Макеты страниц
Сначала заметим, что соотношение (5), доказанное в лемме п. 17.2, имеет гораздо большую общность. Рассмотрим некоторую сферу радиуса R и на ней фигуру F (рис. 17.15). Назовем шаровым сектором с основанием F фигуру, образованную радиусами, проведенными во все точки фигуры
Рис. 17.15
Частные случаи шаровых сегментов уже были рассмотрены в п. 16.5. Обобщением леммы п. 17.2 является следующее:
Лемма. Площадь S области на сфере радиуса R и объем шарового сектора, основанием которого служит данная область, связаны формулой
Пусть на сфере дана фигура F и пусть Q — шаровой сектор с основанием F. Опишем вокруг шара многогранник и вырежем из него “сектор” пирамидой с вершиной в центре шара, заключающей шаровой сектор Q. Если — площадь поверхности, вырезанной из поверхности многогранника, a — объем, то, как и в лемме п. 17.2, . Поэтому в пределе, когда получаем формулу (13).
Зная формулу (13), можно находить площади некоторых частей сферы.
Сферическим сегментом назовем часть сферы, отсеченную от нее любой плоскостью (рис. 17.16 а). Сферическим поясом назовем часть сферы, лежащую между двумя параллельными плоскостями (рис. 17.16 б). Высотой сферического пояса называется расстояние между этими плоскостями. На сферический сегмент можно смотреть как на частный случай сферического пояса, когда одна
Рис. 17.16
из секущих плоскостей стала касательной. Ясно, что высота сферического сегмента — это высота соответствующего ему шарового сегмента.
Согласно (13) и результатам п. 16.5 для площади сферического сегмента D и объема V соответствующего ему шарового сектора Q имеет место равенство:
Из этого равенства получаем, что
где Н — высота сегмента
Убедитесь, что такая же формула справедлива и для площади сферического пояса, так как пояс является разностью двух сегментов.
Формулы объема
Объем и площадь шарового слоя и шарового пояса.
Объем шара равен 4/3π3 , а площадь сферы равна 4πr2.
Шаровой слой – это часть шара между двумя параллельными плоскостями. На рисунке выше PQRS – шаровой слой.
Шаровой пояс – это сферическая поверхность шарового слоя.
Площадь шарового пояса на рисунке выше S=2 πhr;
Объем шарового слоя V=(πh/6)*(h2+3r12+3r22)
Пример1. Определение объема шарового слоя шара.
Определить объем шарового слоя шара с диаметром 50 см, если верхний и нижний диаметры слоя есть 25 и 40 см, а его высота 7,2 см.
Решение:
Как было сказано выше, объем шарового слоя
V=(πh/6)*(h2+3r12+3r22),
где h=7,2 см, r1= 25/2=12,5 см, r2=40/2=20 см
Следовательно, объем шарового слоя равен
V=(7,2π/6)*(7,22+3*12,52+3*202)=6483,18 см2 .
Пример 2. Определение площади шарового пояса.
Определить площадь шарового пояса из предыдущего примера.
Решение:
Площадь шарового пояса S=2πrh (как было определено выше), где радиус сферы r=50/2=25 см, а h=7,2 см.
Следовательно, площадь шарового пояса равна
S=2π*25*7,2=1130,4 см2
Пример 3. Определение объема заполнения сферического резервуара по уровню.
Сферический резервуар наполнен жидкостью до высоты 30 см. Определить объем жидкости в резервуаре (1л=1000 см3), если его внутренний диаметр равен 40 см.
Жидкость представлена в виде заштрихованной области в показанном на рис. ниже сечении.
Объем жидкости включает полусферу и шаровой пояс высотой 6 см.
Следовательно, объем жидкости есть V=(2/3)*πr3+(πh/6)*(h2+ 3r12+3r22), где
r2=40/2=20 см и r1=(202-62)1/2=19,1 см
Объем жидкости V=2/3 π *203+(6π)/6*(62+3*19,12+3*202)=24064,22 см3
Поскольку 1 литр =1000 см3, то количество литров жидкости равно
24064,22/1000=24,06422 л.
