Круговой сектор — часть круга, которая ограничена дугой этого самого круга и двумя радиусами.
Онлайн-калькулятор площади сектора круга
Возьмем две произвольные точки, лежащие на границе круге. Они делят ее на две разные части, которые могут быть как одинаковыми по длине, так и разными. Эти части называются дугами круга.
Дуги равны по длине, когда равны углы, с помощью которых они образованы.
Рассмотрим задачу о нахождении площади сектора круга.
Формула площади сектора круга по радиусу и длине дуги
S=12⋅r⋅lS=frac{1}{2}cdot rcdot l
rr — радиус круга;
ll — длина дуги.
Рассмотрим решение задачи.
Найдите площадь кругового сектора, если известно, что длина дуги равна 20 (см.), а радиус круга равен 5 (см.).
Решение
r=5r=5
l=20l=20
В данной задаче сразу можно подставить наши числа в исходную формулу и вычислить площадь:
S=12⋅r⋅l=12⋅5⋅20=50S=frac{1}{2}cdot rcdot l=frac{1}{2}cdot 5cdot 20=50 (см. кв.)
Ответ: 50 см. кв.
Формула площади сектора круга по радиусу и угла в радианах
S=12⋅r2⋅αS=frac{1}{2}cdot r^2cdot alpha
rr — радиус круга;
αalpha — центральный угол, измеряемый в радианах.
Пример решения задачи.
Найдите площадь кругового сектора, если радиус круга равен 8 (см.), а центральный угол кругового сектора равен π2frac{pi}{2} радиан.
Решение
r=8r=8
α=π2alpha=frac{pi}{2} рад.
По формуле получаем:
S=12⋅r2⋅α=12⋅82⋅π2≈50.2S=frac{1}{2}cdot r^2cdot alpha=frac{1}{2}cdot 8^2cdotfrac{pi}{2}approx50.2 (см. кв.)
Ответ: 50.2 см.кв.
Формула площади сектора круга по радиусу и углу в градусах
S=π360⋅r2⋅αS=frac{pi}{360}cdot r^2cdot alpha
rr — радиус круга;
αalpha — центральный угол, измеряемый в градусах.
Эту формулу можно получить используя связь между радианами и градусами:
2π рад.=360∘2pitext{ рад.}=360^{circ}
Найти площадь кругового сектора, если дан радиус круга равный 10 (см.), а центральный угол сектора равен 180180 градусов.
Решение
r=10r=10
α=180∘alpha=180^{circ}
Площадь данного сектора:
S=π360⋅r2⋅α=π360⋅102⋅180∘≈157S=frac{pi}{360}cdot r^2cdot alpha=frac{pi}{360}cdot 10^2cdot 180^{circ}approx157 (см. кв.)
Ответ: 157 см. кв.
Решение задач по геометрии онлайн от экспертов сайта Студворк!
Тест по теме “Площадь сектора круга”
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь сектора круга, а также разберем примеры решения задач для демонстрации их практического применения.
- Определение сектора круга
-
Формулы нахождения площади сектора круга
- Через длину дуги и радиус круга
- Через угол сектора (в градусах) и радиус круга
- Через угол сектора (в радианах) и радиус круга
-
Примеры задач
Определение сектора круга
Сектор круга – это часть круга, образованная двумя его радиусами и дугой между ними. На рисунке ниже сектор закрашен зеленым цветом.
- AB – дуга сектора;
- R (или r) – радиус круга;
- α – это угол сектора, т.е. угол между двумя радиусами. Также его иногда называют центральным углом.
Формулы нахождения площади сектора круга
Через длину дуги и радиус круга
Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).
Через угол сектора (в градусах) и радиус круга
Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах (α°) и деленной на 360°.
Через угол сектора (в радианах) и радиус круга
Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.
Примеры задач
Задание 1
Дан круг радиусом 6 см. Найдите площадь сектора, если известно, что длина его дуги составляет 15 см.
Решение
Воспользуемся первой формулой, подставив в нее заданные значения:
Задание 2
Найдите угол сектора, если известно, что его площадь равна 78 см2, а радиус круга – 8 см.
