Как найти площадь шестиугольника через диагональ

Шестиугольник — многоугольник, у которого есть шесть сторон и шесть углов. В правильном заданном
многоугольном геометрическом объекте все стороны равняются друг другу, а углы формируют шесть
равносторонних треугольников.

Площадь правильной фигуры с шестью углами — положительная величина некоторой области плоскости,
занимаемой данным многоугольным геометрическим объектом.

Выделяют ряд методов нахождения площади этого многоугольника, зависимо от его типа.

  • Площадь правильного шестиугольника через длину стороны
  • Площадь правильного шестиугольника через радиус описаной окружности
  • Площадь правильного шестиугольника через радиус вписаной окружности
  • Площадь правильного шестиугольника через длинную диагональ
  • Площадь правильного шестиугольника через короткую диагональ
  • Площадь правильного шестиугольника через периметр

Через длину стороны

Рис 1

По той причине, что выпуклый шестиугольник включает в себя шесть равносторонних треугольников, тогда
формула нахождения требуемой величины через длину стороны выглядит следующим образом:

S = (3√3*)/2

где a — это продолжительность стороны.

Цифр после запятой:

Результат в:

Рассмотрим пример. Пусть длина стороны эквивалентна 8. Тогда, согласно этой формуле, заданную
характеристику замкнутого выпуклого шестиугольника будет примерно равна 166.

Всё достаточно
просто, если сторона заранее известна. Если же эта величина нам не дана, но известен периметр или
апофема — высота одного из шести равносторонних треугольников — тогда длину стороны можно
высчитать.

В случае, если известен периметр, его необходимо поделить на шесть, таким образом получается длина
стороны. К примеру, если периметр равен 36, то, поделив 36 на 6, получается 6 — это и есть
протяжённость стороны.

Если известна лишь апофема, тогда можно посчитать длину стороны, подставив апофему в формулу b = x√3 и умножив ответ на 2. Всё это потому, что апофема — это сторона
x√3 составляемого ей треугольника с углами 30, 60 и 90 градусов. К примеру, если апофема 11√3, то
x = 11, а протяжённость стороны будет эквивалентна 22.

Через периметр

Рис 6

Если при изучении правильной фигуры с шестью углами нам известен только его периметр, несложно
рассчитать площадь этой фигуры по такой формуле:

Цифр после запятой:

Результат в:

S = (3√3*(p/6)²)/2

где p — это периметр фигуры.

Допустим, если периметр будет равняться 24, тогда площадь будет примерно эквивалентна 42. Если в
качестве периметра возьмём число 50, тогда площадь фигуры окажется 180.

Через длинную диагональ

Рис 4

Длинная или большая диагональ шестиугольника — это диаметр описанной вокруг него плоской кривой, как
правило, она равняется двум его сторонам.

Цифр после запятой:

Результат в:

Используем такое выражение для подсчёта площади подобного правильного многоугольного геометрического
объекта через длинную диагональ этого множества точек:

S = (3√3*)/8

где D — это длинный отрезок, соединяющий несмежные вершины.

К примеру, если D = 6, тогда заданная характеристика замкнутого выпуклого
многоугольника будет приблизительно равна 23. Если в качестве длинной диагонали возьмём 8, тогда
величина будет примерно эквивалентна 42.

Через короткую диагональ

Рис 5

Меньшая или короткая диагональ правильного шестиугольника в √3 раз длиннее его стороны, также она
образует с ней прямой угол.

Цифр после запятой:

Результат в:

Если известна короткая диагональ такого выпуклого многоугольника, то с её помощью можно найти площадь
этой фигуры следующим образом:

S = (√3*)/2

где D — это протяжённость короткого отрезка, соединяющего несмежные
вершины.

К примеру, если длина такой диагонали будет равна 14, тогда необходимая характеристика фигуры будет
примерно равняться 170. Если же в качестве D мы возьмём 2, тогда величина
окажется всего лишь 3.

Через радиус описанной окружности

Рис 2

Шестиугольник считается правильным многоугольником, ведь все его стороны и углы эквивалентны друг
другу. Соответственно, около такого многоугольника можно описать окружность.

Чтобы найти площадь выпуклого многоугольника через радиус описанной окружности, необходимо
воспользоваться такой формулой:

S = (3√3*)/2

где R — это отрезок, соединяющий центр и любую точку описанной замкнутой
плоской кривой.

Цифр после запятой:

Результат в:

К примеру, если отрезок, соединяющий центр и любую точку, равняется 5, тогда заданная характеристика
замкнутой фигуры будет примерно равна 65. Если же в качестве радиуса возьмём число 12,
соответственно, заданная характеристика замкнутой фигуры получится примерно 374.

Через радиус вписанной окружности

Рис 3

Шестиугольник считается правильным многоугольником, ведь все его стороны и углы равны друг другу.
Соответственно, во всякий шестиугольник можно вписать окружность.

Формула для расчёта площади следующего выпуклой фигуры с шестью углами через радиус вписанной
окружности будет выглядеть следующим образом:

S = √3*

где r — это отрезок, соединяющий центр и любую точку вписанной замкнутой
плоской кривой.

Цифр после запятой:

Результат в:

К примеру, если этот отрезок, соединяющий центр и любую точку, равен 14, тогда необходимая величина
этого множества точек будет примерно равна 679. Если в качестве отрезка, соединяющего центр и любую
точку, возьмем 4, тогда площадь будет приблизительно равна 55.

