Пошаговое построение сечения шестиугольной призмы
В этой статье приведено несколько примеров пошагового построения сечения правильной шестиугольной призмы методом следов. Иногда к методу следов был взят в помощь аксиоматический метод. Я старалась избегать пользоваться методом внутреннего проецирования намеренно, чтобы показать построение именно методом следов.
Задача 1.
Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Задача 1. Дано.
Шаг 1. Проведем прямую , принадлежащую плоскости сечения. Благодаря тому, что точки и лежат в основании призмы, прямая также принадлежит плоскости основания, а значит, будет пересекаться с другими прямыми, также лежащими в этой плоскости. Тогда можно провести прямую , и определить точку пересечения и – . Точка принадлежит плоскости грани , поскольку прямая принадлежит ей.
Задача 1. Шаг 1.
Шаг 2. Точки и можно соединить прямой. Прямая пересечет ребро в точке . Проводим прямую в плоскости основания и находим ее пересечение с прямой – точку .
Задача 1. Шаг 2.
Шаг 3. Через точки и проводим прямую. Она принадлежит плоскости грани , поэтому обязательно пересечется с прямой этой плоскости – в точке . Точка лежит “под” призмой, ниже ее основания. Точка , благодаря принадлежности прямой , также принадлежит и плоскости грани , а в этой плоскости у нас имеется точка – точка .
Задача 1. Шаг 3.
Шаг 4. Следовательно, можно соединить точки и прямой. Эта прямая пересечет ребро в точке .
Задача 1. Шаг 4.
Шаг 5. Точка принадлежит прямой , а следовательно, лежит в плоскости грани , таким образом, ее можно соединить с точкой этой же плоскости прямой . Эта прямая пересечет ребро в точке . Для дальнейшего построения нам нужны точки в плоскости верхней грани призмы. Добудем их. Продлим прямую до пересечения с прямой . Отметим точку .
Задача 1. Шаг 5.
Шаг 6. Проведем прямую , принадлежащую грани , и найдем точку ее пересечения с прямой – точку . Тогда точки и принадлежат плоскости верхней грани (за счет принадлежности прямым этой плоскости) и их можно соединять прямой.
Задача 1. Шаг 6.
Шаг 7. Находим точки пересечения прямой с ребрами и – точки и .
Задача 1. Шаг 7.
Шаг 8. Соединяем все полученные точки отрезками.
Задача 1. Шаг 8.
Окончательный вид сечения:
Окончание построения
Задача 2.
Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Задача 2. Дано
Шаг 1. Проведем прямую . Она принадлежит секущей плоскости. Также проведем проекцию этой прямой на плоскость нижнего основания призмы – прямую . Точка их пересечения одновременно принадлежит секущей плоскости и плоскости нижнего основания призмы. Обозначим ее .
Задача 2. Шаг 1.
Шаг 2. Аналогично поступим с точками и : проводим прямую и ее проекцию в плоскости нижнего основания. Их пересечение – точка секущей плоскости , одновременно лежащая в нижнем основании.
Задача 2. Шаг 2.
Шаг 3. Имея две точки в плоскости нижнего основания, проведем через них прямую , точки которой принадлежат секущей плоскости.
Проведем прямую . Она лежит в плоскости основания, но одновременно – в плоскости боковой грани, поэтому ее точки принадлежат этой боковой грани. Точка пересечения прямых и , таким образом, принадлежит плоскости боковой грани призмы и плоскости сечения.
Задача 2. Шаг 3.
Шаг 4. Проводим прямую в плоскости боковой грани и отыскиваем точку пересечения ею ребра – точку .
Осталось немного: найти точку плоскости сечения на ребре , и пару точек в плоскости основания.
Задача 2. Шаг 4.
Шаг 5. Проведем прямые и в плоскости основания. Они пересекут прямую секущей плоскости в точках и .
Задача 2. Шаг 5.
Шаг 6. Точки и принадлежат плоскости грани , проведем через них прямую. Найдем точку, где эта прямая пересечет ребро – точку . Точки и лежат в плоскости грани . Проводим через них прямую и находим точку пересечения этой прямой с ребром – .
Задача 2. Шаг 6.
Шаг 7. Соединяем точки отрезками.
Задача 2. Шаг 7.
Окончательный вид построенного сечения:
Окончательный вид построенного сечения
Задача 3.
Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Задача 3. Дано
Шаг 1. Проводим прямую секущей плоскости, а также ее проекцию в плоскости основания . Прямая принадлежит плоскости основания и пересечет прямую в точке . Заметим, что точка не является точкой секущей плоскости.
Задача 3. Шаг 1.