Содержание:
- Площадь поверхности шара. Доказательство Архимеда
- Площадь сегмента шара
- Площадь шарового пояса
- Задача пример №81
Площадь поверхности шара находится по формуле . Здесь радиус шара. В окружность радиусом впишем правильный многоугольник.
Поверхность шара, полученного при вращении относительно диаметра соответствующих кругов, можно рассматривать как сумму пределов боковых поверхностей фигур – конуса, усеченного конуса и цилиндра, образующие которых являются сторонами данного многоугольника. Покажем, что при вращении сторон многоугольника вокруг оси получается тело (конус, усеченный конус, цилиндр), площадь боковой поверхности которого равна площади боковой поверхности цилиндра, высота которого равна высоте данного тела, радиус основания равен апофеме многоугольника. Обозначим апофему многоугольника через .
– площадь боковой поверхности конуса с образующей . Так как , то .
Умножим на 2 обе части равенства . Учитывая, что , , получим .
Значит, – площадь боковой поверхности усеченного конуса. Зная, что
, получим что . Так как , то
Умножим на 2 обе части равенства . Учитывая,что , получим .
Значит, .
Понятно, что площадь боковой поверхности цилиндра с образующей равна . Аналогично получаем, что площадь боковых поверхностей усеченного конуса с образующей и конуса с образующей можно найти по формулам . Таким образом, поверхность тела, полученного вращением многоугольника вокруг диаметра, равна :
При бесконечном увеличении количества сторон многоугольника значение стремится к радиусу, а площадь поверхности полученного тела к площади поверхности шара, т.е. .
Площадь поверхности шара. Доказательство Архимеда
Найдя сумму поверхностей усеченных конусов и цилиндра, можно найти площадь поверхности шара. Рассмотрим осевое сечение одного из усеченных конусов. Пусть радиус средней окружности равен , а высота , радиус шара сторона многоугольника, описанного вокруг большего круга равна . Площадь боковой поверхности усеченного конуса будет , а также , т.е. боковая поверхность усеченного конуса равна боковой поверхности цилиндра, радиус основания которого равен и высота . Значит, фигуру, описанную вокруг шара, можно принять за цилиндр. Отсюда получается, что площадь поверхности шара равна площади боковой поверхности цилиндра с радиусом основания и высотой Т.е.,
Площадь сегмента шара
Часть шара, отсекаемая плоскостью сечения называется сегментом. Круг, полученный при сечении плоскостью, называется основанием сегмента. Часть диаметра шара, перпендикулярного основанию сегмента, расположенная внутри него, называется высотой сегмента. Из доказательства формулы поверхности шара, аналогично, можно показать, что для шара радиуса площадь сферической поверхности сегмента высотой , вычисляется по формуле .
Площадь шарового пояса
Часть поверхности шара, расположенная между двумя параллельными плоскостями, называется шаровым поясом. Расстояние между параллельными плоскостями называется высотой шарового пояса. Площадь поверхности шарового пояса можно найти, как разность площадей сегментов, отсекаемых параллельными плоскостями.
Площадь поверхности шарового пояса высотой отсекаемого от шара радиуса вычисляется по формуле
Задача пример №81
Радиус шара разбит на три равные части и через эти точки проведены перпендикулярные к радиусу плоскости. Зная, что радиус шара , найдите площадь поверхности шарового пояса.
Решение:
если и , то площадь поверхности шарового пояса будет .
Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:
Другие темы которые вам помогут понять математику:
|
|
|
|
Лекции:
- Производная сложной функции примеры решений
- Определение предела функции
- Вычисление пределов
- Формулы сокращенного умножения
- Прямоугольная система координат в пространстве
- Действия со степенями
- Найти три первых отличных от нуля
- Предел логарифма: пример решения
- Исследовать сходимость ряда по признаку Даламбера
- Линейная комбинация векторов
Площадь поверхности шарового слоя, формула
Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.
Шаровой пояс или Шаровая зона — это кривая поверхность шарового слоя. Круги ABC и DEF это основания шарового пояса. Расстояние между основаниями это высота шарового слоя.