Решение
Выведем формулу для нахождения центрального угла из второй формулы, рассмотренной выше:
Здесь вы можете рассчитать площадь сектора круга с помощью удобного онлайн калькулятора по двум формулам. Для этого необходимо ввести известные вам параметры фигуры:
- радиус круга и угол,
- длину дуги и радиус.
Сектор круга или окружности – это его(её) часть, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга (окружности).
Содержание:
- калькулятор площади сектора круга
- формула площади сектора круга через радиус и угол
- формула площади сектора круга через радиус и длину дуги
- примеры задач
Формула площади сектора круга через радиус и угол
S = pi R^2 dfrac{alpha °}{360°}
S = dfrac{alpha}{2} R^2
R – радиус сектора
α° – угол сектора (в градусах)
α – угол сектора (в радианах)
Формула площади сектора круга через радиус и длину дуги
S = dfrac{1}{2}LR
L – длина дуги сектора
R – радиус сектора
Примеры задач на нахождение площади сектора круга
Задача 1
Найдите площадь сектора круга радиуса 1 длина дуги которого равна 2.
Решение
Для решения задачи нам подойдет вторая формула.
S = dfrac{1}{2}LR = dfrac{1}{2} cdot 2 cdot 1 = dfrac{1}{2} cdot 2 = 1 : см^2
Ответ: 1 : см^2
Давайте проверим ответ с помощью калькулятора .
Задача 2
Найдите площадь сектора круга радиуса 24 длина дуги которого равна 3.
Решение
Задача аналогична предыдущей.
S = dfrac{1}{2}LR = dfrac{1}{2} cdot 3 cdot 24 = dfrac{1}{2} cdot 72 = 36 : см^2
Ответ: 36 : см^2
Проверка .
Задача 3
Найдите площадь кругового сектора если радиус круга равен 3, а угол сектора равен 120°.
Решение
Для решения этой задачи нам потребуется первая формула, в которой угол указывается в градусах.
S = pi R^2 dfrac{alpha °}{360°} = pi cdot 3^2 cdot dfrac{120°}{360°} = pi cdot 9 cdot dfrac{1}{3} = 3 pi : см^2 approx 9.42478 : см^2
Ответ: 3 pi : см^2 approx 9.42478 : см^2
Проверка .
Как рассчитать площадь сектора круга
На данной странице калькулятор поможет рассчитать площадь сектора круга онлайн. Для расчета задайте радиус, длину дуги или угол сектора круга.
Сектор круга – это часть круга, окружности ограниченная дугой и двумя радиусами, проведенными к концам дуги.
Через длину дуги и радиус
Формула для нахождения площади сектора круга:
l – длина дуги окружности; r – радиус окружности.
Через угол и радиус
Формула для нахождения площади сектора круга:
— в градусах;
— в радианах;
π – константа равная (3.14); α – угол сектора круга; r – радиус окружности.
Выполняя инженерные расчёты при проектировании различных объектов строительства, создании роботов, автоматизированных систем, станков, машин, самолётов, ракет, современных средств вооружения часто бывает необходимо найти площадь сектора круга.
Геометрия помогает при этом решать задачи на нахождение центра тяжести (центр масс), вычислять его координаты для плоских пластин, имеющих, в частности, форму правильного многоугольника.
Измерять и вычислять величины считается базовым умением. Оно включено в первую часть профильной программы выпускного экзамена ЕГЭ и ОГЭ по математике.
Сектор круга
Существует несколько определений, каждое из которых отличается только формулировкой, не меняющей подход к рассмотрению понятия:
-
Часть плоскости, ограниченная центральным углом и соответствующей дугой окружности.
-
Часть круга, заключённая между двумя радиусами.
Часто эту формулировку заменяют похожей, описывающей построение непосредственно: часть круга, лежащего внутри соответствующего центрального угла.
Площадь сектора круга через радиус и длину дуги
Пусть известны радиус круга R, длина дуги l. Как в этом случае определить площадь сектора, стягиваемого данной дугой?
Для ответа на вопрос понадобится формула нахождения длины окружности:
C = 2πR.
