Как найти площадь сектора круга онлайн

Как рассчитать площадь сектора круга

На данной странице калькулятор поможет рассчитать площадь сектора круга онлайн. Для расчета задайте радиус, длину дуги или угол сектора круга.

Сектор круга – это часть круга, окружности ограниченная дугой и двумя радиусами, проведенными к концам дуги.

Через длину дуги и радиус


Площадь сектора круга


Формула для нахождения площади сектора круга:

l – длина дуги окружности; r – радиус окружности.


Через угол и радиус


Площадь сектора круга


Формула для нахождения площади сектора круга:

 — в градусах;

 — в радианах;

π – константа равная (3.14); α – угол сектора круга; r – радиус окружности.

Сектор круга ограничивается дугой между двумя точками A и B на окружности и двумя радиусами, проведенными из концов дуги (точек A и B) к центру круга. Два радиуса делят всю площадь круга на 2 сектора, если угол между радиусами будет развернутым (180 градусов), то эти секторы будут между собой равны. Площадь сектора круга – это часть S всей плоской фигуры, ограниченной окружностью с радиусом r.

Площадь круга равна произведению квадрата радиуса на число «пи».

Площадь сектора может быть выражена формулой S = π х r² х α/360. В ином виде при указании угла сектора α не в градусах, а в радианах, S = (α/2) х r². Расчет площади сектора круга можно также осуществить еще по одной формуле через длину секторной дуги.

В разделе представлены сразу три варианта формул онлайнового калькулятора. Работники конструкторских отделов, а также пока еще познающие основы конструирования сложного оборудования, обучающиеся в Вузах студенты, могут воспользоваться любым из них на свой выбор.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Через длину дуги сектора

Длина дуги (L)

Радиус (r)

Через угол сектора в градусах

Угол (°)

Радиус (r)

Через угол сектора в радианах

Угол (RAD)

Радиус (r)

Введите в онлайн калькулятор необходимые для вычисления значения и нажмите кнопку Посчитать.

Формулы

(S = frac{1}{2}*L*r)

(S = pi*r^2*frac{beta}{360})

(S = frac{a}{2}*r)

L – длина дуги,
r – радиус круга,
(beta) – угол дуги в градусах,
a – угол дуги в радианах,
(pi) = 3,14.

Найти площадь сектора круга достаточно легко, зная основные формулы. Если дана длина дуги окружности и радиус сектора, то надо вспомнить формулу, из которой выводилась площадь самого круга, это была . Соответственно, если мы хотим найти площадь не всего круга, а лишь какой-то его части, то нам нужно половину длины дуги сектора и умножить на радиус, тогда мы получим .


Более логичный способ вычислить площадь сектора круга – через угол и радиус. Всего круг имеет 360°, значит для того чтобы посчитать площадь определенной части круга, нужно всю площадь πr2 разделить на 360 и умножить на угол сектора в градусах.

Информация по назначению калькулятора

Сектор круга – это часть окружности внутри круга, состоящая из дуги вместе с ее двумя радиусами. Часть окружности (также известная как дуга) и 2 радиуса окружности встречаются в обеих конечных точках дуги, образуя сектор. Форма сектора круга выглядит как кусочек пиццы или пирога. В геометрии круг – одна из самых совершенных фигур. Форма сектора окружности – самая простая форма в геометрии. У него есть свои собственные различные части. Например, диаметр, радиус, окружность, сегмент, сектор.

Круг разделен на два сектора, и разделенные части известны как второстепенные сектора и главные сектора.

Большая часть круга является основным сектором, в то время как меньшая часть является второстепенным сектором.

В случае полукругов окружность делится на два сектора одинакового размера.

2 радиуса встречаются в части окружности круга, известной как дуга, образуя сектор окружности.

Онлайн калькулятор предназначен для нахождения параметров сектора круга, таких как:

  • Площадь сектора
  • – это объем пространства, занимаемого в пределах границы сектора круга. Сектор всегда начинается с центра круга. Полукруг также является сектором круга, в данном случае круг имеет два сектора одинакового размера.
    Можно найти зная радиус и центральный угол в градусах (Ssek = ( α / 360° ) * πr2)

  • Длина дуги
  • – находится путем умножения радиуса на центральный угол сектора в радианах (L = r * α)

  • Радиус
  • Периметр сектора
  • – равен сумме длины дуги и двум радиусам (Psek = L + r + r)

  • Центральный угол сектора в градусах и радианах

Добавить комментарий