Кривая поверхность шарового слоя равна произведению его высоты на окружность большого круга шара:
[ S = 2pi R h ]
(R – радиус большого круга шара, h=NO – высота шарового слоя)
Формулы шара, сферы
Вычислить, найти площадь поверхности шарового слоя по формуле (1)
Ссылки по теме
Площадь поверхности шарового слоя |
стр. 316 |
---|
Формулы площади поверхности геометрических фигур
Применение формулы
Рассмотрим на примере, как вычислить площадь круглого шара, диаметр которого равен 50 см. Следуя формуле, нужно 50 разделить на два (чтобы получить радиус), возвести полученное число в квадрат и умножить всё это дело сначала на 4, затем на 3,14. В итоге получим число в 7 850 квадратных сантиметров.
Формула вычисления площади применяется не только среди учителей в школе и научных сотрудников в лаборатории. Данная формула может пригодиться обычному маляру. Ведь если шар большой, а краски мало, то возникает вопрос – хватит ли ему этой смеси, чтобы покрасить весь объект. И это далеко не единственный бытовой случай, где может пригодиться формула.
Формула вычисления объёма может пригодиться и строительной бригаде, что делает ремонт. И неважно, какой это объект – промышленное здание, небольшой дом или обычная квартира. Этим и отличаются профессионалы – они умеют применять свои знания на практике.
Но как быть, если не представляется возможным измерить объект? Такой вопрос может возникнуть в случае огромных размеров объекта или его недосягаемости. В этом случае могут помочь электронные технологии, в основе работы которых лежит сканирование пространства определёнными частотами и лазерами. С современными технологиями необязательно знать все формулы наизусть. Достаточно иметь подключение к интернету и зайти на любой онлайн-калькулятор.
Уравнение сферы
x 2 + y 2 + z 2 = R 2
( x – x 0) 2 + ( y – y 0) 2 + ( z – z 0) 2 = R 2
3. Параметрическое уравнение сферы с центром в точке ( x 0, y 0, z 0):
x = x 0 + R · sin θ · cos φ y = y 0 + R · sin θ · sin φ z = z 0 + R · cos θ
где θ ϵ [0, π ], φ ϵ [0,2 π ].
Площадь прямоугольного параллелепипеда
Формула площади поверхности прямоугольного параллелепипеда:
Шар, сфера и их части
Введем следующие определения, связанные с шаром, сферой и их частями.
Определение 1. Сферой с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O равно r (рис. 1).
Определение 2. Шаром с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O не превосходит r (рис. 1).
Таким образом, сфера с центром в точке O и радиусом r является поверхностью шара с центром в точке O и радиусом r.
Замечание. Радиусом сферы ( радиусом шара ) называют отрезок, соединяющий любую точку сферы с центром сферы. Длину этого отрезка также часто называют радиусом сферы ( радиусом шара ).
Определение 3. Сферическим поясом (шаровым поясом) называют часть сферы , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).
Определение 4. Шаровым слоем называют часть шара , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).
Окружности, ограничивающие сферический пояс, называют основаниями сферического пояса.
Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называют высотой сферического пояса.
Из определений 3 и 4 следует, что шаровой слой ограничен сферическим поясом и двумя кругами, плоскости которых параллельны параллельны между собой. Эти круги называют основаниями шарового слоя.
Высотой шарового слоя называют расстояние между плоскостями расстояние между плоскостями оснований шарового слоя .
Определение 5. Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость (рис. 3).
Определение 6. Шаровым сегментом называют каждую из двух частей, на которые делит шар пересекающая ее плоскость (рис. 3).
Из определений 3 и 5 следут, что сферический сегмент представляет собой сферический пояс , у которого одна из плоскостей оснований касается сферы (рис. 4). Высоту такого сферического пояса и называют высотой сферического сегмента.
Соответственно, шаровой сегмент – это шаровой слой, у которого одна из плоскостей оснований касается шара (рис. 4). Высоту такого шарового слоя называют высотой шарового сегмента .
По той же причине всю сферу можно рассматривать как сферический пояс , у которого обе плоскости оснований касаются сферы (рис. 5). Соответственно, весь шар – это шаровой слой, у которого обе плоскости оснований касаются шара (рис. 5).
