы Правильные многоугольники - определение и вычисление с примерами решения получаем Правильные многоугольники - определение и вычисление с примерами решения Следовательно искомая градусная мера Правильные многоугольники - определение и вычисление с примерами решения

Ответ: Правильные многоугольники - определение и вычисление с примерами решения

Пример №19

В окружность с центром Правильные многоугольники - определение и вычисление с примерами решения радиус которой равен 8 см, вписан правильный восьмиугольник Правильные многоугольники - определение и вычисление с примерами решения (рис. 7.7). Найдите площади сектора и сегмента, содержащих дугу Правильные многоугольники - определение и вычисление с примерами решения Правильные многоугольники - определение и вычисление с примерами решения

Решение:

Угол Правильные многоугольники - определение и вычисление с примерами решения — центральный угол правильного восьмиугольника, поэтому Правильные многоугольники - определение и вычисление с примерами решения

Тогда искомая площадь сектора равна Правильные многоугольники - определение и вычисление с примерами решения площадь сегмента:

Правильные многоугольники - определение и вычисление с примерами решения

Ответ: Правильные многоугольники - определение и вычисление с примерами решения

Справочный материал

Правильный многоугольник

Многоугольник называют правильным, если у него все стороны равны и все углы равны.

Свойства правильного многоугольника

Правильный многоугольник является выпуклым многоугольником.

Любой правильный многоугольник является как вписанным в окружность, так и описанным около окружности, причем центры описанной и вписанной окружностей совпадают.

Формулы для нахождения радиусов описанной и вписанной окружностей правильного многоугольника

Правильные многоугольники - определение и вычисление с примерами решения

Длина окружности

Правильные многоугольники - определение и вычисление с примерами решения

Длина дуги окружности в Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

Площадь круга

Правильные многоугольники - определение и вычисление с примерами решения

Площадь сектора, содержащего дугу окружности в Правильные многоугольники - определение и вычисление с примерами решения

Правильные многоугольники - определение и вычисление с примерами решения

  • Вписанные и описанные многоугольники
  • Площадь прямоугольника
  • Объем пространственных фигур
  • Объёмы поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Многоугольник
  • Площадь многоугольника


Download Article


Download Article

A regular polygon is a 2-dimensional convex figure with congruent sides and angles equal in measure.[1]
Many polygons, such as quadrilaterals or triangles have simple formulas for finding their areas, but if you’re working with a polygon that has more than four sides, then your best bet may be to use a formula that uses the shape’s apothem[2]
and perimeter. With a little bit of effort, you can find the area of regular polygons in just a few minutes.

  1. Image titled Find the Area of Regular Polygons Step 1

    1

    Calculate the perimeter. The perimeter is the combined length of the outline of any two-dimensional figure. For a regular polygon, it can be calculated by multiplying the length of one side by the number of sides (n).[3]

  2. Image titled Find the Area of Regular Polygons Step 2

    2

    Determine the apothem. The apothem of a regular polygon is the shortest distance from the center point to one of the sides, creating a right angle. This is a little trickier to calculate than the perimeter.[4]

    • The formula for calculating the length of the apothem is this: the length of the side (s) divided by 2 times the tangent (tan) of 180 degrees divided by the number of sides (n).

    Advertisement

  3. Image titled Find the Area of Regular Polygons Step 3

    3

    Know the correct formula. The area of any regular polygon is given by the formula: Area = (a x p)/2, where a is the length of the apothem and p is the perimeter of the polygon.

  4. Image titled Find the Area of Regular Polygons Step 4

    4

    Plug the values of a and p in the formula and get the area. As an example, let’s use a hexagon (6 sides) with a side (s) length of 10.[5]

    • The perimeter is 6 x 10 (n x s), equal to 60 (so p = 60).
    • The apothem is calculated by its own formula, by plugging in 6 and 10 for n and s. The result of 2tan(180/6) is 1.1547, and then 10 divided by 1.1547 is equal to 8.66.
    • The area of the polygon is Area = a x p / 2, or 8.66 multiplied by 60 divided by 2. The solution is an area of 259.8 units.
    • Note as well, there are no parenthesis in the “Area” equation, so 8.66 divided by 2 multiplied by 60, will give you the same result, just as 60 divided by 2 multiplied by 8.66 will give you the same result.
  5. Advertisement

  1. Image titled Find the Area of Regular Polygons Step 5

    1

    Understand that a regular polygon can be thought of as a collection of triangles. Each side represents the base of a triangle, and there are as many triangles in the polygon as there are sides. Each of the triangles are equal in base length, height, and area.[6]

  2. Image titled Find the Area of Regular Polygons Step 6

    2

    Remember the formula for the area of a triangle. The area of any triangle is 1/2 times the length of the base (which, in the polygon, is the length of a side) multiplied by the height (which is the same as the apothem in regular polygon).[7]

  3. Image titled Find the Area of Regular Polygons Step 7

    3

    See the similarities. Again, the formula for a regular polygon is 1/2 times the apothem multiplied by the perimeter. The perimeter is just the length of one side multiplied the by the number of sides (n); for a regular polygon, n also represents the number of triangles that make up the figure. The formula, then, is nothing more than the area of a triangle multiplied by the number of triangles in the polygon.[8]

  4. Advertisement

Add New Question

  • Question

    How do I find the perimeter of a regular polygon with one side being 5-2x and another being -4x+9?

    Community Answer

    Since a regular polygon has congruent sides (every side is equal to each other) you set up the equation 5-2x = -4x+9 then you solve for “x”. After solving for “x”, you substitute the answer you got from “x” back into the one of the expressions from one of the sides. You should get the answer of how many units one of the sides is. After that, just multiply that answer by how many sides the polygon has to get your perimeter.