Определение, представленное через третью формулировку, даёт возможность соотнести численные величины понятий: сектор и круг, дуга и окружность, центральный и полный углы.
Поскольку отношения постоянны, то для ответа на поставленный вопрос достаточно найти отношение части к целому, затем умножить полученный результат на площадь круга S = πR2.
После сокращения дроби получают формулу:
Примеры решения задач
Задача №1
Найти площадь сектора круга радиусом 2 см, имеющего длину дуги 4 см.
Решение.
Подставляя имеющиеся величины в формулу, получаем:
Sсект = (4 * 2) / 2 = 4.
Ответ: Sсект
= 4 см2.
Задача №2
Чему равна длина дуги закрашенного сектора, если Sсект = 32 см2, R = 4 см.
Решение.
Подставив известные данные в формулу, получим:
Следовательно,
2l = 32,
l = 16.
Тот же результат получился бы при первоначальной работе в «общем виде»:
Ответ: l = 16 см.
Площадь сектора круга через радиус и угол сектора
Если известна градусная мера центрального угла (n°), то, находя отношение её к полному кругу (к 360º), также умножают результат на площадь круга:
Задача №3
Чему равна площадь фигуры, изображённой на рисунке?
Решение.
Центральный угол изображённого сектора равен
360° – 90° = 270°
Подставляя в формулу величины, несложно получить искомый результат:
Ответ: Sсект = 27 см2.
Также аналогичным образом решаются обратные задачи.
Площадь сектора круга через угол сектора в радианах
Пусть центральный угол задан своей радианной мерой. Учитывая, что
несложно получить искомую формулу:
Задача №4
Чему равен центральный угол сектора в радианах (рад.), если его площадь равна 32, а радиус – 4?
Решение.
Выразив α, затем подставив числовые данные, легко получить результат:
Ответ: α = 4 рад.
Благодаря этой формуле, несложно доказать, что площади двух секторов с равными центральными углами относятся как квадраты радиусов соответствующих окружностей:
С другой стороны, площадь части кольца находится из условия:
Сегмент круга
Существует два подхода к определению понятия:
-
Геометрическая фигура, являющаяся общей частью круга и полуплоскости, называется сегментом круга.
-
Часть плоскости, заключённая между хордой и окружностью.
Оба определения характеризуют один и тот же объект с разных сторон, выражая, по сути одно и то же.
Иногда проводится описательное построение. В этом случае второй вариант быстрее приводит к данному термину.
Площадь сегмента круга по хорде и высоте
Пусть градусная мера ограничивающей дуги мала, длина хорды равна a, h – высота сегмента (перпендикуляр, опущенный из точки на окружности к середине хорды). Примечание: часто высота сегмента называется «стрелкой».
Тогда можно приближённо считать, что
Погрешность такого вычисления уменьшается вместе с отношением
.
В частности, когда дуга содержит угол, меньший 50º, то есть,
погрешность оказывается менее 1%.
Более точной является формула для любого сегмента меньшего полукруга:
Точный расчёт производится, исходя из свойства нахождения сложной фигуры, являющейся суммой или разностью двух и более объектов.
Сегмент является частью сектора, к которому либо добавлен треугольник, содержащий центральный угол (для дуг больших 180º), либо убран (соответствующий центральный угол меньше 180º).
Отсюда следует, что
Задача №5
Вычислить стрелку и площадь сегмента, если центральный угол содержит 60º, а
.
Решение.
Для нахождения стрелки достаточно из радиуса вычесть высоту треугольника AOB. Поскольку угол AOB по условию равен 60º, то треугольник AOB равносторонний. Поэтому его высота в √3/2 раз отличается от стороны (от радиуса).
Отсюда следует, что:
Площадь по первой формуле будет приблизительно равна
По второй:
Применяя точную формулу и учитывая, что
находим:
Ответ: Sсегм = 1,26 см2.
Площадь сегмента круга через синус угла
Рассматривая точную формулу, площадь треугольника можно находить, используя половину произведения сторон на синус угла между ними. А значит:
Многие вычисления помогает провести онлайн калькулятор. Достаточно ввести исходные данные и запросить результат.