Как найти площадь сферы описанной около цилиндра

В данной публикации мы рассмотрим, как найти радиус описанной вокруг прямого цилиндра сферы, а также площадь ее поверхности и объем шара, ограниченного этой сферой.

Нахождение радиуса сферы/шара

Около любого цилиндра можно описать сферу (или другими словами, вписать цилиндр в шар) – но только одну.

Описанная около цилиндра сфера

  • Центром такой сферы будет являться центр цилиндра, в нашем случае – это точка O.
  • O1 и O2 – центры оснований цилиндра.
  • O1O2 – высота цилиндра (h).
  • OO1 = OO2 = h/2.

Можно заметить, что радиус описанной сферы (OE), половина высоты цилиндра (OO1)  и радиус его основания (O1E) образовывают прямоугольный треугольник OO1E.

Прямоугольный треугольник

Воспользовавшись теоремой Пифагора мы можем найти гипотенузу этого треугольника, которая одновременно является радиусом сферы, описанной около заданного цилиндра:

Формула нахождения радиуса описанной около цилиндра сферы

Зная радиус сферы можно вычислить площадь (S) ее поверхности и объем (V) ограниченного сферой шара:

  • S = 4 ⋅ π ⋅ R2
  • S = 4/3 ⋅ π ⋅ R3

Примечание: π округленно равняется 3,14.



Знаток

(381),
на голосовании



10 лет назад

Голосование за лучший ответ

Ирик Жижченко

Мастер

(2026)


10 лет назад

Площадь сферы = 4П*R^2
Объем цилиндра = П*r^2*H = 96П
r^2*H = 96
H * 2r = 48
H = 48 / 2r = 24/r
Отсюда: r^2 * 24/r = 96
24r = 96
r = 4
H = 24/r = 6
Осевое сечение цилиндра – прямоугольник со сторонами H и 2r
2r = 8
Диагональ сечения = Корень с (64 + 36) = 10
Диагональ сечения цилиндра = диаметру сферы
Следовательно R сферы = 10/2 = 5
S сферы = 4*П * 25 = 100П

nceystem772

nceystem772

Вопрос по геометрии:

1)Объем цилиндра 96п см в кубе,площадь его осевого сечения 48 см кв.найти площадь сферы описанной около цилиндра.

2)сколько шариков диаметра 2 см можно отлить из металлического куба с ребром 4см?

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 1

kedoveanghun411

kedoveanghun411

1)Объем цилиндра 96п см в кубе,площадь его осевого сечения 48 см кв.найти площадь сферы описанной около цилиндра.2)сколько шариков диаметра 2 см можно отлить из металлического куба с ребром 4см? 

Изображение к ответу

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

1) Формула объёма конуса V=S•H:3=πr²H:3

Формула объёма шара

V=4πR³:3

Осевое сечение данного конуса – равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°. 

Выразим радиус r конуса через радиус R шара.

r=2R:tg60°=2R/√3

V(кон)=π(2R/√3)²•2R²3=π8R³/9

V(шара)=4πR³/3

V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3

———————

2) Формула объёма цилиндра 

V=πr²•H

Формула площади осевого сечения цилиндра

S=2r•H

Разделим одну формулу на другую:

(πr²•H):(2r•H)=πr/2⇒

96π:48=πr/2⇒

4π=πr

r=4

Из площади осевого сечения цилиндра:

Н=S:2r=48:8=6

На схематическом рисунке сферы с вписанным цилиндром 

АВ- высота цилиндра, ВС – его диаметр, 

АСдиаметр сферы. 

АС=√(6²+8²)=√100=10

R=10:2=

S(сф)=4πR8=4π•25=100π см²

Объем цилиндра равен 96 пи3 см3.

Площадь его осевого сечения 48 см2 .

Найдите площадь сферы, описанной около цилиндра.

На этой странице сайта, в категории Геометрия размещен ответ на вопрос
Объем цилиндра равен 96 пи3 см3?. По уровню сложности вопрос рассчитан на учащихся
1 – 4 классов. Чтобы получить дополнительную информацию по
интересующей теме, воспользуйтесь автоматическим поиском в этой же категории,
чтобы ознакомиться с ответами на похожие вопросы. В верхней части страницы
расположена кнопка, с помощью которой можно сформулировать новый вопрос,
который наиболее полно отвечает критериям поиска. Удобный интерфейс
позволяет обсудить интересующую тему с посетителями в комментариях.

Добавить комментарий