Что такое правильный шестиугольник

Этот многоугольный геометрический объект имеет определённые свойства:

  • Каждый угол этой фигуры равняется 120 градусам;
  • Вокруг правильного шестиугольника можно описать окружность, причем единственную, а её радиус
    равняется его стороне;
  • Большие диагонали такого выпуклого многоугольника разделяют его на шесть равносторонних
    треугольников, высота каждого равняется радиусу вписанной в выпуклый многоугольник окружности;
  • Центры вписанной и описанной окружностей около подобного выпуклого многоугольника — это точка
    пересечения больших диагоналей этого множества точек.

Эта фигура очень часто встречается в природе, технике и культуре. К примеру:

  • Пчелиные соты изображают разделение плоскости на выпуклые шестиугольники;
  • Некоторые сложные молекулы углерода имеют гексагональную кристаллическую решётку;
  • Сечение гайки и большинства карандашей описывается таким выпуклым многоугольником;
  • Гексаграмма — это шестиконечная звезда, сформированная двумя правильными треугольниками. Также
    её называют звездой Давида, она считается символом иудаизма.

Правильный шестиугольник, многоугольнике с 6 вершинами, вычислить его параметры. Шестиугольник-это фигура, из которой можно складывать мозаику (черепицу). Введите одно из известных значений. Затем нажмите кнопку вычислить.

.

Поделиться расчетом:

Калькулятор шестиугольников

Длина стороны(a)

Большая диагональ(d1)

Меньшая диагональ(d2)

Периметр(p)

Площадь(S)

Радиус вписанной окружности(r)

Вычислить

Очистить

Формулы:

d = 2 * a
d2 = √3 * a
p = 6 * a
S = 3/2 * √3 * a2
r = √3 / 2 * a
Высота = d2 = 2 * r
Радиус окружности = a
Внутренние углы: 120°, 9 диагоналей

S- площадь, p – периметр
Стороны и углы равны между собой
Короткие диагонали образуют гексограмму
Длинные диагонали образуют шесть равносторонних треугольников, с длинной ребра а
Вписанная и описанная окружность

Перейти к содержанию

Площадь шестиугольника через диагональ

На чтение 2 мин Просмотров 106 Опубликовано 11.06.2019

Содержание

  1. Формулы
  2. Через сторону
  3. Через радиус описанной окружности
  4. Please enable cookies
  5. This website is using a security service to protect itself from online attacks.

Правильный шестиугольник – это многоугольник, состоящий из шести равных сторон. Все соседние стороны образуют угол 120°.

Формулы

Площадь шестиугольника через диагональ Площадь шестиугольника через диагональ

  • P – периметр
  • S – площадь
  • R – радиус K
  • r – радиус k
  • S’ – центр
  • a – сторона
  • K – окружность описанная
  • k – окружность вписанная

При предоставлении услуг веб-сайт «Calculat.org» использует файлы куки.

Вы не любите рекламу? Мы ее тоже не любим, тем не менее доходы от рекламы предоставляют возможность функционирования нашего веб-сайта и бесплатного обслуживания наших посетителей. Пожалуйста, подумайте, не стоит ли отменить блокировку рекламы на этом веб-сайте. Спасибо.

На данной странице калькулятор поможет рассчитать площадь правильного шестиугольника онлайн. Для расчета задайте длину стороны или радиус окружности.

Шестиугольник – многоугольник у которого все стороны равны, а все внутренние углы равны 120°.

Через сторону

Площадь шестиугольника через диагональ

Формула для нахождения площади правильного шестиугольника через сторону:

Через радиус описанной окружности

Площадь шестиугольника через диагональ

Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:

Please enable cookies

This website is using a security service to protect itself from online attacks. The service requires full cookie support in order to view the website.

Please enable cookies on your browser and try again.

This website is using a security service to protect itself from online attacks.

This process is automatic, you will be redirected to the requested URL once the validation process is complete.

Как рассчитать площадь правильного шестиугольника

На данной странице калькулятор поможет рассчитать площадь правильного шестиугольника онлайн. Для расчета задайте длину стороны или радиус окружности.

Шестиугольник – многоугольник у которого все стороны равны, а все внутренние углы равны 120°.

Через сторону


Площадь правильного шестиугольника

a:

Результат


Ответы:

Формула для нахождения площади правильного шестиугольника через сторону:

a – сторона шестиугольника.


Через радиус описанной окружности


Площадь правильного шестиугольника

r:

Результат


Ответы:

Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:

r – радиус описанной окружности.


Через радиус вписанной окружности


Площадь правильного шестиугольника

r:

Результат


Ответы:

Формула для нахождения площади правильного шестиугольника через радиус вписанной окружности:

r – радиус вписанной окружности.

Калькулятор

Площадь шестиугольника по длинной диагонали Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Длинная диагональ шестиугольника: 12 метр –> 12 метр Конверсия не требуется

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

93.5307436087194 Квадратный метр –> Конверсия не требуется




9 Площадь шестиугольника Калькуляторы

Площадь шестиугольника по длинной диагонали формула

Площадь шестиугольника = (3*sqrt(3))/8*Длинная диагональ шестиугольника^2

A = (3*sqrt(3))/8*dLong^2

Что такое шестиугольник?

Правильный шестиугольник определяется как равносторонний и равноугольный шестиугольник. Просто это шестисторонний правильный многоугольник. Он бицентрический, что означает, что он одновременно циклический (имеет описанную окружность) и тангенциальный (имеет вписанную окружность). Общая длина сторон равна радиусу описанной окружности или описанной окружности, которая равна 2/sqrt(3), умноженной на апофему (радиус вписанной окружности). Все внутренние углы равны 120 градусов. Правильный шестиугольник имеет шесть вращательных симметрий.

Добавить комментарий