Определение 7. Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы (рис. 6).
Высотой шарового сектора называют высоту его сферического сегмента .
Замечание. Шаровой сектор состоит из шарового сегмента и конуса с общим основанием. Вершиной конуса является центр сферы .
Трактовка значений
Это следует знать:
- Шар – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
- Сфера – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
- Число «пи» – это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
- Радиус шара равен ½ его диаметру. Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
- Квадратная степень обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
- Объём – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
- Площадь – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.
Введите радиус сферы:
Сфера – геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние называется радиусом шара.
Площадь поверхности сферы формула:
S = 4 π R 2 , где R – радиус сферы, π – число пи
Через диаметр
Как известно, диаметр шара равен двум его радиусам: d = 2R. Следовательно, рассчитать площадь фигуры поверхности можно, используя такой вид формулы:
S = 4 π (d/2) 2
Терминология и сферическая геометрия
Окружность на шаре, которая имеет тот же центр и радиус, что и сама фигура, а следовательно, делит её на две части, называется большим кругом. Если конкретную (произвольную) точку этого геометрического тела обозначить как его северный полюс, то соответствующая антиподальная точка будет южным полюсом. А большой круг станет экватором и будет равноудалённым от них. Если он будет проходить через два полюса, тогда это уже линии долготы (меридианы).
Круги на сфере, проходящие параллельно экватору, называются линиями широты. Все эти термины используются для приблизительно сфероидальных астрономических тел. Любая плоскость, которая включает в себя центр шара, делит его на два равных полушария (полусферы).
Многие теоремы из классической геометрии верны и для сферической, но отнюдь не все, потому что сфера не удовлетворяет некоторым аксиомам, например, постулату параллельности. Такая же ситуация складывается и в тригонометрии — отличия есть во многих отношениях. Например, сумма внутренних углов сферического треугольника всегда превышает 180 градусов. Помимо этого, две таких одинаковых фигуры будут конгруэнтными.
Вычисление площади поверхности
Вычисление площади поверхности
- Услуги проектирования
- Двойной интеграл
- Вычисление площади поверхности
Вычисление площади поверхности
Пусть в пространстве задана кусочно-гладкая поверхность $sigma $, однозначно проектирующаяся в область $mathbf < textit < D >> $ на плоскости $mathbf < textit < Оху >> $. Пусть эта поверхность задаётся уравнением $sigma :;z=f(x,y),;(x,y)in D$. Тогда площадь этой поверхности выражается формулой
Мы докажем эту формулу позже, когда будем изучать поверхностные интегралы. Сейчас рассмотрим пример: найти площадь лепестков, вырезаемых цилиндром $mathbf < textit < x >> ^ < 2 >+mathbf < textit < y >> ^ < 2 >$ = 2$mathbf < textit < ax >> $ из сферы $mathbf < textit < x >> ^ < 2 >+mathbf < textit < y >> ^ < 2 >+mathbf < textit < z >> ^ < 2 >$ = 4$mathbf < textit < a >> ^ < 2 >$ .
Решение:
Область $mathbf < textit < D >> $ — сдвинутый на $mathbf < textit < а >> $ единиц по оси $mathbf < textit < Ох >> $ круг, поэтому вычисляем в полярных координатах, учитывая симметрию поверхности относительно плоскостей $mathbf < textit < Оху >> $ и $mathbf < textit < Охz >> $:
Вычислить площадь cферы радиуса (a.)
Решение:
Рассмотрим верхнюю полусферу. Ее уравнение имеет вид $ < < x^2 >+ < y^2 >+ < z^2 >= < a^2 >> ;; < text < или >;;z = sqrt < < a^2 >— < x^2 >— < y^2 >> . > $
Очевидно, область интегрирования (R) представляет собой круг с таким же радиусом (a,) расположенный в центре координат. Площадь полусферы вычисляется по формуле $ < S_ < largefrac < 1 > < 2 >normalsize > > = iintlimits_R < sqrt < 1 + < < left( < frac < < partial z >> < < partial x >> >right) > ^2 > + < < left( < frac < < partial z >> < < partial y >> >right) > ^2 > > dxdy > .$
Площадь поверхности полной сферы, соответственно, равна $S = 2 < S_ < largefrac < 1 > < 2 >normalsize > > = 4pi < a^2 >.$
Далее:
Вычисление площадей плоских областей
Определение двойного интеграла
Специальные векторные поля
Поверхностный интеграл первого рода и его свойства
Вычисление объёмов
Определение криволинейного интеграла второго рода
Вычисление криволинейного интеграла второго рода. Примеры.