  • Question

    How do I find the perimeter of a nonagon with area of 28.8 and side length of 21?

    Community Answer

    The perimeter equals the side length times the number of sides. In this case, multiply 21 by 9 and you will get a perimeter of 189.

  • Question

    What is the area of a polygon with sides of 12m, 11m, 3m, and 3m?

    Community Answer

    Since the given measurements of the sides best represents a trapezoid, you use the area of a trapezoid equation A=h*((b1+b2)*0.5) where A is the area, h is the height of the trapezoid, and where b1 is the top base and b2 is the bottom base. To find the height, you subtract b2 by b1, then divide it, then substitute that answer into “a” of the Pythagorean theorem a^2+b^2=c^2, where “c” equals the length of the side of your trapezoid which in this case is 3m. You solve for b in that equation to get your height. Once you got the measurement of the height of the trapezoid, you use the area of a trapezoid equation and substitute your answers in it to get your area.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • If the drawing of your polygon has been separated into triangles, and one triangle’s area is labeled, then you do not need to know the apothem. Just take the area of that one triangle, and multiply by the number of sides in the original polygon.

Advertisement

Area Help

References

About This Article

Article SummaryX

To find the area of regular polygons, use the formula: area = (ap)/2, where a is the apothem and p is the perimeter. To find the apothem, divide the length of one side by 2 times the tangent of 180 degrees divided by the number of sides. To find the perimeter, multiply the length of one side by the total number of sides. Once you’ve found the apothem and the perimeter, plug them into the formula for area and solve. If you want to learn more about how finding the apothem works for calculating the area, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 804,495 times.

Reader Success Stories

  • Astxrism

    “Thank you, this really helped me understand how the formula was actually created for my geometry test because I…” more

Did this article help you?

Найдём площадь правильного многоугольника через радиусы вписанной и описанной окружностей и через его сторону.

Любой правильный многоугольник вписан в окружность и описан около окружности. Центры вписанной и описанной окружностей совпадают и называются центром правильного многоугольника.

ploshchad-pravilnogo-mnogougolnikaСоединив центр правильного n-угольника

    [{A_1}{A_2}{A_3}{A_4}...{A_{n - 1}}{A_n}]

со всеми его вершинами, получим n равнобедренных треугольников.

Основание каждого такого треугольника равно стороне многоугольника, боковые стороны равны радиусу описанной около многоугольника окружности угол при вершине — центральному углу правильного многоугольника

    [{A_1}{A_2} = a,]

    [O{A_1} = O{A_2} = R,]

    [angle {A_1}O{A_2} = frac{{{{360}^o}}}{n}]

Так как площадь треугольника равна половине произведения его сторон на синус угла между ними, 

    [{S_{Delta {A_1}O{A_2}}} = frac{1}{2} cdot {A_1}O cdot {A_2}O cdot sin angle {A_1}O{A_2}.]

Отсюда

    [{S_{Delta {A_1}O{A_2}}} = frac{1}{2} cdot {R^2} cdot sin frac{{{{360}^o}}}{n}.]

Поскольку многоугольник состоит из n таких треугольников, формула площади правильного многоугольника через радиус описанной окружности:

    [S = frac{1}{2} cdot {R^2} cdot n cdot sin frac{{{{360}^o}}}{n}.]

ploshchad-pravilnogo-mnogougolnika-formulaПроведём в треугольнике A1OA2 высоту OF. Её длина равна радиусу вписанной в правильный n-угольник окружности:

    [OF = r.]

По свойству равнобедренного треугольника OF является также его биссектрисой и медианой:

    [angle {A_1}OF = frac{1}{2}angle {A_1}O{A_2} = frac{1}{2} cdot frac{{{{360}^o}}}{n} = frac{{{{180}^o}}}{n},]

    [{A_1}F = frac{1}{2}{A_1}{A_2}.]

Из прямоугольного треугольника A1OF по определению тангенса

    [tgangle {A_1}OF = frac{{{A_1}F}}{{OF}},]

откуда

    [{A_1}F = OF cdot tgangle {A_1}OF = r cdot tgfrac{{{{180}^o}}}{n}.]

Так как площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне,

    [{S_{Delta {A_1}O{A_2}}} = frac{1}{2} cdot {A_1}{A_2} cdot OF = {A_1}Fcdot OF,]

    [{S_{Delta {A_1}O{A_2}}} = r cdot tgfrac{{{{180}^o}}}{n} cdot r = {r^2} cdot tgfrac{{{{180}^o}}}{n}.]

Площадь

    [{A_1}{A_2}{A_3}{A_4}...{A_{n - 1}}{A_n}]

равна сумме n таких площадей.

Таким образом, формула площади правильного многоугольника через радиус вписанной окружности:

    [S = {r^2} cdot n cdot tgfrac{{{{180}^o}}}{n}.]

Из треугольника A1OF

    [OF = frac{{{A_1}F}}{{tgangle {A_1}OF}} = frac{{frac{1}{2}{A_1}{A_2}}}{{tgangle {A_1}OF}} = frac{a}{{2tgfrac{{{{180}^o}}}{n}}}.]

Следовательно,

    [{S_{Delta {A_1}O{A_2}}} = {A_1}F cdot OF = frac{1}{2}a cdot frac{a}{{2tgfrac{{{{180}^o}}}{n}}} = frac{{{a^2}}}{{4tgfrac{{{{180}^o}}}{n}}}.]

Поскольку многоугольник состоит из n равных треугольников, формула площади правильного многоугольника через его сторону:

    [S = frac{{{a^2} cdot n}}{{4tgfrac{{{{180}^o}}}{n}}}.]

Добавить комментарий