Шаг 2. Из точки проводим перпендикуляр к плоскости основания (к прямой ), его пересечение с прямой – точка – принадлежит секущей плоскости, а также плоскости грани .
Задача 3. Шаг 2.
Шаг 3. Соединим точки и . Прямая пересечет ребро призмы в точке .
Задача 3. Шаг 3.
Шаг 4. Заполучив точку , можем провести отрезок . Вот тут-то нам и понадобится аксиоматический метод. Так как грань параллельна грани , то плоскость рассечет ее по прямой, которая будет параллельна . Вот и проведем через такую параллельную прямой прямую. Она пересечет ребро в точке .
Задача 3. Шаг 4.
Шаг 5. Проведем также через точку прямую, параллельную прямой . Это можно сделать, так как грань параллельна грани . Прямая эта пересечет ребро в точке .
Задача 3. Шаг 5.
Шаг 6. Соединяем точки отрезками.
Задача 3. Шаг 6.
Окончательный вид:
Задача 3. Окончательный вид
Задача 4.
Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Задача 4. Дано
Шаг 1. Через точки и проводим прямую секущей плоскости. Также проведем проекции этой прямой на верхнее и нижнее основание – на верхнее, и – на нижнее. Точки пересечения прямой с проекциями – это точки прокола данной прямой оснований призмы. Верхнее основание прямая прошьет в точке , а нижнее – в точке . Таким образом, мы заполучили точки секущей плоскости в плоскостях верхнего и нижнего оснований.
Задача 4. Шаг 1.
Шаг 2. Точки и принадлежат одной плоскости, проводим через них прямую. Эта прямая даст нам две точки: точку , в которой она пересечет ребро , и точку , в которой она пересечет ребро .
Шаг 3. Приобретя точку в грани , проведем прямую . Она пересечет ребро в точке .
Задача 4. Шаги 2-3.
Шаг 4. Проведем через точку в плоскости основания призмы прямую, параллельную прямой (или можно провести через точки и ). Эта прямая пересечет ребро в точке .
Задача 4. Шаг 4.
Шаг 5. Соединяем точки отрезками.
Задача 4. Шаг 5.
Окончательный вид:
Окончательный вид сечения
Как найти площадь сечения призмы
Призма — это многогранник, основанием которого служат равные многоугольники, боковыми гранями — параллелограммы. Для того чтобы найти площадь сечения призмы, необходимо знать, какое сечение рассматривается в задании. Различают перпендикулярное и диагональное сечение.
Инструкция
Способ расчета площади сечения также зависит от данных, которые уже имеются в задаче. Кроме этого, решение определяется тем, что лежит в основании призмы. Если необходимо найти диагональное сечение призмы, найдите длину диагонали, которая равна корню из суммы (основания сторон в квадрате). Например, если основания сторон прямоугольника равны 3 см и 4 см, соответственно, длина диагонали равна корню из (4х4+3х3)= 5 см. Площадь диагонального сечения найдите по формуле: диагональ основания умножить на высоту.
Если в основании призмы находится треугольник, для вычисления площади сечения призмы используйте формулу: 1/2 часть основания треугольника умножить на высоту.
В случае, если в основании находится круг, площадь сечения призмы найдите умножением числа «пи» на радиус заданной фигуры в квадрате.
Различают следующие виды призм — правильные и прямые. Если необходимо найти сечение правильной призмы, вам нужно знать длину только одной из сторон многоугольника, ведь в основании лежит квадрат, у которого все стороны равны. Найдите диагональ квадрата, которая равна произведению его стороны на корень из двух. После этого перемножив диагональ и высоту, вы получите площадь сечения правильной призмы.
Призма имеет свои свойства. Так, площадь боковой поверхности произвольной призмы вычисляется по формуле, где — периметр перпендикулярного сечения, — длина бокового ребра. При этом перпендикулярное сечение перпендикулярно ко всем боковым ребрам призмы, а его углы — это линейные углы двугранных углов при соответствующих боковых ребрах. Перпендикулярное сечение перпендикулярно и ко всем боковым граням.
Источники:
- диагональное сечение призмы
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
было в ЕГЭ
в условии
в решении
в тексте к заданию
в атрибутах
Категория
Атрибут
Всего: 93 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 10 и отстоит от других боковых ребер на 6 и 8. Найдите площадь боковой поверхности этой призмы.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы.
Ребра тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер.
Площадь боковой поверхности треугольной призмы равна 38. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 15 и отстоит от других боковых ребер на 8 и 15. Найдите площадь боковой поверхности этой призмы.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 20. Найдите площадь боковой поверхности исходной призмы.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 10. Найдите площадь боковой поверхности исходной призмы.
Ребра тетраэдра равны 38. Найдите площадь сечения, проходящего через середины четырех его ребер.