Поверхностный интеграл второго рода и его свойства
Критерий полноты <формулировка>. Лемма о нелинейной функции
Частные случаи векторных полей
Критерий полноты <формулировка>. Лемма о немонотонной функции
Вычисление двойного интеграла
Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах
Примеры применения цилиндрических и сферических координат
Огравление $Rightarrow $
Площадь сферы — формулы и примеры вычислений
Важные измерения
Радиус (обозначается r) — единственное необходимое измерение. Это расстояние от любой точки на поверхности сферы до её центра. Самый длинный отрезок, равный двум r, называется диаметром (d). Земля называется сфероидом, потому что она очень близка к шару, но не идеально круглая. Она немного вытянута на северном и южном полюсах.
Впервые вычислить площадь (S) поверхности шара удалось Архимеду. Именно он установил, что для того, чтобы найти S любого трёхмерного объекта, необходимо измерить его радиус. Для сферы получилась следующая формула: S = 4 * π * r ². Для того чтобы понять, как это работает, следует рассмотреть пример. Известно, что радиус детского мяча 10 см. Остаётся ещё одна неизвестная — число π. Это математическая константа, которая выражает отношение длины окружности к её диаметру и равна примерно 3,14. Далее, следует подставить цифры в уравнение:
- S = 4 * 3,14 * 10²;
- S мяча равна ≈ 1256 см².
Таким образом, можно найти площадь сферы через её радиус по формуле, полученной ещё в античности. Ещё одна важная характеристика — это объём (V) фигуры. Он вычисляется следующим образом: V = (4/3) * π * r³. Если придерживаться условий задачи, то V мяча = (4/3) * 3,14 * 10³ равен ≈ 4187 см ³. Сейчас можно избежать длительных расчётов, если нужно узнать площадь сферы, онлайн-калькуляторы — сервисы, которые очень в этом помогают.
Сектор сферы — это слой между двумя правильными круговыми конусами, имеющими общую вершину в центре шара и общую ось.
Надо сказать, что внутренний конус может иметь основание с нулевым радиусом. Формула, по которой определяют площадь сектора, следующая: S = 2 * π * r * h, где h — высота. К слову, эта же формула применима, если необходимо найти S части шара, отрезанной плоскостью, то есть полусферы. Такая же формула применяется при нахождении S сегмента (часть между двумя параллельными плоскостями) и зоны сферы (изогнутая поверхность сферического сегмента).
Терминология и сферическая геометрия
Окружность на шаре, которая имеет тот же центр и радиус, что и сама фигура, а следовательно, делит её на две части, называется большим кругом. Если конкретную (произвольную) точку этого геометрического тела обозначить как его северный полюс, то соответствующая антиподальная точка будет южным полюсом. А большой круг станет экватором и будет равноудалённым от них. Если он будет проходить через два полюса, тогда это уже линии долготы (меридианы).
Круги на сфере, проходящие параллельно экватору, называются линиями широты. Все эти термины используются для приблизительно сфероидальных астрономических тел. Любая плоскость, которая включает в себя центр шара, делит его на два равных полушария (полусферы).
Многие теоремы из классической геометрии верны и для сферической, но отнюдь не все, потому что сфера не удовлетворяет некоторым аксиомам, например, постулату параллельности. Такая же ситуация складывается и в тригонометрии — отличия есть во многих отношениях. Например, сумма внутренних углов сферического треугольника всегда превышает 180 градусов. Помимо этого, две таких одинаковых фигуры будут конгруэнтными.
Одиннадцать свойств
В своей книге «Геометрия и воображение» Дэвид Гилберт и Стефан Кон-Фоссен описывают свойства сферы и обсуждают, однозначны ли такие характеристики. Несколько пунктов справедливы и для плоскости, которую можно представить как шар с бесконечным радиусом:
- Точки на сфере находятся на одинаковом расстоянии от одной фиксированной, называемой центром. Можно сделать единственный вывод: это обычное определение и оно однозначно. А также отношение расстояний между двумя фиксированными точками является постоянным. И здесь прослеживается аналогия с окружностями Аполлония, то есть с фигурами в плоскости.
- Контуры и плоские участки сферы являются кругами. Это однозначное свойство, которое определяет шар.
- Сфера имеет постоянную ширину и обхват. Ширина поверхности — это расстояние между парами параллельных касательных плоскостей. Множество других замкнутых выпуклых поверхностей имеют постоянную ширину, например, тело Мейснера. Обхват поверхности — это окружность границы её ортогональной проекции на плоскость. Каждое из этих свойств подразумевает другое.
- Все точки сферы омбилические. В любой точке поверхности вектор нормали расположен под прямым углом к ней, поскольку шар — это линии, выходящие из его центра. Пересечение плоскости, которая содержит нормаль с поверхностью, сформирует кривую — нормальное сечение. Любая замкнутая поверхность будет иметь как минимум четыре точки, называемых омбилическими. Для сферы кривизны всех нормальных сечений одинаковы, поэтому омбилической будет каждая точка.
- У шара нет центра поверхности. Например, два центра, соответствующие минимальной и максимальной секционной кривизне, называются фокальными точками, а совокупность всех таких точек образует одноимённую поверхность. И только у шара она преобразуется в единую точку.
- Все геодезические сферы являются замкнутыми кривыми. Для этой фигуры они большие круги. Многие другие поверхности разделяют это свойство.
- Имеет наименьшую площадь при наибольшем объёме. Это определяет шар однозначно. Например, мыльный пузырь: его окружает фиксированный объём, поверхностное натяжение минимизирует площадь его поверхности для такого объёма. Конечно, пузырь не будет идеальным шаром, поскольку внешние силы, такие как гравитация, будут искажать его форму.
- Сфера — единственная вложенная поверхность, у которой нет границы или сингулярностей с постоянной положительной средней кривизной.
- Сфера имеет наименьшую общую среднюю кривизну среди всех выпуклых тел с заданной площадью поверхности.
- Шар имеет постоянную гауссову кривизну. Это внутреннее свойство, которое определяется путём измерения длины и углов и не зависит от того, как поверхность встроена в пространство.
Сфера превращается в себя трёхпараметрическим семейством жёстких движений. Любое вращение вокруг линии, проходящей через начало координат, может быть выражено как комбинация вращений вокруг трёхкоординатной оси.
О шаре и цилиндре
Так называлась работа, опубликованная античным математиком Архимедом. Она вышла в двух томах в 225 году до н. э. Он был первым, кто сделал полный и подробный трактат по основам вычисления площади поверхности сферы, объёма шара и аналогичных значений для таких элементов, как цилиндр. Результатами его деятельности пользуются до сих пор.
Архимед особенно гордился формулой объёма шара, где он доказал, что эта величина составляет две трети объёма описанного цилиндра. Он даже попросил сделать чертёж этих предметов на своей надгробной плите. Позже римский философ Цицерон обнаружил такую гробницу, к сожалению, сильно заросшую окружающей растительностью.
Аргумент, который Архимед использовал для доказательства формулы V шара, был довольно сложным и сильно вовлечён в его геометрию. Поэтому во многих современных учебниках используется упрощённая версия, основанная на концепции предела, которого, конечно, не было в античные времена. Великий математик создавал в сфере усечённый конус путём построения и вращения геометрических фигур, и только после этого он определил объём.
Сейчас кажется, что он специально выбирал такие оригинальные методы. Однако это был всего лишь лучший из тех, которые были ему доступны в греческой математике. Его основные работы были вновь открыты в XX веке. Например, Метод механических теорем, как он назывался в трактате автора.
источники:
http://3dstroyproekt.ru/dvojnoj-integral/vychislenie-ploshhadi-poverhnosti
http://nauka.club/matematika/geometriya/ploshchad-sfery.html