Ребра тетраэдра равны 32. Найдите площадь сечения, проходящего через середины четырех его ребер.
В правильной треугольной призме ABCA1B1C1 стороны оснований равны 2, боковые рёбра равны 5. Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A1B1 и A1C1.
В прямоугольном параллелепипеде известны длины рёбер: AB = 3, AD = 5, = 12. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C1.
В правильной четырёхугольной призме ABCDA1B1C1D1 ребро AA1 равно 15, а диагональ BD1 равна 17. Найдите площадь сечения призмы плоскостью, проходящей через точки A, A1 и C.
В прямоугольном параллелепипеде известны длины рёбер: AB = 4, AD = 7, = 24. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C1.
В правильной четырехугольной призме ABCDA1B1C1D1 высота равна 1, а сторона основания равна Точка M — середина ребра AA1.
а) Докажите, что пирамиды и равновелики.
б) Найдите расстояние от точки M до плоскости DA1C1.
Сторона основания правильной треугольной призмы ABCA1B1C1 равна 2, а диагональ боковой грани равна
а) Докажите, что объем пирамиды вдвое больше объема пирамиды
б) Найдите угол между плоскостью A1BC и плоскостью основания призмы.
В правильной треугольной призме ABCA1B1C1 стороны основания равны 6, боковые рёбра равны 4.
а) Изобразите сечение, проходящее через вершины A, B и середину ребра A1C1, и докажите, что это равнобокая трапеция.
б) Найдите площадь этого сечения.
В правильной треугольной призме ABCA1B1C1 стороны основания равны 8, боковые рёбра равны
а) Изобразите сечение, проходящее через вершины A, C и середину ребра A1B1, и докажите, что оно является равнобокой трапецией.
б) Найдите площадь этого сечения.
Всего: 93 1–20 | 21–40 | 41–60 | 61–80 …
В данной публикации мы рассмотрим, как можно вычислить площадь поверхности правильной призмы разных видов (треугольной, четырехугольной и шестиугольной), а также, разберем примеры решения задач для закрепления материала.
Правильная призма – это прямая призма, основанием которой является правильный многоугольник. А прямой фигура является в том случае, если ее боковые грани перпендикулярны основаниям.
-
Формула площади правильной призмы
- 1. Общая формула
- 2. Площадь правильной треугольной призмы
- 3. Площадь правильной четырехугольной призмы
- 4. Площадь правильной шестиугольной призмы
- Примеры задач
Формула площади правильной призмы
1. Общая формула
Площадь (S) полной поверхности призмы равна сумме площади ее боковой поверхности и двух площадей основания.
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности прямой призмы равняется произведению периметра ее основания на высоту.
Sбок. = Pосн. ⋅ h
Формула периметра и площади основания правильной призмы зависит от вида многогранника. Ниже мы рассмотрим самые популярные виды.
2. Площадь правильной треугольной призмы
Основание: равносторонний треугольник.
Площадь | Формула |
основание | |
боковая поверхность | Sбок. = 3ah |
полная |
microexcel.ru
3. Площадь правильной четырехугольной призмы
Основание: квадрат.
Площадь | Формула |
основание | Sосн. = a2 |
боковая поверхность | Sбок. = 4ah |
полная | Sполн. = 2a2 + 4ah |
microexcel.ru
Примечание: Если высота правильной четырехугольной призмы равняется длине стороны ее основания, значит мы имеем дело с кубом, площадь одной грани которого равна a2. А так как все шесть граней куба равны, то полная площадь его поверхности равняется 6a2.
4. Площадь правильной шестиугольной призмы
Основание: правильный шестиугольник
Площадь | Формула |
основание | |
боковая поверхность | Sбок. = 6ah |
полная |
microexcel.ru
Примеры задач
Задание 1:
Сторона правильной треугольной призмы равна 6 см, а ее высота – 8 см. Найдите полную площадь поверхности фигуры.
Решение:
Воспользуемся подходящей формулой, подставив в нее известные нам значения:
Задание 2:
Площадь полной поверхности правильной шестиугольной призмы составляет 400 см2. Найдите ее высоту, если известно, что сторона основания равна 5 см.
Решение:
Выведем выражение для нахождения высоты призмы из формулы ее полной площади:
-
- 0
-
Найдите площадь сечения правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, все ребра которой равны 1,найдите площадь четырехугольникк проходящего через вершины A,D,A1,D1
-
Комментариев (0)
-
- 0
-
Ечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС — внутренний угол правильного шестиугольника и равен 120°).
0,5*АС=√(4-1)=√3. АС=2√3.
Площадь сечения равна 2√2*2√3=4√6.
Ответ: S=4√6.
-
Комментариев (0)